Skip to main content
Top
Published in: Metallurgical and Materials Transactions A 3/2013

01-03-2013 | Symposium: Environmental Damage in Structural Materials under Static/Dynamic Loads at Ambient Temperature

Water Penetration—Its Effect on the Strength and Toughness of Silica Glass

Published in: Metallurgical and Materials Transactions A | Issue 3/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

When a crack forms in silica glass, the surrounding environment flows into the crack opening, and water from the environment reacts with the glass to promote crack growth. A chemical reaction between water and the strained crack-tip bonds is commonly regarded as the cause of subcritical crack growth in glass. In silica glass, water can also have a secondary effect on crack growth. By penetrating into the glass, water generates a zone of swelling and, hence, creates a compression zone around the crack tip and on the newly formed fracture surfaces. This zone of compression acts as a fracture mechanics shield to the stresses at the crack tip, modifying both the strength and subcritical crack growth resistance of the glass. Water penetration is especially apparent in silica glass because of its low density and the fact that it contains no modifier ions. Using diffusion data from the literature, we show that the diffusion of water into silica glass can explain several significant experimental observations that have been reported on silica glass, including (1) the strengthening of silica glass by soaking the glass in water at elevated temperatures, (2) the observation of permanent crack face displacements near the crack tip of a silica specimen that had been soaked in water under load, and (3) the observation of high concentrations of water close to the fracture surfaces that had been formed in water. These effects are consistent with a model suggesting that crack growth in silica glass is modified by a physical swelling of the glass around the crack tip. An implication of water-induced swelling during fracture is that silica glass is more resistant to crack growth than it would be if swelling did not occur.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
The use of commercial names is for identification only and does not imply endorsement by the National Institute of Standards and Technology.
 
2
Vycor glass contains about 96 pct SiO2, 3 pct B2O3 and 1 pct Al2O3 by weight.
 
3
The effect of back stresses on the swelling volume is not considered. See Reference 23 for a discussion of this point.
 
Literature
1.
go back to reference D.W. Richerson: The Magic of Ceramics, The American Ceramic Society, Westerville, OH, 2000. D.W. Richerson: The Magic of Ceramics, The American Ceramic Society, Westerville, OH, 2000.
2.
go back to reference A.K. Varshneya: Fundamentals of Inorganic Glasses, Academic Press, Inc., Harcourt Brace & Company, Publishers, San Diego, CA, 1994. A.K. Varshneya: Fundamentals of Inorganic Glasses, Academic Press, Inc., Harcourt Brace & Company, Publishers, San Diego, CA, 1994.
3.
go back to reference S.W. Freiman, S.M. Wiederhorn, and J.J. Mecholsky: J. Am. Ceram. Soc., 2009, vol. 92, no. 7, pp. 1371–82.CrossRef S.W. Freiman, S.M. Wiederhorn, and J.J. Mecholsky: J. Am. Ceram. Soc., 2009, vol. 92, no. 7, pp. 1371–82.CrossRef
5.
go back to reference B.R. Lawn: Fracture of Brittle Solids, 2nd ed., Cambridge University Press, Cambridge, U.K., 1993. B.R. Lawn: Fracture of Brittle Solids, 2nd ed., Cambridge University Press, Cambridge, U.K., 1993.
6.
go back to reference C.R. Kurkjian, P.K. Gupta, R.K. Brow, and N. Lower: J. Noncryst. Solids, 2003, vol. 316, pp. 114–24.CrossRef C.R. Kurkjian, P.K. Gupta, R.K. Brow, and N. Lower: J. Noncryst. Solids, 2003, vol. 316, pp. 114–24.CrossRef
7.
go back to reference L. Pauling: The Nature of the Chemical Bond, 3rd ed., Cornell University Press, Ithaca, NY, 1960. L. Pauling: The Nature of the Chemical Bond, 3rd ed., Cornell University Press, Ithaca, NY, 1960.
8.
go back to reference R.M. McMeeking and A.G. Evans: J. Am. Ceram. Soc., 1982, vol. 65, pp. 242–46.CrossRef R.M. McMeeking and A.G. Evans: J. Am. Ceram. Soc., 1982, vol. 65, pp. 242–46.CrossRef
9.
go back to reference J.E. Shelby: J. Non-Cryst., 2004, no. 349, pp. 331–36. J.E. Shelby: J. Non-Cryst., 2004, no. 349, pp. 331–36.
10.
go back to reference R. Bruckner: Glastech. Ber., 1970, vol. 43, pp. 8–12. R. Bruckner: Glastech. Ber., 1970, vol. 43, pp. 8–12.
12.
go back to reference J.F. Shackelford, J.S. Masaryk, and R.M. Fulrath: J. Am. Ceram. Soc., 1970, vol. 53, p. 417.CrossRef J.F. Shackelford, J.S. Masaryk, and R.M. Fulrath: J. Am. Ceram. Soc., 1970, vol. 53, p. 417.CrossRef
13.
go back to reference M. Tomozawa, W.-T. Han, and W.A. Lanford: J. Am. Ceram. Soc., 1991, vol. 74, no. 10, pp. 2573–76.CrossRef M. Tomozawa, W.-T. Han, and W.A. Lanford: J. Am. Ceram. Soc., 1991, vol. 74, no. 10, pp. 2573–76.CrossRef
14.
go back to reference F. Lechenault, D.L. Rountree, F. Cousin, J.-P Bouchaud, L. Ponson, and E. Bouchaud: Phys. Rev. Lett., 2011, vol. 106, p. 165504.CrossRef F. Lechenault, D.L. Rountree, F. Cousin, J.-P Bouchaud, L. Ponson, and E. Bouchaud: Phys. Rev. Lett., 2011, vol. 106, p. 165504.CrossRef
15.
go back to reference C. Janssen: Proceedings of Tenth International Congress on Glass, Kyoto, Japan 1974, Ceramic Society of Japan, Tokyo, Japan, 1974, pp. 10–23. C. Janssen: Proceedings of Tenth International Congress on Glass, Kyoto, Japan 1974, Ceramic Society of Japan, Tokyo, Japan, 1974, pp. 10–23.
16.
go back to reference T.A. Michalske, W.L. Smith, and E.P. Chen: Eng. Fract. Mech., 1993, vol. 45, pp. 637–42.CrossRef T.A. Michalske, W.L. Smith, and E.P. Chen: Eng. Fract. Mech., 1993, vol. 45, pp. 637–42.CrossRef
17.
go back to reference M.Y. He, M.R. Turner, and A.G. Evans: Acta Metall. Mater., 1995, vol. 43, pp. 3453–58.CrossRef M.Y. He, M.R. Turner, and A.G. Evans: Acta Metall. Mater., 1995, vol. 43, pp. 3453–58.CrossRef
18.
go back to reference A. Zouine, O. Dersch, G. Walter, and F. Rauch: Phys. Chem. Glasses, 2007, vol. 48, pp. 85–91. A. Zouine, O. Dersch, G. Walter, and F. Rauch: Phys. Chem. Glasses, 2007, vol. 48, pp. 85–91.
19.
go back to reference S. Ito and M. Tomozawa: J. Am. Ceram. Soc., 1982, vol. 65, no. 8, pp. 368–71.CrossRef S. Ito and M. Tomozawa: J. Am. Ceram. Soc., 1982, vol. 65, no. 8, pp. 368–71.CrossRef
20.
go back to reference K. Hirao and M. Tomozawa: J. Am. Ceram. Soc., 1987, vol. 70, no. 6, pp. 377–82.CrossRef K. Hirao and M. Tomozawa: J. Am. Ceram. Soc., 1987, vol. 70, no. 6, pp. 377–82.CrossRef
21.
go back to reference S.M. Wiederhorn, T. Fett, G. Rizzi, M.J. Hoffmann, and J.-P. Guin: Eng. Fract. Mech., 2012, in press. S.M. Wiederhorn, T. Fett, G. Rizzi, M.J. Hoffmann, and J.-P. Guin: Eng. Fract. Mech., 2012, in press.
22.
23.
go back to reference S.M. Wiederhorn, T. Fett, G. Rizzi, S. Fünfschilling, M.J. Hoffmann, and J.-P. Guin: J. Am. Ceram. Soc., 2011, vol. 94, no. S1, pp. S196–S203.CrossRef S.M. Wiederhorn, T. Fett, G. Rizzi, S. Fünfschilling, M.J. Hoffmann, and J.-P. Guin: J. Am. Ceram. Soc., 2011, vol. 94, no. S1, pp. S196–S203.CrossRef
24.
go back to reference Mathematica: Wolfram Research, Champaign, IL. Mathematica: Wolfram Research, Champaign, IL.
25.
26.
go back to reference S.M. Wiederhorn, S.W. Freiman, E.R. Fuller, Jr., and C.J. Simmons: J. Mater. Sci., 1982, vol. 17, pp. 3460–78. S.M. Wiederhorn, S.W. Freiman, E.R. Fuller, Jr., and C.J. Simmons: J. Mater. Sci., 1982, vol. 17, pp. 3460–78.
27.
go back to reference S.M. Wiederhorn, E.R. Fuller, Jr., and R. Thomson: Met. Sci., 1980, vol. 14, pp. 450–8. S.M. Wiederhorn, E.R. Fuller, Jr., and R. Thomson: Met. Sci., 1980, vol. 14, pp. 450–8.
29.
go back to reference S.M. Wiederhorn and L.H.Bolz: J. Am. Ceram. Soc., 1970, vol. 53, no. 10, pp. 543–48.CrossRef S.M. Wiederhorn and L.H.Bolz: J. Am. Ceram. Soc., 1970, vol. 53, no. 10, pp. 543–48.CrossRef
30.
go back to reference G.W. Weidmann and D.G. Holloway: Phys. Chem. Glasses, 1974, vol. 15, pp. 68–75. G.W. Weidmann and D.G. Holloway: Phys. Chem. Glasses, 1974, vol. 15, pp. 68–75.
31.
go back to reference D.H. Roach, S. Lathabai, and B.R. Lawn: J. Am. Ceram. Soc., 1988, vol. 71, no. 2, pp. 97–105.CrossRef D.H. Roach, S. Lathabai, and B.R. Lawn: J. Am. Ceram. Soc., 1988, vol. 71, no. 2, pp. 97–105.CrossRef
32.
go back to reference T. Fett and D. Munz: Stress Intensity Factors and Weight Functions, Computational Mechanics Publications, Southampton, U.K., 1997. T. Fett and D. Munz: Stress Intensity Factors and Weight Functions, Computational Mechanics Publications, Southampton, U.K., 1997.
Metadata
Title
Water Penetration—Its Effect on the Strength and Toughness of Silica Glass
Publication date
01-03-2013
Published in
Metallurgical and Materials Transactions A / Issue 3/2013
Print ISSN: 1073-5623
Electronic ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-012-1333-z

Other articles of this Issue 3/2013

Metallurgical and Materials Transactions A 3/2013 Go to the issue

Symposium: Environmental Damage in Structural Materials Under Static/Dynamic Loads at Ambient Temperature

Evolution of Grain Boundary Precipitates in Al 7075 Upon Aging and Correlation with Stress Corrosion Cracking Behavior

Symposium: Environmental Damage in Structural Materials under Static/Dynamic Loads at Ambient Temperature

Hydrogen Embrittlement Behavior of 430 and 445NF Ferritic Stainless Steels

Symposium: Environmental Damage in Structural Materials Under Static/Dynamic Loads at Ambient Temperature

Modified Kitagawa Diagram and Transition from Crack Nucleation to Crack Propagation

Premium Partners