Skip to main content
Top
Published in: Microsystem Technologies 4/2012

01-04-2012 | Technical Paper

Wafer-level fabrication process for fully encapsulated micro-supercapacitors with high specific energy

Authors: Hugo Durou, David Pech, David Colin, Patrice Simon, Pierre-Louis Taberna, Magali Brunet

Published in: Microsystem Technologies | Issue 4/2012

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper a wafer-level process is proposed to fully integrate carbon-based micro-supercapacitor onto silicon substrate. This process relies on the deposition of a paste containing carbon, PVDF and acetone into cavities etched in silicon. After electrolyte deposition in a controlled atmosphere, a wafer-level encapsulation is realized. Cyclic voltammetry performed on non-encapsulated micro-components showed specific energy of 257 mJ cm−2 for 336 μm deep cavities. The specific encapsulation process developed was tested separately and proved to be efficient in terms of resistance to organic electrolytes and mechanical strength.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Bailly N, Dilhac JM, Escriba C, Vanhecke C, Bafleur M (2008) Energy scavenging based on transient thermal gradients: application to structural health monitoring of aircrafts. PowerMEMS, Sendai Bailly N, Dilhac JM, Escriba C, Vanhecke C, Bafleur M (2008) Energy scavenging based on transient thermal gradients: application to structural health monitoring of aircrafts. PowerMEMS, Sendai
go back to reference Beeby SP, Tudor MJ, White NM (2006) Energy harvesting vibration sources for microsystems applications. Meas Sci Technol 17:R175–R195CrossRef Beeby SP, Tudor MJ, White NM (2006) Energy harvesting vibration sources for microsystems applications. Meas Sci Technol 17:R175–R195CrossRef
go back to reference Chen M, Yuan L, Liu S (2007) Research on low-temperature anodic bonding using induction heating. Sens Act A Phys 133:266–269CrossRef Chen M, Yuan L, Liu S (2007) Research on low-temperature anodic bonding using induction heating. Sens Act A Phys 133:266–269CrossRef
go back to reference Corke P, Valencia P, Sikka P, Wark T, Overs L (2007) Long-duration solar-powered wireless sensor networks. In: Proceedings of the 4th workshop on embedded networked sensors, Cork Corke P, Valencia P, Sikka P, Wark T, Overs L (2007) Long-duration solar-powered wireless sensor networks. In: Proceedings of the 4th workshop on embedded networked sensors, Cork
go back to reference Durou H, Rossi C, Brunet M, Vanhecke C, Bailly N, Ardila G, Ourak L, Ramond A, Simon P, Taberna PL (2008) Power harvesting and management from vibrations: a multi-source strategy simulation for aircraft structure health monitoring. In: Smart structures, devices, and systems IV, Melbourne Durou H, Rossi C, Brunet M, Vanhecke C, Bailly N, Ardila G, Ourak L, Ramond A, Simon P, Taberna PL (2008) Power harvesting and management from vibrations: a multi-source strategy simulation for aircraft structure health monitoring. In: Smart structures, devices, and systems IV, Melbourne
go back to reference Esashi M (2008) Wafer level packaging of MEMS. J Micromech Microeng 18:073001CrossRef Esashi M (2008) Wafer level packaging of MEMS. J Micromech Microeng 18:073001CrossRef
go back to reference Hassoun J, Panero S, Reale P, Scrosati B (2009) A new, safe, high-rate and high-energy polymer lithium-ion battery. Adv Mat 21:4807–4810CrossRef Hassoun J, Panero S, Reale P, Scrosati B (2009) A new, safe, high-rate and high-energy polymer lithium-ion battery. Adv Mat 21:4807–4810CrossRef
go back to reference Hu L, Wu H, Cui Y (2010) Printed energy storage devices by integration of electrodes and separators into single sheets of paper. Appl Phys Lett 96:183502CrossRef Hu L, Wu H, Cui Y (2010) Printed energy storage devices by integration of electrodes and separators into single sheets of paper. Appl Phys Lett 96:183502CrossRef
go back to reference In HJ, Kumar S, Shao-Horn Y, Barbastathis G (2006) Origami fabrication of nanostructured, three-dimensional devices: electrochemical capacitors with carbon electrodes. App Phys Lett 88:083104-1–083104-3CrossRef In HJ, Kumar S, Shao-Horn Y, Barbastathis G (2006) Origami fabrication of nanostructured, three-dimensional devices: electrochemical capacitors with carbon electrodes. App Phys Lett 88:083104-1–083104-3CrossRef
go back to reference Jiang YQ, Zhou Q, Lin L (2009) Planar MEMS supercapacitor using carbon nanotube forests. In: IEEE 22nd international conference on micro electro mechanical systems MEMS 2009, Sorrento Jiang YQ, Zhou Q, Lin L (2009) Planar MEMS supercapacitor using carbon nanotube forests. In: IEEE 22nd international conference on micro electro mechanical systems MEMS 2009, Sorrento
go back to reference Jones SD, Akridge JR (1996) A microfabricated solid-state secondary Li battery. Solid State Ionics 86–88:1291–1294CrossRef Jones SD, Akridge JR (1996) A microfabricated solid-state secondary Li battery. Solid State Ionics 86–88:1291–1294CrossRef
go back to reference Jourdain A, Moor PD, Baert K, Wolf ID, Tilmans HAC (2005) Mechanical and electrical characterization of BCB as a bond and seal material for cavities housing (RF-) MEMS devices. J Micromech Microeng 15:s89–s96CrossRef Jourdain A, Moor PD, Baert K, Wolf ID, Tilmans HAC (2005) Mechanical and electrical characterization of BCB as a bond and seal material for cavities housing (RF-) MEMS devices. J Micromech Microeng 15:s89–s96CrossRef
go back to reference Kaempgen M, Chan CK, Ma J, Cui Y, Gruner G (2009) Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett 9:1872–1876CrossRef Kaempgen M, Chan CK, Ma J, Cui Y, Gruner G (2009) Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett 9:1872–1876CrossRef
go back to reference Kim HK, Cho SH, Ok YW, Seong TY, Yoon YS (2003) All solid-state rechargeable thin-film microsupercapacitor fabricated with tungsten cosputtered ruthenium oxide electrodes. J Vac Sci Technol B 21(3):949–952CrossRef Kim HK, Cho SH, Ok YW, Seong TY, Yoon YS (2003) All solid-state rechargeable thin-film microsupercapacitor fabricated with tungsten cosputtered ruthenium oxide electrodes. J Vac Sci Technol B 21(3):949–952CrossRef
go back to reference Kim Y, Kim E, Kim S, Ju B (2008) Low temperature epoxy bonding for wafer level MEMS packaging. Sens Act A Phys 143:323–328CrossRef Kim Y, Kim E, Kim S, Ju B (2008) Low temperature epoxy bonding for wafer level MEMS packaging. Sens Act A Phys 143:323–328CrossRef
go back to reference Liu CC, Tsai DS, Susanti D, Yeh WC, Huang YS, Liu FJ (2010) Planar ultracapacitors of miniature interdigital electrode loaded with hydrous RuO2 and RuO2 nanorods. Electrochim Acta 55(20):5768–5774CrossRef Liu CC, Tsai DS, Susanti D, Yeh WC, Huang YS, Liu FJ (2010) Planar ultracapacitors of miniature interdigital electrode loaded with hydrous RuO2 and RuO2 nanorods. Electrochim Acta 55(20):5768–5774CrossRef
go back to reference Marquardt K, Hahn R, Blechert M, Lehmann M, Töpper M, Wilke M et al (2010) Development of near hermetic silicon/glass cavities for packaging of integrated lithium micro batteries. Microsyst Technol 16:1119–1129CrossRef Marquardt K, Hahn R, Blechert M, Lehmann M, Töpper M, Wilke M et al (2010) Development of near hermetic silicon/glass cavities for packaging of integrated lithium micro batteries. Microsyst Technol 16:1119–1129CrossRef
go back to reference Niklaus F, Stemme G, Lu J, Gutmann RJ (2006) Adhesive wafer bonding. J Appl Phys 99:031101–031128CrossRef Niklaus F, Stemme G, Lu J, Gutmann RJ (2006) Adhesive wafer bonding. J Appl Phys 99:031101–031128CrossRef
go back to reference Pech D, Brunet M, Taberna PL, Simon P, Fabre N, Mesnilgrente F, Condénéra V (2010a) Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor. J Power Sources 195:1266–1269CrossRef Pech D, Brunet M, Taberna PL, Simon P, Fabre N, Mesnilgrente F, Condénéra V (2010a) Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor. J Power Sources 195:1266–1269CrossRef
go back to reference Pech D, Brunet M, Durou H, Huang P, Mochalin V, Gogotsi Y, Taberna PL, Simon P (2010b) Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat Nanotechnol 5:651–654CrossRef Pech D, Brunet M, Durou H, Huang P, Mochalin V, Gogotsi Y, Taberna PL, Simon P (2010b) Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat Nanotechnol 5:651–654CrossRef
go back to reference Pushparaj VL, Shaijumon M, Kumar A, Murugesan S, Ci L, Vajtai R et al (2007) Flexible energy storage devices based on nanocomposite paper. Proc Nat Acad Sci 104:13574–13577CrossRef Pushparaj VL, Shaijumon M, Kumar A, Murugesan S, Ci L, Vajtai R et al (2007) Flexible energy storage devices based on nanocomposite paper. Proc Nat Acad Sci 104:13574–13577CrossRef
go back to reference Shen CW, Wang XH, Zhang WF, Kang FY, Du C (2011) A novel three-dimensional micro supercapacitor using self-support nano composite materials. MEMS, Cancun, 23–27 January 2011 Shen CW, Wang XH, Zhang WF, Kang FY, Du C (2011) A novel three-dimensional micro supercapacitor using self-support nano composite materials. MEMS, Cancun, 23–27 January 2011
go back to reference Sun W, Chen X (2009) Fabrication and tests of a novel three dimensional micro supercapacitor. Microelectron Eng 86(4–6):1307–1310CrossRef Sun W, Chen X (2009) Fabrication and tests of a novel three dimensional micro supercapacitor. Microelectron Eng 86(4–6):1307–1310CrossRef
go back to reference Sun Y, Myung S, Park B, Prakash J, Belharouak I, Amine K (2009) High-energy cathode material for long-life and safe lithium batteries. Nat Mater 8:320–324CrossRef Sun Y, Myung S, Park B, Prakash J, Belharouak I, Amine K (2009) High-energy cathode material for long-life and safe lithium batteries. Nat Mater 8:320–324CrossRef
go back to reference Sun W, Zheng R, Chen X (2010) Symmetric redox supercapacitor based on micro-fabrication with three-dimensional polypyrrole electrodes. J Power Sources 195(20):7120–7125CrossRef Sun W, Zheng R, Chen X (2010) Symmetric redox supercapacitor based on micro-fabrication with three-dimensional polypyrrole electrodes. J Power Sources 195(20):7120–7125CrossRef
go back to reference Sung JH, Kim SJ, Lee KH (2003) Fabrication of microcapacitors using conducting polymer microelectrodes. J Power Sources 124(1):343–350CrossRef Sung JH, Kim SJ, Lee KH (2003) Fabrication of microcapacitors using conducting polymer microelectrodes. J Power Sources 124(1):343–350CrossRef
go back to reference Sung JH, Kim SJ, Jeong SH, Kim EH, Lee KH (2006) Flexible micro-supercapacitors. J Power Sources 162(2):1467–1470CrossRef Sung JH, Kim SJ, Jeong SH, Kim EH, Lee KH (2006) Flexible micro-supercapacitors. J Power Sources 162(2):1467–1470CrossRef
go back to reference Vullers R, van Schaijk R, Doms I, Van Hoof C, Mertens R (2009) Micropower energy harvesting. Solid State Electron 53:684–693CrossRef Vullers R, van Schaijk R, Doms I, Van Hoof C, Mertens R (2009) Micropower energy harvesting. Solid State Electron 53:684–693CrossRef
go back to reference Yoon YS, Cho WI, Lim JH, Choi DJ (2001) Solid-state thin-film supercapacitor with ruthenium oxide and solid electrolyte thin films. J Power Sources 101(1):126–129CrossRef Yoon YS, Cho WI, Lim JH, Choi DJ (2001) Solid-state thin-film supercapacitor with ruthenium oxide and solid electrolyte thin films. J Power Sources 101(1):126–129CrossRef
go back to reference Zine-El-Abidine I, Okoniewski M (2009) A low-temperature SU-8 based wafer-level hermetic packaging for MEMS devices. IEEE Trans Adv Packag 32:448–452CrossRef Zine-El-Abidine I, Okoniewski M (2009) A low-temperature SU-8 based wafer-level hermetic packaging for MEMS devices. IEEE Trans Adv Packag 32:448–452CrossRef
Metadata
Title
Wafer-level fabrication process for fully encapsulated micro-supercapacitors with high specific energy
Authors
Hugo Durou
David Pech
David Colin
Patrice Simon
Pierre-Louis Taberna
Magali Brunet
Publication date
01-04-2012
Publisher
Springer-Verlag
Published in
Microsystem Technologies / Issue 4/2012
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-011-1415-7

Other articles of this Issue 4/2012

Microsystem Technologies 4/2012 Go to the issue