Skip to main content
Top

2019 | OriginalPaper | Chapter

4. Volumetric Medical Image Segmentation: A 3D Deep Coarse-to-Fine Framework and Its Adversarial Examples

Authors : Yingwei Li, Zhuotun Zhu, Yuyin Zhou, Yingda Xia, Wei Shen, Elliot K. Fishman, Alan L. Yuille

Published in: Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Although deep neural networks have been a dominant method for many 2D vision tasks, it is still challenging to apply them to 3D tasks, such as medical image segmentation, due to the limited amount of annotated 3D data and limited computational resources. In this chapter, by rethinking the strategy to apply 3D Convolutional Neural Networks to segment medical images, we propose a novel 3D-based coarse-to-fine framework to efficiently tackle these challenges. The proposed 3D-based framework outperforms their 2D counterparts by a large margin since it can leverage the rich spatial information along all three axes. We further analyze the threat of adversarial attacks on the proposed framework and show how to defend against the attack. We conduct experiments on three datasets, the NIH pancreas dataset, the JHMI pancreas dataset and the JHMI pathological cyst dataset, where the first two and the last one contain healthy and pathological pancreases, respectively, and achieve the current state of the art in terms of Dice-Sørensen Coefficient (DSC) on all of them. Especially, on the NIH pancreas dataset, we outperform the previous best by an average of over \(2\%\), and the worst case is improved by \(7\%\) to reach almost \(70\%\), which indicates the reliability of our framework in clinical applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
The results are reported by our runs using the same cross-validation splits where the code is available from their GitHub: https://​github.​com/​yulequan/​HeartSeg.
 
2
The coarse model is used for comparison since it is the basis of our framework.
 
3
Since the raw intensity values are to be in \([-100, 240]\) during preprocessing (see Sect. 4.4.1.1), here we set \(\Lambda = 240 - (-100) = 340\) accordingly.
 
4
For implementation simplicity and efficiency, we ignored the sub-volumes only containing the background class when generating adversarial examples.
 
Literature
2.
go back to reference Cai J, Lu L, Xie Y, Xing F, Yang L (2017) Improving deep pancreas segmentation in CT and MRI images via recurrent neural contextual learning and direct loss function Cai J, Lu L, Xie Y, Xing F, Yang L (2017) Improving deep pancreas segmentation in CT and MRI images via recurrent neural contextual learning and direct loss function
3.
go back to reference Chen H, Dou Q, Yu L, Qin J, Heng PA (2017) Voxresnet: deep voxelwise residual networks for brain segmentation from 3D MR images. NeuroImage Chen H, Dou Q, Yu L, Qin J, Heng PA (2017) Voxresnet: deep voxelwise residual networks for brain segmentation from 3D MR images. NeuroImage
4.
go back to reference Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2016) Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. arXiv:1606.00915 Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2016) Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. arXiv:​1606.​00915
5.
go back to reference Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O (2016) 3D u-net: learning dense volumetric segmentation from sparse annotation. In: MICCAI Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O (2016) 3D u-net: learning dense volumetric segmentation from sparse annotation. In: MICCAI
6.
go back to reference Dou Q, Yu L, Chen H, Jin Y, Yang X, Qin J, Heng PA (2017) 3D deeply supervised network for automated segmentation of volumetric medical images. MIA 41:40–54 Dou Q, Yu L, Chen H, Jin Y, Yang X, Qin J, Heng PA (2017) 3D deeply supervised network for automated segmentation of volumetric medical images. MIA 41:40–54
7.
go back to reference Fang Y, Xie J, Dai G, Wang M, Zhu F, Xu T, Wong E (2015) 3D deep shape descriptor. In: CVPR Fang Y, Xie J, Dai G, Wang M, Zhu F, Xu T, Wong E (2015) 3D deep shape descriptor. In: CVPR
8.
go back to reference Gibson E, Giganti F, Hu Y, Bonmati E, Bandula S, Gurusamy K, Davidson B, Pereira SP, Clarkson MJ, Barratt DC (2018) Automatic multi-organ segmentation on abdominal ct with dense v-networks. TMI Gibson E, Giganti F, Hu Y, Bonmati E, Bandula S, Gurusamy K, Davidson B, Pereira SP, Clarkson MJ, Barratt DC (2018) Automatic multi-organ segmentation on abdominal ct with dense v-networks. TMI
9.
go back to reference Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In: AISTATS Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In: AISTATS
10.
go back to reference Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. In: ICLR Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. In: ICLR
11.
go back to reference Gravel P, Beaudoin G, De Guise JA (2004) A method for modeling noise in medical images. TMI 23(10):1221–1232 Gravel P, Beaudoin G, De Guise JA (2004) A method for modeling noise in medical images. TMI 23(10):1221–1232
12.
go back to reference Havaei M, Davy A, Warde-Farley D, Biard A, Courville AC, Bengio Y, Pal C, Jodoin P, Larochelle H (2017) Brain tumor segmentation with deep neural networks. MIA 35:18–31 Havaei M, Davy A, Warde-Farley D, Biard A, Courville AC, Bengio Y, Pal C, Jodoin P, Larochelle H (2017) Brain tumor segmentation with deep neural networks. MIA 35:18–31
13.
go back to reference He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: CVPR He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: CVPR
14.
go back to reference Huang Y, Würfl T, Breininger K, Liu L, Lauritsch G, Maier A (2018) Some investigations on robustness of deep learning in limited angle tomography. In: MICCAI Huang Y, Würfl T, Breininger K, Liu L, Lauritsch G, Maier A (2018) Some investigations on robustness of deep learning in limited angle tomography. In: MICCAI
15.
go back to reference Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: ICML Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: ICML
16.
go back to reference Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T (2014) CAFFE: convolutional architecture for fast feature embedding. MM Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T (2014) CAFFE: convolutional architecture for fast feature embedding. MM
17.
go back to reference Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: NIPS Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: NIPS
18.
go back to reference Kurakin A, Goodfellow I, Bengio S (2017) Adversarial machine learning at scale. In: ICLR Kurakin A, Goodfellow I, Bengio S (2017) Adversarial machine learning at scale. In: ICLR
19.
go back to reference Lasboo AA, Rezai P, Yaghmai V (2010) Morphological analysis of pancreatic cystic masses. Acad Radiol 17(3):348–351CrossRef Lasboo AA, Rezai P, Yaghmai V (2010) Morphological analysis of pancreatic cystic masses. Acad Radiol 17(3):348–351CrossRef
20.
go back to reference Lee CY, Xie S, Gallagher P, Zhang Z, Tu Z (2015) Deeply-supervised nets. In: AISTATS Lee CY, Xie S, Gallagher P, Zhang Z, Tu Z (2015) Deeply-supervised nets. In: AISTATS
21.
go back to reference Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: CVPR Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: CVPR
22.
go back to reference Madry A, Makelov A, Schmidt L, Tsipras D, Vladu, A (2018) Towards deep learning models resistant to adversarial attacks. In: ICLR Madry A, Makelov A, Schmidt L, Tsipras D, Vladu, A (2018) Towards deep learning models resistant to adversarial attacks. In: ICLR
23.
go back to reference Merkow J, Marsden A, Kriegman D, Tu Z (2016) Dense volume-to-volume vascular boundary detection. In: MICCAI Merkow J, Marsden A, Kriegman D, Tu Z (2016) Dense volume-to-volume vascular boundary detection. In: MICCAI
24.
go back to reference Milletari F, Navab N, Ahmadi SA (2016) V-net: Fully convolutional neural networks for volumetric medical image segmentation. In: 3DV Milletari F, Navab N, Ahmadi SA (2016) V-net: Fully convolutional neural networks for volumetric medical image segmentation. In: 3DV
25.
go back to reference Moeskops P, Wolterink JM, van der Velden BHM, Gilhuijs KGA, Leiner T, Viergever MA, Isgum I (2017) Deep learning for multi-task medical image segmentation in multiple modalities. CoRR arXiv:1704.03379 Moeskops P, Wolterink JM, van der Velden BHM, Gilhuijs KGA, Leiner T, Viergever MA, Isgum I (2017) Deep learning for multi-task medical image segmentation in multiple modalities. CoRR arXiv:​1704.​03379
26.
go back to reference Nair V, Hinton GE (2010) Rectified linear units improve restricted boltzmann machines. In: ICML Nair V, Hinton GE (2010) Rectified linear units improve restricted boltzmann machines. In: ICML
27.
go back to reference Paschali M, Conjeti S, Navarro F, Navab N (2018) Generalizability versus robustness: adversarial examples for medical imaging. In: MICCAI Paschali M, Conjeti S, Navarro F, Navab N (2018) Generalizability versus robustness: adversarial examples for medical imaging. In: MICCAI
28.
go back to reference Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention
29.
go back to reference Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: MICCAI Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: MICCAI
30.
go back to reference Roth H, Oda M, Shimizu N, Oda H, Hayashi Y, Kitasaka T, Fujiwara M, Misawa K, Mori K (2018) Towards dense volumetric pancreas segmentation in CT using 3D fully convolutional networks. In: SPIE Roth H, Oda M, Shimizu N, Oda H, Hayashi Y, Kitasaka T, Fujiwara M, Misawa K, Mori K (2018) Towards dense volumetric pancreas segmentation in CT using 3D fully convolutional networks. In: SPIE
31.
go back to reference Roth HR, Lu L, Farag A, Shin HC, Liu J, Turkbey EB, Summers RM (2015) Deeporgan: multi-level deep convolutional networks for automated pancreas segmentation. In: MICCAI Roth HR, Lu L, Farag A, Shin HC, Liu J, Turkbey EB, Summers RM (2015) Deeporgan: multi-level deep convolutional networks for automated pancreas segmentation. In: MICCAI
32.
go back to reference Roth HR, Lu L, Farag A, Sohn A, Summers RM (2016) Spatial aggregation of holistically-nested networks for automated pancreas segmentation. In: MICCAI Roth HR, Lu L, Farag A, Sohn A, Summers RM (2016) Spatial aggregation of holistically-nested networks for automated pancreas segmentation. In: MICCAI
33.
go back to reference Shen W, Wang B, Jiang Y, Wang Y, Yuille AL (2017) Multi-stage multi-recursive-input fully convolutional networks for neuronal boundary detection. In: ICCV, pp 2410–2419 Shen W, Wang B, Jiang Y, Wang Y, Yuille AL (2017) Multi-stage multi-recursive-input fully convolutional networks for neuronal boundary detection. In: ICCV, pp 2410–2419
34.
go back to reference Shen W, Wang X, Wang Y, Bai X, Zhang Z (2015) Deepcontour: a deep convolutional feature learned by positive-sharing loss for contour detection. In: CVPR Shen W, Wang X, Wang Y, Bai X, Zhang Z (2015) Deepcontour: a deep convolutional feature learned by positive-sharing loss for contour detection. In: CVPR
36.
go back to reference Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: CVPR Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: CVPR
37.
go back to reference Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D, Goodfellow I, Fergus R (2014) Intriguing properties of neural networks. In: ICLR Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D, Goodfellow I, Fergus R (2014) Intriguing properties of neural networks. In: ICLR
38.
39.
go back to reference Wang Y, Zhou Y, Shen W, Park S, Fishman EK, Yuille AL (2018) Abdominal multi-organ segmentation with organ-attention networks and statistical fusion. CoRR. arXiv:1804.08414 Wang Y, Zhou Y, Shen W, Park S, Fishman EK, Yuille AL (2018) Abdominal multi-organ segmentation with organ-attention networks and statistical fusion. CoRR. arXiv:​1804.​08414
40.
go back to reference Wang Y, Zhou Y, Tang P, Shen W, Fishman EK, Yuille AL (2018) Training multi-organ segmentation networks with sample selection by relaxed upper confident bound. In: Proceedings of MICCAI, pp. 434–442CrossRef Wang Y, Zhou Y, Tang P, Shen W, Fishman EK, Yuille AL (2018) Training multi-organ segmentation networks with sample selection by relaxed upper confident bound. In: Proceedings of MICCAI, pp. 434–442CrossRef
41.
go back to reference Xie C, Wang J, Zhang Z, Zhou Y, Xie L, Yuille A (2017) Adversarial examples for semantic segmentation and object detection. In: ICCV Xie C, Wang J, Zhang Z, Zhou Y, Xie L, Yuille A (2017) Adversarial examples for semantic segmentation and object detection. In: ICCV
42.
go back to reference Xie S, Tu Z (2015) Holistically-nested edge detection. In: ICCV Xie S, Tu Z (2015) Holistically-nested edge detection. In: ICCV
43.
go back to reference Yu L, Cheng JZ, Dou Q, Yang X, Chen H, Qin J, Heng PA (2017) Automatic 3D cardiovascular MR segmentation with densely-connected volumetric convnets. In: MICCAI Yu L, Cheng JZ, Dou Q, Yang X, Chen H, Qin J, Heng PA (2017) Automatic 3D cardiovascular MR segmentation with densely-connected volumetric convnets. In: MICCAI
44.
go back to reference Yu L, Yang X, Chen H, Qin J, Heng P (2017) Volumetric convnets with mixed residual connections for automated prostate segmentation from 3D MR images. In: AAAI Yu L, Yang X, Chen H, Qin J, Heng P (2017) Volumetric convnets with mixed residual connections for automated prostate segmentation from 3D MR images. In: AAAI
45.
go back to reference Zhou Y, Xie L, Fishman EK, Yuille AL (2017) Deep supervision for pancreatic cyst segmentation in abdominal CT scans. In: MICCAI Zhou Y, Xie L, Fishman EK, Yuille AL (2017) Deep supervision for pancreatic cyst segmentation in abdominal CT scans. In: MICCAI
46.
go back to reference Zhou Y, Xie L, Shen W, Wang Y, Fishman EK, Yuille AL (2017) A fixed-point model for pancreas segmentation in abdominal CT scans. In: MICCAI Zhou Y, Xie L, Shen W, Wang Y, Fishman EK, Yuille AL (2017) A fixed-point model for pancreas segmentation in abdominal CT scans. In: MICCAI
47.
go back to reference Zhu Z, Wang X, Bai S, Yao C, Bai X (2016) Deep learning representation using autoencoder for 3D shape retrieval. Neurocomputing 204:41–50CrossRef Zhu Z, Wang X, Bai S, Yao C, Bai X (2016) Deep learning representation using autoencoder for 3D shape retrieval. Neurocomputing 204:41–50CrossRef
48.
go back to reference Zhu Z, Xia Y, Shen W, Fishman EK, Yuille AL (2018) A 3d coarse-to-fine framework for volumetric medical image segmentation. In: International conference on 3D vision, pp 682–690 Zhu Z, Xia Y, Shen W, Fishman EK, Yuille AL (2018) A 3d coarse-to-fine framework for volumetric medical image segmentation. In: International conference on 3D vision, pp 682–690
49.
go back to reference Zhu Z, Xia Y, Xie L, Fishman EK, Yuille AL (2018) Multi-scale coarse-to-fine segmentation for screening pancreatic ductal adenocarcinoma. arXiv:1807.02941 Zhu Z, Xia Y, Xie L, Fishman EK, Yuille AL (2018) Multi-scale coarse-to-fine segmentation for screening pancreatic ductal adenocarcinoma. arXiv:​1807.​02941
Metadata
Title
Volumetric Medical Image Segmentation: A 3D Deep Coarse-to-Fine Framework and Its Adversarial Examples
Authors
Yingwei Li
Zhuotun Zhu
Yuyin Zhou
Yingda Xia
Wei Shen
Elliot K. Fishman
Alan L. Yuille
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-13969-8_4

Premium Partner