Skip to main content

2018 | OriginalPaper | Buchkapitel

Training Multi-organ Segmentation Networks with Sample Selection by Relaxed Upper Confident Bound

verfasst von : Yan Wang, Yuyin Zhou, Peng Tang, Wei Shen, Elliot K. Fishman, Alan L. Yuille

Erschienen in: Medical Image Computing and Computer Assisted Intervention – MICCAI 2018

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Convolutional neural networks (CNNs), especially fully convolutional networks, have been widely applied to automatic medical image segmentation problems, e.g., multi-organ segmentation. Existing CNN-based segmentation methods mainly focus on looking for increasingly powerful network architectures, but pay less attention to data sampling strategies for training networks more effectively. In this paper, we present a simple but effective sample selection method for training multi-organ segmentation networks. Sample selection exhibits an exploitation-exploration strategy, i.e., exploiting hard samples and exploring less frequently visited samples. Based on the fact that very hard samples might have annotation errors, we propose a new sample selection policy, named Relaxed Upper Confident Bound (RUCB). Compared with other sample selection policies, e.g., Upper Confident Bound (UCB), it exploits a range of hard samples rather than being stuck with a small set of very hard ones, which mitigates the influence of annotation errors during training. We apply this new sample selection policy to training a multi-organ segmentation network on a dataset containing 120 abdominal CT scans and show that it boosts segmentation performance significantly.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
In this paper, we only consider the bootstrapping procedure that selects samples from a fixed dataset.
 
Literatur
1.
Zurück zum Zitat Auer, P.: Using confidence bounds for exploitation-exploration trade-offs. J. Mach. Learn. Res. 3, 397–422 (2002)MathSciNetMATH Auer, P.: Using confidence bounds for exploitation-exploration trade-offs. J. Mach. Learn. Res. 3, 397–422 (2002)MathSciNetMATH
2.
Zurück zum Zitat Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Mach. Learn. 47(2), 235–256 (2002)CrossRef Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Mach. Learn. 47(2), 235–256 (2002)CrossRef
3.
Zurück zum Zitat Canévet, O., Fleuret, F.: Large scale hard sample mining with monte carlo tree search. In: Proceedings of the CVPR, pp. 5128–5137 (2016) Canévet, O., Fleuret, F.: Large scale hard sample mining with monte carlo tree search. In: Proceedings of the CVPR, pp. 5128–5137 (2016)
4.
Zurück zum Zitat Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49CrossRef Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://​doi.​org/​10.​1007/​978-3-319-46723-8_​49CrossRef
5.
Zurück zum Zitat Fakhry, A., Zeng, T., Ji, S.: Residual deconvolutional networks for brain electron microscopy image segmentation. IEEE Trans. Med. Imaging 36(2), 447–456 (2017)CrossRef Fakhry, A., Zeng, T., Ji, S.: Residual deconvolutional networks for brain electron microscopy image segmentation. IEEE Trans. Med. Imaging 36(2), 447–456 (2017)CrossRef
6.
Zurück zum Zitat Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Computer Vision and Pattern Recognition (2015) Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Computer Vision and Pattern Recognition (2015)
7.
Zurück zum Zitat Loshchilov, I., Hutter, F.: Online batch selection for faster training of neural networks. CoRR abs/1511.06343 (2015) Loshchilov, I., Hutter, F.: Online batch selection for faster training of neural networks. CoRR abs/1511.06343 (2015)
9.
Zurück zum Zitat Robbins, H.: Some aspects of the sequential design of experiments. Bull. Am. Math. Soc. 58(5), 527–535 (1952)MathSciNetCrossRef Robbins, H.: Some aspects of the sequential design of experiments. Bull. Am. Math. Soc. 58(5), 527–535 (1952)MathSciNetCrossRef
11.
Zurück zum Zitat Roth, H., et al.: Hierarchical 3D fully convolutional networks for multi-organ segmentation. CoRR abs/1704.06382 (2017) Roth, H., et al.: Hierarchical 3D fully convolutional networks for multi-organ segmentation. CoRR abs/1704.06382 (2017)
12.
Zurück zum Zitat Roth, H.R., Lu, L., Farag, A., Sohn, A., Summers, R.M.: Spatial aggregation of holistically-nested networks for automated pancreas segmentation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 451–459. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_52CrossRef Roth, H.R., Lu, L., Farag, A., Sohn, A., Summers, R.M.: Spatial aggregation of holistically-nested networks for automated pancreas segmentation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 451–459. Springer, Cham (2016). https://​doi.​org/​10.​1007/​978-3-319-46723-8_​52CrossRef
13.
Zurück zum Zitat Shen, W., Wang, B., Jiang, Y., Wang, Y., Yuille, A.L.: Multi-stage multi-recursive-input fully convolutional networks for neuronal boundary detection. In: Proceedings of the ICCV, pp. 2410–2419 (2017) Shen, W., Wang, B., Jiang, Y., Wang, Y., Yuille, A.L.: Multi-stage multi-recursive-input fully convolutional networks for neuronal boundary detection. In: Proceedings of the ICCV, pp. 2410–2419 (2017)
14.
Zurück zum Zitat Shrivastava, A., Gupta, A., Girshick, R.B.: Training region-based object detectors with online hard example mining. In: CVPR, pp. 761–769 (2016) Shrivastava, A., Gupta, A., Girshick, R.B.: Training region-based object detectors with online hard example mining. In: CVPR, pp. 761–769 (2016)
15.
Zurück zum Zitat Simo-Serra, E., Trulls, E., Ferraz, L., Kokkinos, I., Moreno-Noguer, F.: Fracking deep convolutional image descriptors. CoRR abs/1412.6537 (2014) Simo-Serra, E., Trulls, E., Ferraz, L., Kokkinos, I., Moreno-Noguer, F.: Fracking deep convolutional image descriptors. CoRR abs/1412.6537 (2014)
16.
Zurück zum Zitat Wang, Y., Zhou, Y., Shen, W., Park, S., Fishman, E.K., Yuille, A.L.: Abdominal multi-organ segmentation with organ-attention networks and statistical fusion. CoRR abs/1804.08414 (2018) Wang, Y., Zhou, Y., Shen, W., Park, S., Fishman, E.K., Yuille, A.L.: Abdominal multi-organ segmentation with organ-attention networks and statistical fusion. CoRR abs/1804.08414 (2018)
17.
Zurück zum Zitat Zhou, Y., Xie, L., Shen, W., Wang, Y., Fishman, E.K., Yuille, A.L.: A fixed-point model for pancreas segmentation in abdominal CT scans. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 693–701. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_79CrossRef Zhou, Y., Xie, L., Shen, W., Wang, Y., Fishman, E.K., Yuille, A.L.: A fixed-point model for pancreas segmentation in abdominal CT scans. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 693–701. Springer, Cham (2017). https://​doi.​org/​10.​1007/​978-3-319-66182-7_​79CrossRef
Metadaten
Titel
Training Multi-organ Segmentation Networks with Sample Selection by Relaxed Upper Confident Bound
verfasst von
Yan Wang
Yuyin Zhou
Peng Tang
Wei Shen
Elliot K. Fishman
Alan L. Yuille
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-030-00937-3_50

Premium Partner