Skip to main content
Erschienen in:
Buchtitelbild

2019 | OriginalPaper | Buchkapitel

1. Pancreas Segmentation in CT and MRI via Task-Specific Network Design and Recurrent Neural Contextual Learning

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Automatic pancreas segmentation in radiology images, e.g., computed tomography (CT), and magnetic resonance imaging (MRI), is frequently required by computer-aided screening, diagnosis, and quantitative assessment. Yet, pancreas is a challenging abdominal organ to segment due to the high inter-patient anatomical variability in both shape and volume metrics. Recently, convolutional neural networks (CNN) have demonstrated promising performance on accurate segmentation of pancreas. However, the CNN-based method often suffers from segmentation discontinuity for reasons such as noisy image quality and blurry pancreatic boundary. In this chapter, we first discuss the CNN configurations and training objectives that lead to the state-of-the-art performance on pancreas segmentation. We then present a recurrent neural network (RNN) to address the problem of segmentation spatial inconsistency across adjacent image slices. The RNN takes outputs of the CNN and refines the segmentation by improving the shape smoothness.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cai J, Lu L, Xie Y, Xing F, Yang L (2017) Improving deep pancreas segmentation in ct and mri images via recurrent neural contextual learning and direct loss function. In: MICCAI, pp 674–682. Springer Cai J, Lu L, Xie Y, Xing F, Yang L (2017) Improving deep pancreas segmentation in ct and mri images via recurrent neural contextual learning and direct loss function. In: MICCAI, pp 674–682. Springer
2.
Zurück zum Zitat Cai J, Lu L, Zhang Z, Xing F, Yang L, Yin Q (2016) Pancreas segmentation in MRI using graph-based decision fusion on convolutional neural networks. In: MICCAI, pp 442–450. Springer Cai J, Lu L, Zhang Z, Xing F, Yang L, Yin Q (2016) Pancreas segmentation in MRI using graph-based decision fusion on convolutional neural networks. In: MICCAI, pp 442–450. Springer
3.
Zurück zum Zitat Chen J, Yang L, Zhang Y, Alber MS, Chen DZ (2016) Combining fully convolutional and recurrent neural networks for 3d biomedical image segmentation. In: NIPS, pp 3036–3044 Chen J, Yang L, Zhang Y, Alber MS, Chen DZ (2016) Combining fully convolutional and recurrent neural networks for 3d biomedical image segmentation. In: NIPS, pp 3036–3044
4.
Zurück zum Zitat Chen L, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2018) Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. TPAMI 40(4):834–848CrossRef Chen L, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2018) Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. TPAMI 40(4):834–848CrossRef
5.
Zurück zum Zitat Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O (2016) 3d u-net: learning dense volumetric segmentation from sparse annotation. In: MICCAI, pp 424–432. Springer Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O (2016) 3d u-net: learning dense volumetric segmentation from sparse annotation. In: MICCAI, pp 424–432. Springer
6.
Zurück zum Zitat Clark KW, Vendt BA, Smith KE, Freymann JB, Kirby JS, Koppel P, Moore SM, Phillips SR, Maffitt DR, Pringle M, Tarbox L, Prior FW (2013) The cancer imaging archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 26(6):1045–1057CrossRef Clark KW, Vendt BA, Smith KE, Freymann JB, Kirby JS, Koppel P, Moore SM, Phillips SR, Maffitt DR, Pringle M, Tarbox L, Prior FW (2013) The cancer imaging archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 26(6):1045–1057CrossRef
7.
Zurück zum Zitat Deng J, Dong W, Socher R, Li L, Li K, Li F (2009) Imagenet: a large-scale hierarchical image database. In: 2009 IEEE computer society conference on computer vision and pattern recognition (CVPR 2009), 20–25 June 2009, Miami, Florida, USA, pp 248–255 Deng J, Dong W, Socher R, Li L, Li K, Li F (2009) Imagenet: a large-scale hierarchical image database. In: 2009 IEEE computer society conference on computer vision and pattern recognition (CVPR 2009), 20–25 June 2009, Miami, Florida, USA, pp 248–255
8.
Zurück zum Zitat Farag A, Lu L, Roth HR, Liu J, Turkbey E, Summers RM (2017) A bottom-up approach for pancreas segmentation using cascaded superpixels and (deep) image patch labeling. TMI 26(1):386–399MathSciNetMATH Farag A, Lu L, Roth HR, Liu J, Turkbey E, Summers RM (2017) A bottom-up approach for pancreas segmentation using cascaded superpixels and (deep) image patch labeling. TMI 26(1):386–399MathSciNetMATH
9.
Zurück zum Zitat Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In: AISTATS, pp 249–256 Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In: AISTATS, pp 249–256
10.
Zurück zum Zitat Kamnitsas K, Ledig C, Newcombe VFJ, Simpson JP, Kane AD, Menon DK, Rueckert D, Glocker B (2017) Efficient multi-scale 3d CNN with fully connected CRF for accurate brain lesion segmentation. MIA 36:61–78 Kamnitsas K, Ledig C, Newcombe VFJ, Simpson JP, Kane AD, Menon DK, Rueckert D, Glocker B (2017) Efficient multi-scale 3d CNN with fully connected CRF for accurate brain lesion segmentation. MIA 36:61–78
11.
Zurück zum Zitat Karasawa K, Oda M, Kitasaka T, Misawa K, Fujiwara M, Chu C, Zheng G, Rueckert D, Mori K (2017) Multi-atlas pancreas segmentation: Atlas selection based on vessel structure. MIA 39:18–28 Karasawa K, Oda M, Kitasaka T, Misawa K, Fujiwara M, Chu C, Zheng G, Rueckert D, Mori K (2017) Multi-atlas pancreas segmentation: Atlas selection based on vessel structure. MIA 39:18–28
12.
Zurück zum Zitat Lee C, Xie S, Gallagher PW, Zhang Z, Tu Z (2015) Deeply-supervised nets. In: AISTATS Lee C, Xie S, Gallagher PW, Zhang Z, Tu Z (2015) Deeply-supervised nets. In: AISTATS
13.
Zurück zum Zitat Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: CVPR, pp 3431–3440 Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: CVPR, pp 3431–3440
14.
Zurück zum Zitat Merkow J, Marsden A, Kriegman DJ, Tu Z (2016) Dense volume-to-volume vascular boundary detection. In: MICCAI, pp 371–379 Merkow J, Marsden A, Kriegman DJ, Tu Z (2016) Dense volume-to-volume vascular boundary detection. In: MICCAI, pp 371–379
15.
Zurück zum Zitat Milletari F, Navab N, Ahmadi S (2016) V-net: fully convolutional neural networks for volumetric medical image segmentation. In: International conference on 3D vision, pp 565–571 Milletari F, Navab N, Ahmadi S (2016) V-net: fully convolutional neural networks for volumetric medical image segmentation. In: International conference on 3D vision, pp 565–571
16.
Zurück zum Zitat Ng J, Hausknecht M, Vijayanarasimhan S, Vinyals O, Monga R, Toderici G (2015) Beyond short snippets: deep networks for video classification. In: ICCV, pp 4694–4702 Ng J, Hausknecht M, Vijayanarasimhan S, Vinyals O, Monga R, Toderici G (2015) Beyond short snippets: deep networks for video classification. In: ICCV, pp 4694–4702
17.
Zurück zum Zitat Oda M, Shimizu N, Karasawa K, Nimura Y, Kitasaka T, Misawa K, Rueckert D, Mori K (2016) Regression forest-based atlas localization and direction specific atlas generation for pancreas segmentation. In: MICCAI, pp 556–563. Springer Oda M, Shimizu N, Karasawa K, Nimura Y, Kitasaka T, Misawa K, Rueckert D, Mori K (2016) Regression forest-based atlas localization and direction specific atlas generation for pancreas segmentation. In: MICCAI, pp 556–563. Springer
18.
Zurück zum Zitat Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: MICCAI, pp 234–241 Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: MICCAI, pp 234–241
19.
Zurück zum Zitat Roth HR, Lu L, Farag A, Shin HC, Liu J, Turkbey EB, Summers RM (2015) Deeporgan: multi-level deep convolutional networks for automated pancreas segmentation. In: MICCAI, pp 556–564. Springer Roth HR, Lu L, Farag A, Shin HC, Liu J, Turkbey EB, Summers RM (2015) Deeporgan: multi-level deep convolutional networks for automated pancreas segmentation. In: MICCAI, pp 556–564. Springer
20.
Zurück zum Zitat Roth HR, Lu L, Farag A, Sohn A, Summers RM (2016) Spatial aggregation of holistically-nested networks for automated pancreas segmentation. In: MICCAI, pp 450–451. Springer Roth HR, Lu L, Farag A, Sohn A, Summers RM (2016) Spatial aggregation of holistically-nested networks for automated pancreas segmentation. In: MICCAI, pp 450–451. Springer
21.
Zurück zum Zitat Roth HR, Lu L, Lay N, Harrison AP, Farag A, Summers RM (2018) Spatial aggregation of holistically-nested convolutional neural networks for automated pancreas localization and segmentation. MIA 45:94–107 Roth HR, Lu L, Lay N, Harrison AP, Farag A, Summers RM (2018) Spatial aggregation of holistically-nested convolutional neural networks for automated pancreas localization and segmentation. MIA 45:94–107
22.
Zurück zum Zitat Rotha HR, Odaa H, Zhoub X, Shimizua N, Yanga Y, Hayashia Y, Odaa M, Fujiwarac M, Misawad K, Moria K (2018) An application of cascaded 3D fully convolutional networks for medical image segmentation. ArXiv e-prints Rotha HR, Odaa H, Zhoub X, Shimizua N, Yanga Y, Hayashia Y, Odaa M, Fujiwarac M, Misawad K, Moria K (2018) An application of cascaded 3D fully convolutional networks for medical image segmentation. ArXiv e-prints
23.
Zurück zum Zitat Shi X, Chen Z, Wang H, Yeung D, Wong W, Woo W (2015) Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: NIPS, pp 802–810 Shi X, Chen Z, Wang H, Yeung D, Wong W, Woo W (2015) Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: NIPS, pp 802–810
24.
Zurück zum Zitat Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: International conference on learning representations, pp 1–14 Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: International conference on learning representations, pp 1–14
25.
Zurück zum Zitat Stollenga MF, Byeon W, Liwicki M, Schmidhuber J (2015) Parallel multi-dimensional lstm, with application to fast biomedical volumetric image segmentation. In: NIPS, pp 2998–3006 Stollenga MF, Byeon W, Liwicki M, Schmidhuber J (2015) Parallel multi-dimensional lstm, with application to fast biomedical volumetric image segmentation. In: NIPS, pp 2998–3006
26.
Zurück zum Zitat Tong T, Wolz R, Wang Z, Gao Q, Misawa K, Fujiwara M, Mori K, Hajnal JV, Rueckert D (2015) Discriminative dictionary learning for abdominal multi-organ segmentation. MIA 23(1):92–104 Tong T, Wolz R, Wang Z, Gao Q, Misawa K, Fujiwara M, Mori K, Hajnal JV, Rueckert D (2015) Discriminative dictionary learning for abdominal multi-organ segmentation. MIA 23(1):92–104
27.
Zurück zum Zitat Wolz R, Chu C, Misawa K, Fujiwara M, Mori K, Rueckert D (2013) Automated abdominal multi-organ segmentation with subject-specific atlas generation. TMI 32(9):1723–1730 Wolz R, Chu C, Misawa K, Fujiwara M, Mori K, Rueckert D (2013) Automated abdominal multi-organ segmentation with subject-specific atlas generation. TMI 32(9):1723–1730
28.
Zurück zum Zitat Xie S, Tu Z (2015) Holistically-nested edge detection. In: ICCV, pp 1395–1403 Xie S, Tu Z (2015) Holistically-nested edge detection. In: ICCV, pp 1395–1403
29.
Zurück zum Zitat Zheng S, Jayasumana S, Romera-Paredes B, Vineet V, Su Z, Du D, Huang C, Torr PH (2015) Conditional random fields as recurrent neural networks. In: ICCV, pp 1529–1537 Zheng S, Jayasumana S, Romera-Paredes B, Vineet V, Su Z, Du D, Huang C, Torr PH (2015) Conditional random fields as recurrent neural networks. In: ICCV, pp 1529–1537
Metadaten
Titel
Pancreas Segmentation in CT and MRI via Task-Specific Network Design and Recurrent Neural Contextual Learning
verfasst von
Jinzheng Cai
Le Lu
Fuyong Xing
Lin Yang
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-13969-8_1

Premium Partner