Skip to main content
Top
Published in: Journal of Materials Science 6/2019

04-12-2018 | Computation

Wave propagation in a thermo-magneto-mechanical phononic crystal nanobeam with surface effects

Author: Denghui Qian

Published in: Journal of Materials Science | Issue 6/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Plane wave expansion method was applied to investigate the band gap properties of a proposed thermo-magneto-mechanical phononic crystal nanobeam with surface effects. Numerical results and further analysis demonstrate that band structure was indirectly affected by the influence of operating temperature on Young’s modulus of epoxy. Magnetic field had more effects on the band gaps of higher orders than lower orders. The influence rules of pre-stress were similar to magnetic field, but singular pre-stress appeared, which was bad for the opening of band gaps. With the increase in operating temperature or magnetic field, the value of singular pre-stress increased. In addition, the influences of surface effect and geometric parameters on band gaps were also studied in detail. Collectively, our results are expected to be helpful for the design of thermo-magneto-mechanical nanobeam-based devices.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Sigalas M, Kushwaha MS, Economou EN et al (2005) Classical vibrational modes in phononic lattices: theory and experiment Z für Kristallogr-Cryst Mater 220(9):765–809 Sigalas M, Kushwaha MS, Economou EN et al (2005) Classical vibrational modes in phononic lattices: theory and experiment Z für Kristallogr-Cryst Mater 220(9):765–809
2.
go back to reference Yan P, Vasseur JO, Djafari-Rouhani B et al (2010) Two-dimensional phononic crystals: examples and applications. Surf Sci Rep 65(8):229–291CrossRef Yan P, Vasseur JO, Djafari-Rouhani B et al (2010) Two-dimensional phononic crystals: examples and applications. Surf Sci Rep 65(8):229–291CrossRef
3.
go back to reference Thota M, Wang KW (2018) Tunable waveguiding in origami phononic structures. J Sound Vib 430:93–100CrossRef Thota M, Wang KW (2018) Tunable waveguiding in origami phononic structures. J Sound Vib 430:93–100CrossRef
4.
go back to reference Mohammadi S, Eftekhar AA, Hunt WD et al (2009) High-Q micromechanical resonators in a two-dimensional phononic crystal slab. Appl Phys Lett 94(5):051906-051906-3CrossRef Mohammadi S, Eftekhar AA, Hunt WD et al (2009) High-Q micromechanical resonators in a two-dimensional phononic crystal slab. Appl Phys Lett 94(5):051906-051906-3CrossRef
5.
go back to reference Yang L, Yang N, Li B (2013) Extreme low thermal conductivity in nanoscale 3D Si phononic crystal with spherical pores. Nano Lett 14(4):1734–1738CrossRef Yang L, Yang N, Li B (2013) Extreme low thermal conductivity in nanoscale 3D Si phononic crystal with spherical pores. Nano Lett 14(4):1734–1738CrossRef
6.
go back to reference Honarvar H, Yang L, Hussein MI (2016) Thermal transport size effects in silicon membranes featuring nanopillars as local resonators. Appl Phys Lett 108(26):471CrossRef Honarvar H, Yang L, Hussein MI (2016) Thermal transport size effects in silicon membranes featuring nanopillars as local resonators. Appl Phys Lett 108(26):471CrossRef
7.
go back to reference Shu H-S, Shi X-N, Li S-D et al (2014) Numerical research on dynamic stress of phononic crystal rod in longitudinal wave band gap. Int J Mod Phys B 28(32):2019CrossRef Shu H-S, Shi X-N, Li S-D et al (2014) Numerical research on dynamic stress of phononic crystal rod in longitudinal wave band gap. Int J Mod Phys B 28(32):2019CrossRef
8.
go back to reference Chuang KC, Yuan ZW, Guo YQ et al (2018) A self-demodulated fiber Bragg grating for investigating impact-induced transient responses of phononic crystal beams. J Sound Vib 431:40–53CrossRef Chuang KC, Yuan ZW, Guo YQ et al (2018) A self-demodulated fiber Bragg grating for investigating impact-induced transient responses of phononic crystal beams. J Sound Vib 431:40–53CrossRef
9.
go back to reference Li HY, Wang Y, Ke MZ et al (2018) Acoustic manipulating of capsule-shaped particle assisted by phononic crystal plate. Appl Phys Lett 112(22):223501CrossRef Li HY, Wang Y, Ke MZ et al (2018) Acoustic manipulating of capsule-shaped particle assisted by phononic crystal plate. Appl Phys Lett 112(22):223501CrossRef
10.
go back to reference Qian D, Shi Z (2016) Bandgap properties in locally resonant phononic crystal double panel structures with periodically attached spring-mass resonators. Phys Lett A 380(41):3319–3325CrossRef Qian D, Shi Z (2016) Bandgap properties in locally resonant phononic crystal double panel structures with periodically attached spring-mass resonators. Phys Lett A 380(41):3319–3325CrossRef
11.
go back to reference Liu H, Lv Z (2018) Uncertain material properties on wave dispersion behaviors of smart magneto-electro-elastic nanobeams. Compos Struct 202:615–624CrossRef Liu H, Lv Z (2018) Uncertain material properties on wave dispersion behaviors of smart magneto-electro-elastic nanobeams. Compos Struct 202:615–624CrossRef
12.
go back to reference Lv Z, Liu H (2017) Nonlinear bending response of functionally graded nanobeams with material uncertainties. Int J Mech Sci 134:123–135CrossRef Lv Z, Liu H (2017) Nonlinear bending response of functionally graded nanobeams with material uncertainties. Int J Mech Sci 134:123–135CrossRef
13.
go back to reference Ma LH, Ke LL, Wang YZ et al (2018) Wave propagation analysis of piezoelectric nanoplates based on the nonlocal theory. Int J Struct Stab Dyn 18(4):1850060CrossRef Ma LH, Ke LL, Wang YZ et al (2018) Wave propagation analysis of piezoelectric nanoplates based on the nonlocal theory. Int J Struct Stab Dyn 18(4):1850060CrossRef
14.
go back to reference Gomopoulos N, Maschke D, Koh CY et al (2010) One-dimensional hypersonic phononic crystals. Nano Lett 10(3):980CrossRef Gomopoulos N, Maschke D, Koh CY et al (2010) One-dimensional hypersonic phononic crystals. Nano Lett 10(3):980CrossRef
15.
go back to reference Pernot G, Stoffel M, Savic I et al (2010) Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers. Nat Mater 9(6):491CrossRef Pernot G, Stoffel M, Savic I et al (2010) Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers. Nat Mater 9(6):491CrossRef
16.
go back to reference Yan Z, Jiang LY (2011) The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects. Nanotechnology 22(24):245703CrossRef Yan Z, Jiang LY (2011) The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects. Nanotechnology 22(24):245703CrossRef
17.
go back to reference Zhang S, Gao Y (2017) Surface effect on band structure of flexural wave propagating in magneto-elastic phononic crystal nanobeam. J Phys D Appl Phys 50(44):445303CrossRef Zhang S, Gao Y (2017) Surface effect on band structure of flexural wave propagating in magneto-elastic phononic crystal nanobeam. J Phys D Appl Phys 50(44):445303CrossRef
18.
go back to reference Mindlin RD, Tiersten HF (1962) Effects of couple-stresses in linear elasticity. Arch Ration Mech Anal 11(1):415–448CrossRef Mindlin RD, Tiersten HF (1962) Effects of couple-stresses in linear elasticity. Arch Ration Mech Anal 11(1):415–448CrossRef
19.
go back to reference Lam DCC, Yang F, Chong ACM et al (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51(8):1477–1508CrossRef Lam DCC, Yang F, Chong ACM et al (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51(8):1477–1508CrossRef
20.
go back to reference Gurtin ME, Murdoch AI (1975) A continuum theory of elastic material surfaces. Arch Ration Mech Anal 57(4):291–323CrossRef Gurtin ME, Murdoch AI (1975) A continuum theory of elastic material surfaces. Arch Ration Mech Anal 57(4):291–323CrossRef
21.
go back to reference Miller RE, Shenoy VB (2000) Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11(3):139CrossRef Miller RE, Shenoy VB (2000) Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11(3):139CrossRef
22.
go back to reference Lihong Y, Tao F, Liping Y et al (2017) Bending of functionally graded nanobeams incorporating surface effects based on Timoshenko beam model. Theor Appl Mech Lett 7(3):152–158CrossRef Lihong Y, Tao F, Liping Y et al (2017) Bending of functionally graded nanobeams incorporating surface effects based on Timoshenko beam model. Theor Appl Mech Lett 7(3):152–158CrossRef
23.
go back to reference Yue Y, Xu K, Zhang X et al (2018) Effect of surface stress and surface-induced stress on behavior of piezoelectric nanobeam. Appl Math Mech (Engl Ed) 39(7):1–14 Yue Y, Xu K, Zhang X et al (2018) Effect of surface stress and surface-induced stress on behavior of piezoelectric nanobeam. Appl Math Mech (Engl Ed) 39(7):1–14
24.
go back to reference Fang XQ, Zhu CS, Liu JX et al (2018) Surface energy effect on free vibration of nano-sized piezoelectric double-shell structures. Phys B Condens Matter 529:41–56CrossRef Fang XQ, Zhu CS, Liu JX et al (2018) Surface energy effect on free vibration of nano-sized piezoelectric double-shell structures. Phys B Condens Matter 529:41–56CrossRef
25.
go back to reference Zhen N, Wang YS (2011) Surface effects on bandgaps of transverse waves propagating in two dimensional phononic crystals with nanosized holes. Mater Sci Forum 675–677:611–614CrossRef Zhen N, Wang YS (2011) Surface effects on bandgaps of transverse waves propagating in two dimensional phononic crystals with nanosized holes. Mater Sci Forum 675–677:611–614CrossRef
26.
go back to reference Zhen N, Wang YS, Zhang C (2012) Surface/interface effect on band structures of nanosized phononic crystals. Mech Res Commun 46(4):81–89CrossRef Zhen N, Wang YS, Zhang C (2012) Surface/interface effect on band structures of nanosized phononic crystals. Mech Res Commun 46(4):81–89CrossRef
27.
go back to reference Liu W, Chen J, Liu Y et al (2012) Effect of interface/surface stress on the elastic wave band structure of two-dimensional phononic crystals. Phys Lett A 376(4):605–609CrossRef Liu W, Chen J, Liu Y et al (2012) Effect of interface/surface stress on the elastic wave band structure of two-dimensional phononic crystals. Phys Lett A 376(4):605–609CrossRef
28.
go back to reference Cai B, Wei P (2013) Surface/interface effects on dispersion relations of 2D phononic crystals with parallel nanoholes or nanofibers. Acta Mech 224(11):2749–2758CrossRef Cai B, Wei P (2013) Surface/interface effects on dispersion relations of 2D phononic crystals with parallel nanoholes or nanofibers. Acta Mech 224(11):2749–2758CrossRef
29.
go back to reference Ding R, Su X, Zhang J et al (2014) Tunability of longitudinal wave band gaps in one dimensional phononic crystal with magnetostrictive material. J Appl Phys 115(7):2022–2364CrossRef Ding R, Su X, Zhang J et al (2014) Tunability of longitudinal wave band gaps in one dimensional phononic crystal with magnetostrictive material. J Appl Phys 115(7):2022–2364CrossRef
30.
go back to reference Zhang S, Shi Y, Gao Y (2015) A mechanical-magneto-thermal model for the tunability of band gaps of epoxy/Terfenol-D phononic crystals. J Appl Phys 118(3):065601-328 Zhang S, Shi Y, Gao Y (2015) A mechanical-magneto-thermal model for the tunability of band gaps of epoxy/Terfenol-D phononic crystals. J Appl Phys 118(3):065601-328
31.
go back to reference Gu C, Jin F (2016) Research on the tunability of point defect modes in a two-dimensional magneto-elastic phononic crystal. J Phys D-Appl Phys 49(17):175103CrossRef Gu C, Jin F (2016) Research on the tunability of point defect modes in a two-dimensional magneto-elastic phononic crystal. J Phys D-Appl Phys 49(17):175103CrossRef
32.
go back to reference Zhang S, Shi Y, Gao Y (2017) Tunability of band structures in a two-dimensional magnetostrictive phononic crystal plate with stress and magnetic loadings. Phys Lett A 381(12):1055–1066CrossRef Zhang S, Shi Y, Gao Y (2017) Tunability of band structures in a two-dimensional magnetostrictive phononic crystal plate with stress and magnetic loadings. Phys Lett A 381(12):1055–1066CrossRef
33.
go back to reference Qian D (2018) Bandgap properties of a piezoelectric phononic crystal nanobeam with surface effect. J Appl Phys 124(5):055101-1-055101-9CrossRef Qian D (2018) Bandgap properties of a piezoelectric phononic crystal nanobeam with surface effect. J Appl Phys 124(5):055101-1-055101-9CrossRef
34.
go back to reference Aharoni A (1998) Demagnetizing factors for rectangular ferromagnetic prisms. J Appl Phys 83(6):3432–3434CrossRef Aharoni A (1998) Demagnetizing factors for rectangular ferromagnetic prisms. J Appl Phys 83(6):3432–3434CrossRef
35.
go back to reference Liu Y, Xu A, Ning R (1999) Study of temperature and mechanical properties and constitutive equation for modified BMI/DPA and CTBN toughened epoxy. J Aeronaut Mater 3(1):44–51 Liu Y, Xu A, Ning R (1999) Study of temperature and mechanical properties and constitutive equation for modified BMI/DPA and CTBN toughened epoxy. J Aeronaut Mater 3(1):44–51
Metadata
Title
Wave propagation in a thermo-magneto-mechanical phononic crystal nanobeam with surface effects
Author
Denghui Qian
Publication date
04-12-2018
Publisher
Springer US
Published in
Journal of Materials Science / Issue 6/2019
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-03208-7

Other articles of this Issue 6/2019

Journal of Materials Science 6/2019 Go to the issue

Premium Partners