Skip to main content
Top
Published in: Journal of Electronic Materials 9/2022

17-06-2022 | Original Research Article

Wear- and High-Temperature-Resistant IGNs/ Fe3O4/PI Composites for Triboelectric Nanogenerator

Authors: Zhangyi Cao, Xi Xie, Xin Chen, Jiaqi Yu, Xiukun Liu, Yuanxing Huang, Xu Xu, Shaorong Lu, Yuqi Li

Published in: Journal of Electronic Materials | Issue 9/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The high wear and temperature resistance of electrode materials are the key issues to extend the application of triboelectric nanogenerators (TENG). The synergistic effect of Fe3O4 and ionic liquid-modified graphene (IGNs) were used to enhance the wear resistance, heat resistance, and mechanical properties of polyimide (PI). Then, the output performance of the PI-based TENG in contact–separation mode was tested. The results show that the tensile strength and thermal decomposition temperature of the IGNs/Fe3O4/PI composites (2F2G) d increased by 57 MPa and 23°C, respectively, due to the synergistic effect of IGNs and Fe3O4. In addition, the friction coefficient and wear rate of the 2F2G decreased by 21% and 14%, respectively. The open-circuit voltage, short-circuit current, and peak power density of the 2F2G-based TENG were 65 V, 2.48 μA, and 1.34 W/m2 at 1 Hz, respectively. Owing to the high wear and temperature resistance of the 2F2G, the 2F2G-based TENG has a broad application prospect in the fields of wear- or high-temperature-resistant energy harvesting and self-powered sensors.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Y.G. Feng, Y.B. Zheng, G. Zhang, D.A. Wang, F. Zhou, and W.M. Liu, A New Protocol Toward High Output TENG with Polyimide as Charge Storage Layer. Nano Energy 38, 467 (2017).CrossRef Y.G. Feng, Y.B. Zheng, G. Zhang, D.A. Wang, F. Zhou, and W.M. Liu, A New Protocol Toward High Output TENG with Polyimide as Charge Storage Layer. Nano Energy 38, 467 (2017).CrossRef
2.
go back to reference J.Y. Liu, Z. Wen, H. Lei, Z.Q. Gao, and X.H. Sun, A Liquid-Solid Interface-Based Triboelectric Tactile Sensor with Ultrahigh Sensitivity of 21.48 kPa (−1). Micro Nano Lett. 14, 88 (2022).CrossRef J.Y. Liu, Z. Wen, H. Lei, Z.Q. Gao, and X.H. Sun, A Liquid-Solid Interface-Based Triboelectric Tactile Sensor with Ultrahigh Sensitivity of 21.48 kPa (1). Micro Nano Lett. 14, 88 (2022).CrossRef
3.
go back to reference M.G. Stanford, J.T. Li, Y. Chyan, Z. Wang, W. Wang, and J.M. Tour, Laser-Induced Graphene Triboelectric Nanogenerators. ACS Nano 13, 7166 (2019).CrossRef M.G. Stanford, J.T. Li, Y. Chyan, Z. Wang, W. Wang, and J.M. Tour, Laser-Induced Graphene Triboelectric Nanogenerators. ACS Nano 13, 7166 (2019).CrossRef
4.
go back to reference F. Fan, Z. Tian, and Z.L. Wang, Flexible Triboelectric Generator! Nano Energy 1, 328 (2012).CrossRef F. Fan, Z. Tian, and Z.L. Wang, Flexible Triboelectric Generator! Nano Energy 1, 328 (2012).CrossRef
5.
go back to reference Z.L. Wang, Triboelectric Nanogenerator (TENG)—Sparking an Energy and Sensor Revolution. Adv. Energy Mater. 10, 2000137 (2020).CrossRef Z.L. Wang, Triboelectric Nanogenerator (TENG)—Sparking an Energy and Sensor Revolution. Adv. Energy Mater. 10, 2000137 (2020).CrossRef
6.
go back to reference Q.B. Guan, G.H. Lin, Y.Z. Gong, J.F. Wang, W.Y. Tan, D.Q. Bao, Y.N. Liu, Z.W. You, X.H. Sun, Z. Wen, and Y. Pan, Highly Efficient Self-Healable and Dual Responsive Hydrogel-Based Deformable Triboelectric Nanogenerators for Wearable Electronics. J. Mater. Chem. A7, 13948 (2019).CrossRef Q.B. Guan, G.H. Lin, Y.Z. Gong, J.F. Wang, W.Y. Tan, D.Q. Bao, Y.N. Liu, Z.W. You, X.H. Sun, Z. Wen, and Y. Pan, Highly Efficient Self-Healable and Dual Responsive Hydrogel-Based Deformable Triboelectric Nanogenerators for Wearable Electronics. J. Mater. Chem. A7, 13948 (2019).CrossRef
7.
go back to reference J.X. Jiang, Q.B. Guan, Y.N. Liu, X.H. Sun, and Z. Wen, Abrasion and Fracture Self-Healable Triboelectric Nanogenerator with Ultrahigh Stretchability and Long-Term Durability. Adv. Funct. Mater. 31, 2105380 (2021).CrossRef J.X. Jiang, Q.B. Guan, Y.N. Liu, X.H. Sun, and Z. Wen, Abrasion and Fracture Self-Healable Triboelectric Nanogenerator with Ultrahigh Stretchability and Long-Term Durability. Adv. Funct. Mater. 31, 2105380 (2021).CrossRef
8.
go back to reference C. Chen, Z. Wen, X.H. Jian, P.Y. Li, J.T.W. Yeow, and X.H. Sun, Micro Triboelectric Ultrasonic Device for Acoustic Energy Transfer and Signal Communication. Nat. Commun. 11, 4143 (2020).CrossRef C. Chen, Z. Wen, X.H. Jian, P.Y. Li, J.T.W. Yeow, and X.H. Sun, Micro Triboelectric Ultrasonic Device for Acoustic Energy Transfer and Signal Communication. Nat. Commun. 11, 4143 (2020).CrossRef
9.
go back to reference S. Wang, L. Lin, and Z.L. Wang, Triboelectric Nanogenerators as Self-powered Active Sensors. Nano Energy 11, 436 (2015).CrossRef S. Wang, L. Lin, and Z.L. Wang, Triboelectric Nanogenerators as Self-powered Active Sensors. Nano Energy 11, 436 (2015).CrossRef
10.
go back to reference Z.L. Wang, J. Chen, and L. Lin, Progress in Triboelectric Nanogenerators as a New Energy Technology and Self-Powered Sensors. Energy Environ. Sci. 8, 2250 (2015).CrossRef Z.L. Wang, J. Chen, and L. Lin, Progress in Triboelectric Nanogenerators as a New Energy Technology and Self-Powered Sensors. Energy Environ. Sci. 8, 2250 (2015).CrossRef
11.
go back to reference C. Wu, A.C. Wang, W. Ding, H. Guo, and Z.L. Wang, Triboelectric Nanogenerator: A Foundation of the Energy for the New Era. Adv. Energy Mater. 9, 1802906 (2019).CrossRef C. Wu, A.C. Wang, W. Ding, H. Guo, and Z.L. Wang, Triboelectric Nanogenerator: A Foundation of the Energy for the New Era. Adv. Energy Mater. 9, 1802906 (2019).CrossRef
12.
go back to reference X. Wu, Y. Zhang, and P. Du, Synthesis Characterization and Properties of Graphene-Reinforced Polyimide Coatings. New J. Chem. 43, 5697 (2019).CrossRef X. Wu, Y. Zhang, and P. Du, Synthesis Characterization and Properties of Graphene-Reinforced Polyimide Coatings. New J. Chem. 43, 5697 (2019).CrossRef
13.
go back to reference X. Zhao, B. Chen, G.D. Wei, J.M. Wu, W. Han, and Y. Yang, Polyimide/Graphene Nanocomposite Foam-Based Wind-Driven Triboelectric Nanogenerator for Self-Powered Pressure Sensor. Adv. Mater. Technol. 4, 1800723 (2019).CrossRef X. Zhao, B. Chen, G.D. Wei, J.M. Wu, W. Han, and Y. Yang, Polyimide/Graphene Nanocomposite Foam-Based Wind-Driven Triboelectric Nanogenerator for Self-Powered Pressure Sensor. Adv. Mater. Technol. 4, 1800723 (2019).CrossRef
14.
go back to reference C.B. Liu, S.H. Qiu, P. Du, H.C. Zhao, and L.P. Wang, An Ionic Liquid-Graphene Oxide Hybrid Nanomaterial: Synthesis and Anticorrosive Applications. Nanoscale 10, 8115 (2018).CrossRef C.B. Liu, S.H. Qiu, P. Du, H.C. Zhao, and L.P. Wang, An Ionic Liquid-Graphene Oxide Hybrid Nanomaterial: Synthesis and Anticorrosive Applications. Nanoscale 10, 8115 (2018).CrossRef
15.
go back to reference J.W. Lee, S. Jung, T.W. Lee, J. Jo, H.Y. Chae, K. Choi, J.J. Kim, J.H. Lee, C. Yang, and J.M. Baik, High-output Triboelectric Nanogenerator Based on Dual Inductive and Resonance Effects-Controlled Highly Transparent Polyimide for Self-Powered Sensor Network Systems. Adv. Energy Mater. 9, 1901987 (2019).CrossRef J.W. Lee, S. Jung, T.W. Lee, J. Jo, H.Y. Chae, K. Choi, J.J. Kim, J.H. Lee, C. Yang, and J.M. Baik, High-output Triboelectric Nanogenerator Based on Dual Inductive and Resonance Effects-Controlled Highly Transparent Polyimide for Self-Powered Sensor Network Systems. Adv. Energy Mater. 9, 1901987 (2019).CrossRef
16.
go back to reference W. Li, W. Zhao, L. Mao, S. Zhou, C. Liu, Z. Fang, and X. Gao, Investigating the Fluorination Degree of FG Nanosheets on the Tribological Properties of FG/PI Composite Coatings. Prog. Org. Coat. 139, 105481 (2020).CrossRef W. Li, W. Zhao, L. Mao, S. Zhou, C. Liu, Z. Fang, and X. Gao, Investigating the Fluorination Degree of FG Nanosheets on the Tribological Properties of FG/PI Composite Coatings. Prog. Org. Coat. 139, 105481 (2020).CrossRef
17.
go back to reference C.Y. Min, D.D. Liu, C. Shen, Q.Q. Zhang, H.J. Song, S.J. Li, X.J. Shen, M.Y. Zhu, and K. Zhang, Unique Synergistic Effects of Graphene Oxide and Carbon Nanotube Hybrids on the Tribological Properties of Polyimide Nanocomposites. Tribol. Int. 117, 217 (2018).CrossRef C.Y. Min, D.D. Liu, C. Shen, Q.Q. Zhang, H.J. Song, S.J. Li, X.J. Shen, M.Y. Zhu, and K. Zhang, Unique Synergistic Effects of Graphene Oxide and Carbon Nanotube Hybrids on the Tribological Properties of Polyimide Nanocomposites. Tribol. Int. 117, 217 (2018).CrossRef
18.
go back to reference H. Ruan, Q. Zhang, W.Q. Liao, Y.Q. Li, X.H. Huang, X. Xu, and S.R. Lu, Enhancing Tribological, Mechanical, and Thermal Properties of Polyimide Composites by the Synergistic Effect Between Graphene and Ionic Liquid. Mater. Des. 189, 108527 (2020).CrossRef H. Ruan, Q. Zhang, W.Q. Liao, Y.Q. Li, X.H. Huang, X. Xu, and S.R. Lu, Enhancing Tribological, Mechanical, and Thermal Properties of Polyimide Composites by the Synergistic Effect Between Graphene and Ionic Liquid. Mater. Des. 189, 108527 (2020).CrossRef
19.
go back to reference S.G. Zhou, Y.M. Wu, W.J. Zhao, J.J. Yu, F.W. Jiang, Y.H. Wu, and L.Q. Ma, Designing Reduced Graphene Oxide/zinc Rich Epoxy Composite Coatings for Improving the Anticorrosion Performance of Carbon Steel Substrate. Mater. Des. 169, 107694 (2019).CrossRef S.G. Zhou, Y.M. Wu, W.J. Zhao, J.J. Yu, F.W. Jiang, Y.H. Wu, and L.Q. Ma, Designing Reduced Graphene Oxide/zinc Rich Epoxy Composite Coatings for Improving the Anticorrosion Performance of Carbon Steel Substrate. Mater. Des. 169, 107694 (2019).CrossRef
20.
go back to reference X.N. Xia, J. Chen, H.Y. Guo, G.L. Liu, D.P. Wei, Y. Xi, X. Wang, and C.G. Hu, Embedding Variable Micro-capacitors in Polydimethylsiloxane for Enhancing Output Power of Triboelectric Nanogenerator. Nano Res. 10, 320 (2017).CrossRef X.N. Xia, J. Chen, H.Y. Guo, G.L. Liu, D.P. Wei, Y. Xi, X. Wang, and C.G. Hu, Embedding Variable Micro-capacitors in Polydimethylsiloxane for Enhancing Output Power of Triboelectric Nanogenerator. Nano Res. 10, 320 (2017).CrossRef
21.
go back to reference W. Seung, H.J. Yoon, T.Y. Kim, H. Ryu, J. Kim, J.H. Lee, J.H. Lee, S. Kim, Y.K. Park, Y.J. Park, and S.W. Kim, Boosting Power-Generating Performance of Triboelectric Nanogenerators via Artificial Control of Ferroelectric Polarization and Dielectric Properties. Adv. Energy Mater. 7, 1600988 (2017).CrossRef W. Seung, H.J. Yoon, T.Y. Kim, H. Ryu, J. Kim, J.H. Lee, J.H. Lee, S. Kim, Y.K. Park, Y.J. Park, and S.W. Kim, Boosting Power-Generating Performance of Triboelectric Nanogenerators via Artificial Control of Ferroelectric Polarization and Dielectric Properties. Adv. Energy Mater. 7, 1600988 (2017).CrossRef
22.
go back to reference Y. Wu, J. Yu, W. Zhao, C. Wang, B. Wu, and G. Lu, Investigating the Anti-corrosion Behaviors of the Waterborne Epoxy Composite Coatings with Barrier and Inhibition Roles on Mild Steel. Prog. Org. Coat. 133, 8 (2019).CrossRef Y. Wu, J. Yu, W. Zhao, C. Wang, B. Wu, and G. Lu, Investigating the Anti-corrosion Behaviors of the Waterborne Epoxy Composite Coatings with Barrier and Inhibition Roles on Mild Steel. Prog. Org. Coat. 133, 8 (2019).CrossRef
23.
go back to reference B. Polat, L.L. Becerra, P.-Y. Hsu, V. Kaipu, P.P. Mercier, C.-K. Cheng, and D.J. Lipomi, Epidermal Graphene Sensors and Machine Learning for Estimating Swallowed Volume. ACS Appl. Nano Mater. 4, 8126 (2019).CrossRef B. Polat, L.L. Becerra, P.-Y. Hsu, V. Kaipu, P.P. Mercier, C.-K. Cheng, and D.J. Lipomi, Epidermal Graphene Sensors and Machine Learning for Estimating Swallowed Volume. ACS Appl. Nano Mater. 4, 8126 (2019).CrossRef
24.
go back to reference W. Zhao and X. Ci, TiO2 Nanoparticle/Fluorinated Reduced Graphene Oxide Nanosheet Composites for Lubrication and Wear Resistance. ACS Appl. Nano Mater. 3, 8732 (2020).CrossRef W. Zhao and X. Ci, TiO2 Nanoparticle/Fluorinated Reduced Graphene Oxide Nanosheet Composites for Lubrication and Wear Resistance. ACS Appl. Nano Mater. 3, 8732 (2020).CrossRef
25.
go back to reference X. Ci, W. Zhao, J. Luo, Y. Wu, T. Ge, L. Shen, X. Gao, and Z. Fang, Revealing the Lubrication Mechanism of Fluorographene Nanosheets Enhanced GTL-8 Based Nanolubricant Oil. Tribol Int. 138, 174 (2019).CrossRef X. Ci, W. Zhao, J. Luo, Y. Wu, T. Ge, L. Shen, X. Gao, and Z. Fang, Revealing the Lubrication Mechanism of Fluorographene Nanosheets Enhanced GTL-8 Based Nanolubricant Oil. Tribol Int. 138, 174 (2019).CrossRef
26.
go back to reference Q.W. Wei, S.F. Pei, X.T. Qian, H.P. Liu, Z.B. Liu, W.M. Zhang, T.Y. Zhou, Z.C. Zhang, X.F. Zhang, H.M. Cheng, and W.C. Ren, Superhigh Electromagnetic Interference Shielding of Ultrathin Aligned Pristine Graphene Nanosheets Film. Adv. Mater. 32, 111 (2020). Q.W. Wei, S.F. Pei, X.T. Qian, H.P. Liu, Z.B. Liu, W.M. Zhang, T.Y. Zhou, Z.C. Zhang, X.F. Zhang, H.M. Cheng, and W.C. Ren, Superhigh Electromagnetic Interference Shielding of Ultrathin Aligned Pristine Graphene Nanosheets Film. Adv. Mater. 32, 111 (2020).
27.
go back to reference M. Lv, F. Zheng, Q.H. Wang, T.M. Wang, and Y.M. Liang, Friction and Wear Behaviors of Carbon and Aramid Fibers Reinforced Polyimide Composites in Simulated Space Environment. Tribol. Int. 92, 246 (2015).CrossRef M. Lv, F. Zheng, Q.H. Wang, T.M. Wang, and Y.M. Liang, Friction and Wear Behaviors of Carbon and Aramid Fibers Reinforced Polyimide Composites in Simulated Space Environment. Tribol. Int. 92, 246 (2015).CrossRef
28.
go back to reference Y.Q. Guo, K.P. Ruan, X.T. Yang, T.B. Ma, J. Kong, N.N. Wu, J.X. Zhang, J.W. Gu, and Z.H. Guo, Constructing Fully Carbon-based Fillers with a Hierarchical Structure to Fabricate Highly Thermally Conductive Polyimide Nanocomposites. J. Mater. Chem. A7, 7035 (2019). Y.Q. Guo, K.P. Ruan, X.T. Yang, T.B. Ma, J. Kong, N.N. Wu, J.X. Zhang, J.W. Gu, and Z.H. Guo, Constructing Fully Carbon-based Fillers with a Hierarchical Structure to Fabricate Highly Thermally Conductive Polyimide Nanocomposites. J. Mater. Chem. A7, 7035 (2019).
29.
go back to reference A. Greenberg, Integrating Nanoscience into the Classroom: Perspectives on Nanoscience Education Projects. ACS Nano 3, 762 (2009).CrossRef A. Greenberg, Integrating Nanoscience into the Classroom: Perspectives on Nanoscience Education Projects. ACS Nano 3, 762 (2009).CrossRef
30.
go back to reference H. Zou, Y. Zhang, L. Guo, P. Wang, X. He, G. Dai, H. Zheng, C. Chen, A.C. Wang, and C. Xu, Quantifying the Triboelectric Series. Nat. Commun. 10, 1427 (2019).CrossRef H. Zou, Y. Zhang, L. Guo, P. Wang, X. He, G. Dai, H. Zheng, C. Chen, A.C. Wang, and C. Xu, Quantifying the Triboelectric Series. Nat. Commun. 10, 1427 (2019).CrossRef
31.
go back to reference Y. Xu, Q. Fei, M. Page, G. Zhao, Y. Ling, D. Chen, and Z. Yan, Laser-induced Graphene for Bioelectronics and Soft Actuators. Nano Res. 14, 3033 (2021).CrossRef Y. Xu, Q. Fei, M. Page, G. Zhao, Y. Ling, D. Chen, and Z. Yan, Laser-induced Graphene for Bioelectronics and Soft Actuators. Nano Res. 14, 3033 (2021).CrossRef
32.
go back to reference A. Roy, L.W. Mu, and Y.J. Shi, Tribological Properties of Polyimide-graphene Composite Coatings at Elevated Temperatures. Prog. Org. Coat. 142, 2652 (2020). A. Roy, L.W. Mu, and Y.J. Shi, Tribological Properties of Polyimide-graphene Composite Coatings at Elevated Temperatures. Prog. Org. Coat. 142, 2652 (2020).
33.
go back to reference H.Y. Mi, X. Jing, M.A.B. Meador, H.Q. Guo, L.S. Turng, and S.Q. Gong, Triboelectric Nanogenerators Made of Porous Polyamide Nanofiber Mats and Polyimide Aerogel Film: Output Optimization and Performance in Circuits. ACS Appl. Mater. Interfaces. 10, 30596 (2018).CrossRef H.Y. Mi, X. Jing, M.A.B. Meador, H.Q. Guo, L.S. Turng, and S.Q. Gong, Triboelectric Nanogenerators Made of Porous Polyamide Nanofiber Mats and Polyimide Aerogel Film: Output Optimization and Performance in Circuits. ACS Appl. Mater. Interfaces. 10, 30596 (2018).CrossRef
Metadata
Title
Wear- and High-Temperature-Resistant IGNs/ Fe3O4/PI Composites for Triboelectric Nanogenerator
Authors
Zhangyi Cao
Xi Xie
Xin Chen
Jiaqi Yu
Xiukun Liu
Yuanxing Huang
Xu Xu
Shaorong Lu
Yuqi Li
Publication date
17-06-2022
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 9/2022
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-022-09752-y

Other articles of this Issue 9/2022

Journal of Electronic Materials 9/2022 Go to the issue

2021 U.S. Workshop on Physics and Chemistry of II-VI Materials

Current-Voltage Analysis of Dual-Band n-p-n HgCdTe Detectors