Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 7/2024

03-05-2023 | Technical Article

Welding Dissimilar Alloys of CoCrFeMnNi High-Entropy Alloy and 304 Stainless Steel Using Gas Tungsten Arc Welding

Authors: Penglin Zhang, Yongfeng Qi, Qianqian Cheng, Xuemin Sun

Published in: Journal of Materials Engineering and Performance | Issue 7/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The weldability of a CoCrFeMnNi high-entropy alloy (HEA) and 304 stainless steel (304 SS) was investigated to determine their potential for application in the nuclear and aerospace fields. Autogenous dissimilar butt welding was performed using gas tungsten arc welding, and the resulting joint was complete with no defects. SEM/XRD analysis showed that the fusion zone microstructure consisted of a single fcc phase without the formation of intermetallic compounds. However, there is an unmixed zone near the 304 SS side, which can be attributed to subcooling of the composition caused by the lower liquidus temperature of the bulk weld metal than that of the base metal. Furthermore, a small increase in the hardness of the fusion zone compared with that of the CoCrFeMnNi HEA was observed. These results can be attributed to the grain refinement of the weld and the strengthening effect owing to the incorporation of carbon. The joints exhibited a tensile strength of ~ 465 MPa and ductility of 38%, where the strength was comparable to that of the CoCrFeMnNi HEA, and a joint fracture was found at the side of the CoCrFeMnNi HEA. This indicates that the weldments are suitable for room temperature structural applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, and S.-Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6(5), p 299–303.CrossRef J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, and S.-Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6(5), p 299–303.CrossRef
3.
go back to reference B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, A Fracture-Resistant High-Entropy Alloy for Cryogenic Applications, Science, 2014, 345(6201), p 1153–1158.CrossRefPubMed B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, A Fracture-Resistant High-Entropy Alloy for Cryogenic Applications, Science, 2014, 345(6201), p 1153–1158.CrossRefPubMed
4.
go back to reference N.K. Adomako, J.H. Kim, and Y.T. Hyun, High-Temperature Oxidation Behaviour of Low-Entropy Alloy to Medium- and High-Entropy Alloys, J. Therm. Anal. Calorim., 2018, 133(1), p 13–26.CrossRef N.K. Adomako, J.H. Kim, and Y.T. Hyun, High-Temperature Oxidation Behaviour of Low-Entropy Alloy to Medium- and High-Entropy Alloys, J. Therm. Anal. Calorim., 2018, 133(1), p 13–26.CrossRef
5.
go back to reference H.S. Cho, S.J. Bae, Y.S. Na, K.S. Lee, J.H. Kim, and D.G. Lee, Influence of Reduction Ratio on the Microstructural Evolution and Subsequent Mechanical Properties of Cold-Drawn Co10Cr15Fe25Mn10Ni30V10 High Entropy Alloy Wires, J. Alloys Compd., 2020, 821, 153526.CrossRef H.S. Cho, S.J. Bae, Y.S. Na, K.S. Lee, J.H. Kim, and D.G. Lee, Influence of Reduction Ratio on the Microstructural Evolution and Subsequent Mechanical Properties of Cold-Drawn Co10Cr15Fe25Mn10Ni30V10 High Entropy Alloy Wires, J. Alloys Compd., 2020, 821, 153526.CrossRef
6.
go back to reference B. Cantor, Multicomponent and High Entropy Alloys, Entropy, 2014, 16(9), p 4749–4768.CrossRef B. Cantor, Multicomponent and High Entropy Alloys, Entropy, 2014, 16(9), p 4749–4768.CrossRef
7.
go back to reference S.J. Zinkle and G.S. Was, Materials Challenges in Nuclear Energy, Acta Mater., 2013, 61(3), p 735–758.CrossRef S.J. Zinkle and G.S. Was, Materials Challenges in Nuclear Energy, Acta Mater., 2013, 61(3), p 735–758.CrossRef
8.
go back to reference P. Yvon, M. Le Flem, C. Cabet, and J.L. Seran, Structural Materials for next Generation Nuclear Systems: Challenges and the Path Forward, Nucl. Eng. Des., 2015, 294, p 161–169.CrossRef P. Yvon, M. Le Flem, C. Cabet, and J.L. Seran, Structural Materials for next Generation Nuclear Systems: Challenges and the Path Forward, Nucl. Eng. Des., 2015, 294, p 161–169.CrossRef
9.
go back to reference S.S. Huang, H.Q. Guan, Z.H. Zhong, M. Miyamoto, and Q. Xu, Effect of He on the Irradiation Resistance of Equiatomic CoCrFeMnNi High-Entropy Alloy, J. Nucl. Mater., 2022, 561, 153525.CrossRef S.S. Huang, H.Q. Guan, Z.H. Zhong, M. Miyamoto, and Q. Xu, Effect of He on the Irradiation Resistance of Equiatomic CoCrFeMnNi High-Entropy Alloy, J. Nucl. Mater., 2022, 561, 153525.CrossRef
10.
go back to reference L. Yang, H. Ge, J. Zhang, T. Xiong, Q. Jin, Y. Zhou, X. Shao, B. Zhang, Z. Zhu, S. Zheng, and X. Ma, High He-Ion Irradiation Resistance of CrMnFeCoNi High-Entropy Alloy Revealed by Comparison Study with Ni and 304SS, J. Mater. Sci. Technol., 2019, 35(3), p 300–305.CrossRef L. Yang, H. Ge, J. Zhang, T. Xiong, Q. Jin, Y. Zhou, X. Shao, B. Zhang, Z. Zhu, S. Zheng, and X. Ma, High He-Ion Irradiation Resistance of CrMnFeCoNi High-Entropy Alloy Revealed by Comparison Study with Ni and 304SS, J. Mater. Sci. Technol., 2019, 35(3), p 300–305.CrossRef
11.
go back to reference N.A.P.K. Kumar, C. Li, K.J. Leonard, H. Bei, and S.J. Zinkle, Microstructural Stability and Mechanical Behavior of FeNiMnCr High Entropy Alloy under Ion Irradiation, Acta Mater., 2016, 113, p 230–244.CrossRef N.A.P.K. Kumar, C. Li, K.J. Leonard, H. Bei, and S.J. Zinkle, Microstructural Stability and Mechanical Behavior of FeNiMnCr High Entropy Alloy under Ion Irradiation, Acta Mater., 2016, 113, p 230–244.CrossRef
12.
go back to reference A. Arab, Y. Guo, Q. Zhou, and P. Chen, Fabrication of Nanocrystalline AlCoCrFeNi High Entropy Alloy through Shock Consolidation and Mechanical Alloying, Entropy, 2019, 21(9), p 880.CrossRefPubMedCentral A. Arab, Y. Guo, Q. Zhou, and P. Chen, Fabrication of Nanocrystalline AlCoCrFeNi High Entropy Alloy through Shock Consolidation and Mechanical Alloying, Entropy, 2019, 21(9), p 880.CrossRefPubMedCentral
13.
go back to reference D. Shaysultanov, N. Stepanov, S. Malopheyev, I. Vysotskiy, V. Sanin, S. Mironov, R. Kaibyshev, G. Salishchev, and S. Zherebtsov, Friction Stir Welding of a Carbon-Doped CoCrFeNiMn High-Entropy Alloy, Mater. Charact., 2018, 145, p 353–361.CrossRef D. Shaysultanov, N. Stepanov, S. Malopheyev, I. Vysotskiy, V. Sanin, S. Mironov, R. Kaibyshev, G. Salishchev, and S. Zherebtsov, Friction Stir Welding of a Carbon-Doped CoCrFeNiMn High-Entropy Alloy, Mater. Charact., 2018, 145, p 353–361.CrossRef
14.
go back to reference M. Sun, S.T. Niknejad, G. Zhang, M.K. Lee, L. Wu, and Y. Zhou, Microstructure and Mechanical Properties of Resistance Spot Welded AZ31/AA5754 Using a Nickel Interlayer, Mater. Des., 2015, 87, p 905–913.CrossRef M. Sun, S.T. Niknejad, G. Zhang, M.K. Lee, L. Wu, and Y. Zhou, Microstructure and Mechanical Properties of Resistance Spot Welded AZ31/AA5754 Using a Nickel Interlayer, Mater. Des., 2015, 87, p 905–913.CrossRef
15.
go back to reference P. Penner, L. Liu, A. Gerlich, and Y. Zhou, Feasibility Study of Resistance Spot Welding of Dissimilar Al/Mg Combinations with Ni Based Interlayers, Sci. Technol. Weld. Join., 2013, 18(7), p 541–550.CrossRef P. Penner, L. Liu, A. Gerlich, and Y. Zhou, Feasibility Study of Resistance Spot Welding of Dissimilar Al/Mg Combinations with Ni Based Interlayers, Sci. Technol. Weld. Join., 2013, 18(7), p 541–550.CrossRef
16.
go back to reference Z. Wu, S.A. David, Z. Feng, and H. Bei, Weldability of a High Entropy CrMnFeCoNi Alloy, Scr. Mater., 2016, 124, p 81–85.CrossRef Z. Wu, S.A. David, Z. Feng, and H. Bei, Weldability of a High Entropy CrMnFeCoNi Alloy, Scr. Mater., 2016, 124, p 81–85.CrossRef
17.
go back to reference N. Kashaev, V. Ventzke, N. Petrov, M. Horstmann, S. Zherebtsov, D. Shaysultanov, V. Sanin, and N. Stepanov, Fatigue Behaviour of a Laser Beam Welded CoCrFeNiMn-Type High Entropy Alloy, Mater. Sci. Eng. A, 2019, 766, 138358.CrossRef N. Kashaev, V. Ventzke, N. Petrov, M. Horstmann, S. Zherebtsov, D. Shaysultanov, V. Sanin, and N. Stepanov, Fatigue Behaviour of a Laser Beam Welded CoCrFeNiMn-Type High Entropy Alloy, Mater. Sci. Eng. A, 2019, 766, 138358.CrossRef
18.
go back to reference N.K. Adomako, G. Shin, N. Park, K. Park, and J.H. Kim, Laser Dissimilar Welding of CoCrFeMnNi-High Entropy Alloy and Duplex Stainless Steel, J. Mater. Sci. Technol., 2021, 85, p 95–105.CrossRef N.K. Adomako, G. Shin, N. Park, K. Park, and J.H. Kim, Laser Dissimilar Welding of CoCrFeMnNi-High Entropy Alloy and Duplex Stainless Steel, J. Mater. Sci. Technol., 2021, 85, p 95–105.CrossRef
19.
go back to reference J.P. Oliveira, J. Shen, Z. Zeng, J.M. Park, Y.T. Choi, N. Schell, E. Maawad, N. Zhou, and H.S. Kim, Dissimilar Laser Welding of a CoCrFeMnNi High Entropy Alloy to 316 Stainless Steel, Scr. Mater., 2022, 206, 114219.CrossRef J.P. Oliveira, J. Shen, Z. Zeng, J.M. Park, Y.T. Choi, N. Schell, E. Maawad, N. Zhou, and H.S. Kim, Dissimilar Laser Welding of a CoCrFeMnNi High Entropy Alloy to 316 Stainless Steel, Scr. Mater., 2022, 206, 114219.CrossRef
20.
go back to reference J.P. Oliveira, A. Shamsolhodaei, J. Shen, J.G. Lopes, R.M. Gonçalves, M. de Brito Ferraz, L. Piçarra, Z. Zeng, N. Schell, N. Zhou, and H. Seop Kim, Improving the Ductility in Laser Welded Joints of CoCrFeMnNi High Entropy Alloy to 316 Stainless Steel, Mater. Des., 2022, 219, 110717.CrossRef J.P. Oliveira, A. Shamsolhodaei, J. Shen, J.G. Lopes, R.M. Gonçalves, M. de Brito Ferraz, L. Piçarra, Z. Zeng, N. Schell, N. Zhou, and H. Seop Kim, Improving the Ductility in Laser Welded Joints of CoCrFeMnNi High Entropy Alloy to 316 Stainless Steel, Mater. Des., 2022, 219, 110717.CrossRef
22.
go back to reference T. Soysal, S. Kou, D. Tat, and T. Pasang, Macrosegregation in Dissimilar-Metal Fusion Welding, Acta Mater., 2016, 110, p 149–160.CrossRef T. Soysal, S. Kou, D. Tat, and T. Pasang, Macrosegregation in Dissimilar-Metal Fusion Welding, Acta Mater., 2016, 110, p 149–160.CrossRef
23.
go back to reference H. Nam, S. Park, E.-J. Chun, H. Kim, Y. Na, and N. Kang, Laser Dissimilar Weldability of Cast and Rolled CoCrFeMnNi High-Entropy Alloys for Cryogenic Applications, Sci. Technol. Weld. Join., 2020, 25(2), p 127–134.CrossRef H. Nam, S. Park, E.-J. Chun, H. Kim, Y. Na, and N. Kang, Laser Dissimilar Weldability of Cast and Rolled CoCrFeMnNi High-Entropy Alloys for Cryogenic Applications, Sci. Technol. Weld. Join., 2020, 25(2), p 127–134.CrossRef
24.
go back to reference S. Park, H. Nam, Y. Na, H. Kim, Y. Moon, and N. Kang, Effect of Initial Grain Size on Friction Stir Weldability for Rolled and Cast CoCrFeMnNi High-Entropy Alloys, Met. Mater. Int., 2020, 26(5), p 641–649.CrossRef S. Park, H. Nam, Y. Na, H. Kim, Y. Moon, and N. Kang, Effect of Initial Grain Size on Friction Stir Weldability for Rolled and Cast CoCrFeMnNi High-Entropy Alloys, Met. Mater. Int., 2020, 26(5), p 641–649.CrossRef
25.
go back to reference E.A. Eid and M.M. Sadawy, Role of Effective Strain During Cold Rolling Deformation on Mechanical Characteristics of AISI 304 Steel, Met. Mater. Int., 2021, 27(11), p 4536–4549.CrossRef E.A. Eid and M.M. Sadawy, Role of Effective Strain During Cold Rolling Deformation on Mechanical Characteristics of AISI 304 Steel, Met. Mater. Int., 2021, 27(11), p 4536–4549.CrossRef
26.
go back to reference G. Cios, T. Tokarski, A. Żywczak, R. Dziurka, M. Stępień, Ł Gondek, M. Marciszko, B. Pawłowski, K. Wieczerzak, and P. Bała, The Investigation of Strain-Induced Martensite Reverse Transformation in AISI 304 Austenitic Stainless Steel, Metall. Mater. Trans. A, 2017, 48(10), p 4999–5008.CrossRef G. Cios, T. Tokarski, A. Żywczak, R. Dziurka, M. Stępień, Ł Gondek, M. Marciszko, B. Pawłowski, K. Wieczerzak, and P. Bała, The Investigation of Strain-Induced Martensite Reverse Transformation in AISI 304 Austenitic Stainless Steel, Metall. Mater. Trans. A, 2017, 48(10), p 4999–5008.CrossRef
27.
go back to reference M. Bigdeli Karimi, H. Arabi, A. Khosravani, and J. Samei, Effect of Rolling Strain on Transformation Induced Plasticity of Austenite to Martensite in a High-Alloy Austenitic Steel, J. Mater. Process. Technol., 2008, 203(1–3), p 349–354.CrossRef M. Bigdeli Karimi, H. Arabi, A. Khosravani, and J. Samei, Effect of Rolling Strain on Transformation Induced Plasticity of Austenite to Martensite in a High-Alloy Austenitic Steel, J. Mater. Process. Technol., 2008, 203(1–3), p 349–354.CrossRef
28.
go back to reference A.L. Schaeffler, Constitution Diagram for Stainless Steel Weld Metal, Met. Prog., 1949, 56(11), p 680. A.L. Schaeffler, Constitution Diagram for Stainless Steel Weld Metal, Met. Prog., 1949, 56(11), p 680.
30.
go back to reference J.X. Fu, C.M. Cao, W. Tong, Y.X. Hao, and L.M. Peng, The Tensile Properties and Serrated Flow Behavior of a Thermomechanically Treated CoCrFeNiMn High-Entropy Alloy, Mater. Sci. Eng. A, 2017, 690, p 418–426.CrossRef J.X. Fu, C.M. Cao, W. Tong, Y.X. Hao, and L.M. Peng, The Tensile Properties and Serrated Flow Behavior of a Thermomechanically Treated CoCrFeNiMn High-Entropy Alloy, Mater. Sci. Eng. A, 2017, 690, p 418–426.CrossRef
31.
go back to reference G. Polat and H. Kotan, Effect of Composition, Mechanical Alloying Temperature and Cooling Rate on Martensitic Transformation and Its Reversion in Mechanically Alloyed Stainless Steels, Met. Mater. Int., 2021, 27(10), p 3765–3775.CrossRef G. Polat and H. Kotan, Effect of Composition, Mechanical Alloying Temperature and Cooling Rate on Martensitic Transformation and Its Reversion in Mechanically Alloyed Stainless Steels, Met. Mater. Int., 2021, 27(10), p 3765–3775.CrossRef
32.
go back to reference H. Kotan, G. Polat, and A. Büşra Yildiz, Effect of Hf Additions on Phase Transformation, Microstructural Stability, and Hardness of Nanocrystalline 304L Stainless Steels Synthesized by Mechanical Alloying, Adv. Powder Technol., 2021, 32(8), p 3117–3124.CrossRef H. Kotan, G. Polat, and A. Büşra Yildiz, Effect of Hf Additions on Phase Transformation, Microstructural Stability, and Hardness of Nanocrystalline 304L Stainless Steels Synthesized by Mechanical Alloying, Adv. Powder Technol., 2021, 32(8), p 3117–3124.CrossRef
33.
go back to reference J. Li, W. Pei, M. Zhao, D. Zhao, and X. Shi, Study of Cold Rolling on the Transformation Mechanism, Microstructure, and Properties of 304 Austenitic Stainless Steel, Steel Res. Int., 2022, 93(4), p 2100341.CrossRef J. Li, W. Pei, M. Zhao, D. Zhao, and X. Shi, Study of Cold Rolling on the Transformation Mechanism, Microstructure, and Properties of 304 Austenitic Stainless Steel, Steel Res. Int., 2022, 93(4), p 2100341.CrossRef
34.
go back to reference J.A. Brooks and A.W. Thompson, Microstructural Development and Solidification Cracking Susceptibility of Austenitic Stainless Steel Welds, Int. Mater. Rev., 1991, 36(1), p 16–44.CrossRef J.A. Brooks and A.W. Thompson, Microstructural Development and Solidification Cracking Susceptibility of Austenitic Stainless Steel Welds, Int. Mater. Rev., 1991, 36(1), p 16–44.CrossRef
35.
go back to reference K. Rajasekhar, C.S. Harendranath, R. Raman, and S.D. Kulkarni, Microstructural Evolution during Solidification of Austenitic Stainless Steel Weld Metals: A Color Metallographic and Electron Microprobe Analysis Study, Mater. Charact., 1997, 38(2), p 53–65.CrossRef K. Rajasekhar, C.S. Harendranath, R. Raman, and S.D. Kulkarni, Microstructural Evolution during Solidification of Austenitic Stainless Steel Weld Metals: A Color Metallographic and Electron Microprobe Analysis Study, Mater. Charact., 1997, 38(2), p 53–65.CrossRef
36.
go back to reference D. Kianersi, A. Mostafaei, and A.A. Amadeh, Resistance Spot Welding Joints of AISI 316L Austenitic Stainless Steel Sheets: Phase Transformations, Mechanical Properties and Microstructure Characterizations, Mater. Des., 2014, 61, p 251–263.CrossRef D. Kianersi, A. Mostafaei, and A.A. Amadeh, Resistance Spot Welding Joints of AISI 316L Austenitic Stainless Steel Sheets: Phase Transformations, Mechanical Properties and Microstructure Characterizations, Mater. Des., 2014, 61, p 251–263.CrossRef
37.
go back to reference N. Kumar, M. Mukherjee, and A. Bandyopadhyay, Comparative Study of Pulsed Nd:YAG Laser Welding of AISI 304 and AISI 316 Stainless Steels, Opt. Laser Technol., 2017, 88, p 24–39.CrossRef N. Kumar, M. Mukherjee, and A. Bandyopadhyay, Comparative Study of Pulsed Nd:YAG Laser Welding of AISI 304 and AISI 316 Stainless Steels, Opt. Laser Technol., 2017, 88, p 24–39.CrossRef
38.
go back to reference B. Fu, C. Pei, Y. Guo, L. Fu, and A. Shan, Strength and Strain-Hardening Enhancement by Generating Hard Delta-Ferrite in Twinning-Induced Plasticity Steel, Mater. Sci. Technol., 2020, 36(7), p 827–834.CrossRef B. Fu, C. Pei, Y. Guo, L. Fu, and A. Shan, Strength and Strain-Hardening Enhancement by Generating Hard Delta-Ferrite in Twinning-Induced Plasticity Steel, Mater. Sci. Technol., 2020, 36(7), p 827–834.CrossRef
39.
go back to reference K.-H. Tseng and C.-Y. Hsu, Performance of Activated TIG Process in Austenitic Stainless Steel Welds, J. Mater. Process. Technol., 2011, 211(3), p 503–512.CrossRef K.-H. Tseng and C.-Y. Hsu, Performance of Activated TIG Process in Austenitic Stainless Steel Welds, J. Mater. Process. Technol., 2011, 211(3), p 503–512.CrossRef
40.
go back to reference G. Laplanche, O. Horst, F. Otto, G. Eggeler, and E.P. George, Microstructural Evolution of a CoCrFeMnNi High-Entropy Alloy after Swaging and Annealing, J. Alloys Compd., 2015, 647, p 548–557.CrossRef G. Laplanche, O. Horst, F. Otto, G. Eggeler, and E.P. George, Microstructural Evolution of a CoCrFeMnNi High-Entropy Alloy after Swaging and Annealing, J. Alloys Compd., 2015, 647, p 548–557.CrossRef
41.
go back to reference M. Milad, N. Zreiba, F. Elhalouani, and C. Baradai, The Effect of Cold Work on Structure and Properties of AISI 304 Stainless Steel, J. Mater. Process. Technol., 2008, 203(1–3), p 80–85.CrossRef M. Milad, N. Zreiba, F. Elhalouani, and C. Baradai, The Effect of Cold Work on Structure and Properties of AISI 304 Stainless Steel, J. Mater. Process. Technol., 2008, 203(1–3), p 80–85.CrossRef
Metadata
Title
Welding Dissimilar Alloys of CoCrFeMnNi High-Entropy Alloy and 304 Stainless Steel Using Gas Tungsten Arc Welding
Authors
Penglin Zhang
Yongfeng Qi
Qianqian Cheng
Xuemin Sun
Publication date
03-05-2023
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 7/2024
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-023-08229-1

Other articles of this Issue 7/2024

Journal of Materials Engineering and Performance 7/2024 Go to the issue

Premium Partners