Skip to main content

2019 | OriginalPaper | Buchkapitel

4. Volumetric Medical Image Segmentation: A 3D Deep Coarse-to-Fine Framework and Its Adversarial Examples

verfasst von : Yingwei Li, Zhuotun Zhu, Yuyin Zhou, Yingda Xia, Wei Shen, Elliot K. Fishman, Alan L. Yuille

Erschienen in: Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Although deep neural networks have been a dominant method for many 2D vision tasks, it is still challenging to apply them to 3D tasks, such as medical image segmentation, due to the limited amount of annotated 3D data and limited computational resources. In this chapter, by rethinking the strategy to apply 3D Convolutional Neural Networks to segment medical images, we propose a novel 3D-based coarse-to-fine framework to efficiently tackle these challenges. The proposed 3D-based framework outperforms their 2D counterparts by a large margin since it can leverage the rich spatial information along all three axes. We further analyze the threat of adversarial attacks on the proposed framework and show how to defend against the attack. We conduct experiments on three datasets, the NIH pancreas dataset, the JHMI pancreas dataset and the JHMI pathological cyst dataset, where the first two and the last one contain healthy and pathological pancreases, respectively, and achieve the current state of the art in terms of Dice-Sørensen Coefficient (DSC) on all of them. Especially, on the NIH pancreas dataset, we outperform the previous best by an average of over \(2\%\), and the worst case is improved by \(7\%\) to reach almost \(70\%\), which indicates the reliability of our framework in clinical applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
The results are reported by our runs using the same cross-validation splits where the code is available from their GitHub: https://​github.​com/​yulequan/​HeartSeg.
 
2
The coarse model is used for comparison since it is the basis of our framework.
 
3
Since the raw intensity values are to be in \([-100, 240]\) during preprocessing (see Sect. 4.4.1.1), here we set \(\Lambda = 240 - (-100) = 340\) accordingly.
 
4
For implementation simplicity and efficiency, we ignored the sub-volumes only containing the background class when generating adversarial examples.
 
Literatur
2.
Zurück zum Zitat Cai J, Lu L, Xie Y, Xing F, Yang L (2017) Improving deep pancreas segmentation in CT and MRI images via recurrent neural contextual learning and direct loss function Cai J, Lu L, Xie Y, Xing F, Yang L (2017) Improving deep pancreas segmentation in CT and MRI images via recurrent neural contextual learning and direct loss function
3.
Zurück zum Zitat Chen H, Dou Q, Yu L, Qin J, Heng PA (2017) Voxresnet: deep voxelwise residual networks for brain segmentation from 3D MR images. NeuroImage Chen H, Dou Q, Yu L, Qin J, Heng PA (2017) Voxresnet: deep voxelwise residual networks for brain segmentation from 3D MR images. NeuroImage
4.
Zurück zum Zitat Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2016) Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. arXiv:1606.00915 Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2016) Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. arXiv:​1606.​00915
5.
Zurück zum Zitat Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O (2016) 3D u-net: learning dense volumetric segmentation from sparse annotation. In: MICCAI Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O (2016) 3D u-net: learning dense volumetric segmentation from sparse annotation. In: MICCAI
6.
Zurück zum Zitat Dou Q, Yu L, Chen H, Jin Y, Yang X, Qin J, Heng PA (2017) 3D deeply supervised network for automated segmentation of volumetric medical images. MIA 41:40–54 Dou Q, Yu L, Chen H, Jin Y, Yang X, Qin J, Heng PA (2017) 3D deeply supervised network for automated segmentation of volumetric medical images. MIA 41:40–54
7.
Zurück zum Zitat Fang Y, Xie J, Dai G, Wang M, Zhu F, Xu T, Wong E (2015) 3D deep shape descriptor. In: CVPR Fang Y, Xie J, Dai G, Wang M, Zhu F, Xu T, Wong E (2015) 3D deep shape descriptor. In: CVPR
8.
Zurück zum Zitat Gibson E, Giganti F, Hu Y, Bonmati E, Bandula S, Gurusamy K, Davidson B, Pereira SP, Clarkson MJ, Barratt DC (2018) Automatic multi-organ segmentation on abdominal ct with dense v-networks. TMI Gibson E, Giganti F, Hu Y, Bonmati E, Bandula S, Gurusamy K, Davidson B, Pereira SP, Clarkson MJ, Barratt DC (2018) Automatic multi-organ segmentation on abdominal ct with dense v-networks. TMI
9.
Zurück zum Zitat Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In: AISTATS Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In: AISTATS
10.
Zurück zum Zitat Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. In: ICLR Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. In: ICLR
11.
Zurück zum Zitat Gravel P, Beaudoin G, De Guise JA (2004) A method for modeling noise in medical images. TMI 23(10):1221–1232 Gravel P, Beaudoin G, De Guise JA (2004) A method for modeling noise in medical images. TMI 23(10):1221–1232
12.
Zurück zum Zitat Havaei M, Davy A, Warde-Farley D, Biard A, Courville AC, Bengio Y, Pal C, Jodoin P, Larochelle H (2017) Brain tumor segmentation with deep neural networks. MIA 35:18–31 Havaei M, Davy A, Warde-Farley D, Biard A, Courville AC, Bengio Y, Pal C, Jodoin P, Larochelle H (2017) Brain tumor segmentation with deep neural networks. MIA 35:18–31
13.
Zurück zum Zitat He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: CVPR He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: CVPR
14.
Zurück zum Zitat Huang Y, Würfl T, Breininger K, Liu L, Lauritsch G, Maier A (2018) Some investigations on robustness of deep learning in limited angle tomography. In: MICCAI Huang Y, Würfl T, Breininger K, Liu L, Lauritsch G, Maier A (2018) Some investigations on robustness of deep learning in limited angle tomography. In: MICCAI
15.
Zurück zum Zitat Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: ICML Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: ICML
16.
Zurück zum Zitat Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T (2014) CAFFE: convolutional architecture for fast feature embedding. MM Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T (2014) CAFFE: convolutional architecture for fast feature embedding. MM
17.
Zurück zum Zitat Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: NIPS Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: NIPS
18.
Zurück zum Zitat Kurakin A, Goodfellow I, Bengio S (2017) Adversarial machine learning at scale. In: ICLR Kurakin A, Goodfellow I, Bengio S (2017) Adversarial machine learning at scale. In: ICLR
19.
Zurück zum Zitat Lasboo AA, Rezai P, Yaghmai V (2010) Morphological analysis of pancreatic cystic masses. Acad Radiol 17(3):348–351CrossRef Lasboo AA, Rezai P, Yaghmai V (2010) Morphological analysis of pancreatic cystic masses. Acad Radiol 17(3):348–351CrossRef
20.
Zurück zum Zitat Lee CY, Xie S, Gallagher P, Zhang Z, Tu Z (2015) Deeply-supervised nets. In: AISTATS Lee CY, Xie S, Gallagher P, Zhang Z, Tu Z (2015) Deeply-supervised nets. In: AISTATS
21.
Zurück zum Zitat Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: CVPR Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: CVPR
22.
Zurück zum Zitat Madry A, Makelov A, Schmidt L, Tsipras D, Vladu, A (2018) Towards deep learning models resistant to adversarial attacks. In: ICLR Madry A, Makelov A, Schmidt L, Tsipras D, Vladu, A (2018) Towards deep learning models resistant to adversarial attacks. In: ICLR
23.
Zurück zum Zitat Merkow J, Marsden A, Kriegman D, Tu Z (2016) Dense volume-to-volume vascular boundary detection. In: MICCAI Merkow J, Marsden A, Kriegman D, Tu Z (2016) Dense volume-to-volume vascular boundary detection. In: MICCAI
24.
Zurück zum Zitat Milletari F, Navab N, Ahmadi SA (2016) V-net: Fully convolutional neural networks for volumetric medical image segmentation. In: 3DV Milletari F, Navab N, Ahmadi SA (2016) V-net: Fully convolutional neural networks for volumetric medical image segmentation. In: 3DV
25.
Zurück zum Zitat Moeskops P, Wolterink JM, van der Velden BHM, Gilhuijs KGA, Leiner T, Viergever MA, Isgum I (2017) Deep learning for multi-task medical image segmentation in multiple modalities. CoRR arXiv:1704.03379 Moeskops P, Wolterink JM, van der Velden BHM, Gilhuijs KGA, Leiner T, Viergever MA, Isgum I (2017) Deep learning for multi-task medical image segmentation in multiple modalities. CoRR arXiv:​1704.​03379
26.
Zurück zum Zitat Nair V, Hinton GE (2010) Rectified linear units improve restricted boltzmann machines. In: ICML Nair V, Hinton GE (2010) Rectified linear units improve restricted boltzmann machines. In: ICML
27.
Zurück zum Zitat Paschali M, Conjeti S, Navarro F, Navab N (2018) Generalizability versus robustness: adversarial examples for medical imaging. In: MICCAI Paschali M, Conjeti S, Navarro F, Navab N (2018) Generalizability versus robustness: adversarial examples for medical imaging. In: MICCAI
28.
Zurück zum Zitat Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention
29.
Zurück zum Zitat Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: MICCAI Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: MICCAI
30.
Zurück zum Zitat Roth H, Oda M, Shimizu N, Oda H, Hayashi Y, Kitasaka T, Fujiwara M, Misawa K, Mori K (2018) Towards dense volumetric pancreas segmentation in CT using 3D fully convolutional networks. In: SPIE Roth H, Oda M, Shimizu N, Oda H, Hayashi Y, Kitasaka T, Fujiwara M, Misawa K, Mori K (2018) Towards dense volumetric pancreas segmentation in CT using 3D fully convolutional networks. In: SPIE
31.
Zurück zum Zitat Roth HR, Lu L, Farag A, Shin HC, Liu J, Turkbey EB, Summers RM (2015) Deeporgan: multi-level deep convolutional networks for automated pancreas segmentation. In: MICCAI Roth HR, Lu L, Farag A, Shin HC, Liu J, Turkbey EB, Summers RM (2015) Deeporgan: multi-level deep convolutional networks for automated pancreas segmentation. In: MICCAI
32.
Zurück zum Zitat Roth HR, Lu L, Farag A, Sohn A, Summers RM (2016) Spatial aggregation of holistically-nested networks for automated pancreas segmentation. In: MICCAI Roth HR, Lu L, Farag A, Sohn A, Summers RM (2016) Spatial aggregation of holistically-nested networks for automated pancreas segmentation. In: MICCAI
33.
Zurück zum Zitat Shen W, Wang B, Jiang Y, Wang Y, Yuille AL (2017) Multi-stage multi-recursive-input fully convolutional networks for neuronal boundary detection. In: ICCV, pp 2410–2419 Shen W, Wang B, Jiang Y, Wang Y, Yuille AL (2017) Multi-stage multi-recursive-input fully convolutional networks for neuronal boundary detection. In: ICCV, pp 2410–2419
34.
Zurück zum Zitat Shen W, Wang X, Wang Y, Bai X, Zhang Z (2015) Deepcontour: a deep convolutional feature learned by positive-sharing loss for contour detection. In: CVPR Shen W, Wang X, Wang Y, Bai X, Zhang Z (2015) Deepcontour: a deep convolutional feature learned by positive-sharing loss for contour detection. In: CVPR
35.
36.
Zurück zum Zitat Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: CVPR Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: CVPR
37.
Zurück zum Zitat Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D, Goodfellow I, Fergus R (2014) Intriguing properties of neural networks. In: ICLR Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D, Goodfellow I, Fergus R (2014) Intriguing properties of neural networks. In: ICLR
38.
39.
Zurück zum Zitat Wang Y, Zhou Y, Shen W, Park S, Fishman EK, Yuille AL (2018) Abdominal multi-organ segmentation with organ-attention networks and statistical fusion. CoRR. arXiv:1804.08414 Wang Y, Zhou Y, Shen W, Park S, Fishman EK, Yuille AL (2018) Abdominal multi-organ segmentation with organ-attention networks and statistical fusion. CoRR. arXiv:​1804.​08414
40.
Zurück zum Zitat Wang Y, Zhou Y, Tang P, Shen W, Fishman EK, Yuille AL (2018) Training multi-organ segmentation networks with sample selection by relaxed upper confident bound. In: Proceedings of MICCAI, pp. 434–442CrossRef Wang Y, Zhou Y, Tang P, Shen W, Fishman EK, Yuille AL (2018) Training multi-organ segmentation networks with sample selection by relaxed upper confident bound. In: Proceedings of MICCAI, pp. 434–442CrossRef
41.
Zurück zum Zitat Xie C, Wang J, Zhang Z, Zhou Y, Xie L, Yuille A (2017) Adversarial examples for semantic segmentation and object detection. In: ICCV Xie C, Wang J, Zhang Z, Zhou Y, Xie L, Yuille A (2017) Adversarial examples for semantic segmentation and object detection. In: ICCV
42.
Zurück zum Zitat Xie S, Tu Z (2015) Holistically-nested edge detection. In: ICCV Xie S, Tu Z (2015) Holistically-nested edge detection. In: ICCV
43.
Zurück zum Zitat Yu L, Cheng JZ, Dou Q, Yang X, Chen H, Qin J, Heng PA (2017) Automatic 3D cardiovascular MR segmentation with densely-connected volumetric convnets. In: MICCAI Yu L, Cheng JZ, Dou Q, Yang X, Chen H, Qin J, Heng PA (2017) Automatic 3D cardiovascular MR segmentation with densely-connected volumetric convnets. In: MICCAI
44.
Zurück zum Zitat Yu L, Yang X, Chen H, Qin J, Heng P (2017) Volumetric convnets with mixed residual connections for automated prostate segmentation from 3D MR images. In: AAAI Yu L, Yang X, Chen H, Qin J, Heng P (2017) Volumetric convnets with mixed residual connections for automated prostate segmentation from 3D MR images. In: AAAI
45.
Zurück zum Zitat Zhou Y, Xie L, Fishman EK, Yuille AL (2017) Deep supervision for pancreatic cyst segmentation in abdominal CT scans. In: MICCAI Zhou Y, Xie L, Fishman EK, Yuille AL (2017) Deep supervision for pancreatic cyst segmentation in abdominal CT scans. In: MICCAI
46.
Zurück zum Zitat Zhou Y, Xie L, Shen W, Wang Y, Fishman EK, Yuille AL (2017) A fixed-point model for pancreas segmentation in abdominal CT scans. In: MICCAI Zhou Y, Xie L, Shen W, Wang Y, Fishman EK, Yuille AL (2017) A fixed-point model for pancreas segmentation in abdominal CT scans. In: MICCAI
47.
Zurück zum Zitat Zhu Z, Wang X, Bai S, Yao C, Bai X (2016) Deep learning representation using autoencoder for 3D shape retrieval. Neurocomputing 204:41–50CrossRef Zhu Z, Wang X, Bai S, Yao C, Bai X (2016) Deep learning representation using autoencoder for 3D shape retrieval. Neurocomputing 204:41–50CrossRef
48.
Zurück zum Zitat Zhu Z, Xia Y, Shen W, Fishman EK, Yuille AL (2018) A 3d coarse-to-fine framework for volumetric medical image segmentation. In: International conference on 3D vision, pp 682–690 Zhu Z, Xia Y, Shen W, Fishman EK, Yuille AL (2018) A 3d coarse-to-fine framework for volumetric medical image segmentation. In: International conference on 3D vision, pp 682–690
49.
Zurück zum Zitat Zhu Z, Xia Y, Xie L, Fishman EK, Yuille AL (2018) Multi-scale coarse-to-fine segmentation for screening pancreatic ductal adenocarcinoma. arXiv:1807.02941 Zhu Z, Xia Y, Xie L, Fishman EK, Yuille AL (2018) Multi-scale coarse-to-fine segmentation for screening pancreatic ductal adenocarcinoma. arXiv:​1807.​02941
Metadaten
Titel
Volumetric Medical Image Segmentation: A 3D Deep Coarse-to-Fine Framework and Its Adversarial Examples
verfasst von
Yingwei Li
Zhuotun Zhu
Yuyin Zhou
Yingda Xia
Wei Shen
Elliot K. Fishman
Alan L. Yuille
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-13969-8_4

Premium Partner