Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 7/2024

02-05-2023 | Technical Article

Effect of Compressive Creep Aging on Microstructure and Properties of Al-x%Li-0.1%Sc Alloy

Authors: Dingming Xiong, Jialong Chen, Jiayi Zhang

Published in: Journal of Materials Engineering and Performance | Issue 7/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The effect of different compression creep parameters on the creep behavior and microstructure of Al-x%Li-0.1%Sc alloy was studied. The Al-Li-Sc alloy with Li content of 1, 3 and 5% and Sc content of 0.1% was subjected to creep compression treatment for 24 h at 155, 175, 245, 285 and 325 °C. It is found that when the effective temperature and time are the same, the higher the content of Li in the sample, the more and finer the equiaxed grains, and the higher the microhardness of the corresponding sample. Additionally, it can be found that the alloys have different texture densities and the phenomenon of Al3Li and Al3 (Sc, Li) precipitates pinning dislocations at different temperature result in different properties with different Li contents under different creep parameters.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Y. Lin, C.G. Lu, C.Y. Wei, and Z.Q. Zheng, Effect of Aging Treatment on Microstructures, Tensile Properties and Intergranular Corrosion Behavior of Al–Cu–Li Alloy, Mater. Charact., 2018, 141, p 163–168.CrossRef Y. Lin, C.G. Lu, C.Y. Wei, and Z.Q. Zheng, Effect of Aging Treatment on Microstructures, Tensile Properties and Intergranular Corrosion Behavior of Al–Cu–Li Alloy, Mater. Charact., 2018, 141, p 163–168.CrossRef
2.
go back to reference H.Y. Li, W. Kang, and X.C. Lu, Effect of Age-Forming on Microstructure, Mechanical and Corrosion Properties of a Novel Al–Li Alloy, J. Alloy. Compd., 2015, 640, p 210–218.CrossRef H.Y. Li, W. Kang, and X.C. Lu, Effect of Age-Forming on Microstructure, Mechanical and Corrosion Properties of a Novel Al–Li Alloy, J. Alloy. Compd., 2015, 640, p 210–218.CrossRef
3.
go back to reference K. Du, J.Q. Wang, H.R. Cao and C. Liu, Research Progress and Development Trend of Al-Li Alloys for Aerospace Applications, Alum. Fabrication, 2022, 02, p 3–9. K. Du, J.Q. Wang, H.R. Cao and C. Liu, Research Progress and Development Trend of Al-Li Alloys for Aerospace Applications, Alum. Fabrication, 2022, 02, p 3–9.
4.
go back to reference R.J.H. Wanhill, N.E. Prasad, and A.A. Gokhale, Historical Development and Present Status of Aluminum–Lithium Alloys, Aluminum-Lithium Alloys: Processing, Properti es, and Applications, R.J.H. Wanhill, N.E. Prasad, A.A. Gokhale, Ed., (Oxford), Elsevier Butterworth Heinemann, 2013, p 3–26. R.J.H. Wanhill, N.E. Prasad, and A.A. Gokhale, Historical Development and Present Status of Aluminum–Lithium Alloys, Aluminum-Lithium Alloys: Processing, Properti es, and Applications, R.J.H. Wanhill, N.E. Prasad, A.A. Gokhale, Ed., (Oxford), Elsevier Butterworth Heinemann, 2013, p 3–26.
5.
go back to reference C.H. Liu, J.S. Yang, P.P. Ma, Z.Y. Ma, L.H. Zhan, K.L. Chen et al., Large Creep Formability and Strength–Ductility Synergy Enabled by Engineering Dislocations in Aluminum Alloys, Int. J. Plast, 2020, 134, p 102774.CrossRef C.H. Liu, J.S. Yang, P.P. Ma, Z.Y. Ma, L.H. Zhan, K.L. Chen et al., Large Creep Formability and Strength–Ductility Synergy Enabled by Engineering Dislocations in Aluminum Alloys, Int. J. Plast, 2020, 134, p 102774.CrossRef
6.
go back to reference A.C.L. Lam, Z. Shi, H. Yang, L. Wan, M.D. Catrin, J.G. Lin et al., Creep-age Forming AA2219 Plates with Different Stiffener Designs and Pre-form Age Conditions: Experimental and Finite Element Studies, J. Mater. Process. Technol., 2015, 219, p 155–163.CrossRef A.C.L. Lam, Z. Shi, H. Yang, L. Wan, M.D. Catrin, J.G. Lin et al., Creep-age Forming AA2219 Plates with Different Stiffener Designs and Pre-form Age Conditions: Experimental and Finite Element Studies, J. Mater. Process. Technol., 2015, 219, p 155–163.CrossRef
7.
go back to reference K. Chen, L.H. Zhan, Y.Q. Xu, and Y.Z. Liu, Effect of Pulsed Current Density on Creep-Aging Behavior and Microstructure of AA7150 Aluminum Alloy, J. Market. Res., 2020, 9, p 15433–15441. K. Chen, L.H. Zhan, Y.Q. Xu, and Y.Z. Liu, Effect of Pulsed Current Density on Creep-Aging Behavior and Microstructure of AA7150 Aluminum Alloy, J. Market. Res., 2020, 9, p 15433–15441.
8.
go back to reference Y.L. Yang, L.H. Zhan, C.H. Liu, Y.Q. Xu, G.P. Li, X.T. Wu et al., Tension-Compression Asymmetry of Stress-Relaxation Aging Behavior of AA2219 Alloy Over a Wide Range of Stress Levels, Mater. Sci. Eng., A, 2021, 823, p 141730.CrossRef Y.L. Yang, L.H. Zhan, C.H. Liu, Y.Q. Xu, G.P. Li, X.T. Wu et al., Tension-Compression Asymmetry of Stress-Relaxation Aging Behavior of AA2219 Alloy Over a Wide Range of Stress Levels, Mater. Sci. Eng., A, 2021, 823, p 141730.CrossRef
9.
go back to reference A.A. El-Aty, Y. Xu, X.Z. Guo, S.H. Zhang, Y. Ma, and D.Y. Chen, Strengthening Mechanisms, Deformation Behavior, and Anisotropic Mechanical Properties of Al-Li Alloys: A Review, J. Adv. Res., 2018, 10, p 49–67.CrossRef A.A. El-Aty, Y. Xu, X.Z. Guo, S.H. Zhang, Y. Ma, and D.Y. Chen, Strengthening Mechanisms, Deformation Behavior, and Anisotropic Mechanical Properties of Al-Li Alloys: A Review, J. Adv. Res., 2018, 10, p 49–67.CrossRef
10.
go back to reference T. Dursun and C. Soutis, Recent Developments in Advanced Aircraft Aluminium Alloys, Mater. Des., 2014, 56, p 862–871.CrossRef T. Dursun and C. Soutis, Recent Developments in Advanced Aircraft Aluminium Alloys, Mater. Des., 2014, 56, p 862–871.CrossRef
11.
go back to reference X.Y. Chen, L.H. Zhan, Y.Q. Xu, Z.Y. Ma, and Q.P. Zheng, Anisotropy in Creep Aging Behavior of Textured al-cu Alloy under Different Stress States, Mater. Charact., 2020, 168, p 110539.CrossRef X.Y. Chen, L.H. Zhan, Y.Q. Xu, Z.Y. Ma, and Q.P. Zheng, Anisotropy in Creep Aging Behavior of Textured al-cu Alloy under Different Stress States, Mater. Charact., 2020, 168, p 110539.CrossRef
12.
go back to reference L.H. Chen, C.H. Liu, P.P. Ma, J.S. Yang, L.H. Zhan, and M.H. Huang, Strong In-plane Anisotropy of Creep Aging Behavior in Largely Pre-deformed Al-Cu Alloy: Experiments and Constitutive Modeling, Int. J. Plast, 2022, 152, p 103245.CrossRef L.H. Chen, C.H. Liu, P.P. Ma, J.S. Yang, L.H. Zhan, and M.H. Huang, Strong In-plane Anisotropy of Creep Aging Behavior in Largely Pre-deformed Al-Cu Alloy: Experiments and Constitutive Modeling, Int. J. Plast, 2022, 152, p 103245.CrossRef
13.
go back to reference T.J. Bian, H. Li, J.C. Yang, C. Lei, C.H. Wu, L.W. Zhang et al., Through-Thickness Heterogeneity and In-plane Anisotropy in Creep Aging of 7050 Al Alloy, Mater. Des., 2020, 196, p 109190.CrossRef T.J. Bian, H. Li, J.C. Yang, C. Lei, C.H. Wu, L.W. Zhang et al., Through-Thickness Heterogeneity and In-plane Anisotropy in Creep Aging of 7050 Al Alloy, Mater. Des., 2020, 196, p 109190.CrossRef
14.
go back to reference C.P. Tong, Y. Li, and Z.S. Shi, Investigation of Anisotropic Creep-aging Behaviour of Al-Cu-Li Alloy AA2050, Proced. Manufact., 2020, 50, p 241–247.CrossRef C.P. Tong, Y. Li, and Z.S. Shi, Investigation of Anisotropic Creep-aging Behaviour of Al-Cu-Li Alloy AA2050, Proced. Manufact., 2020, 50, p 241–247.CrossRef
15.
go back to reference N.H. Peng, L.H. Zhan, Y.Q. Xu, C.H. Liu, B.L. Ma, K. Chen et al., Anisotropy in Creep-Aging Behavior of Al–Li Alloy under Different Stress Levels: Experimental and Constitutive Modeling, J. Market. Res., 2022, 20, p 3456–3470. N.H. Peng, L.H. Zhan, Y.Q. Xu, C.H. Liu, B.L. Ma, K. Chen et al., Anisotropy in Creep-Aging Behavior of Al–Li Alloy under Different Stress Levels: Experimental and Constitutive Modeling, J. Market. Res., 2022, 20, p 3456–3470.
16.
go back to reference M.X. Wang, K. Cen, Z.X. Liu, T.F. Song, S.J. Wang, Z.Y. Liu et al., Effect of Scandium on the Age-hardening Behavior of Al-Li Alloy, Trans. Mater. Heat Treatm., 2022, 02, p 61–65. M.X. Wang, K. Cen, Z.X. Liu, T.F. Song, S.J. Wang, Z.Y. Liu et al., Effect of Scandium on the Age-hardening Behavior of Al-Li Alloy, Trans. Mater. Heat Treatm., 2022, 02, p 61–65.
17.
go back to reference X.Y. Wang, Q.L. Pan, C.R. Zou, W.J. Liang, and Z.M. Ying, Resent Situation and Development Trend of Sc Containing Al-Li Alloy, Chinese Rare Earths, 2005, 26, p 70–75. X.Y. Wang, Q.L. Pan, C.R. Zou, W.J. Liang, and Z.M. Ying, Resent Situation and Development Trend of Sc Containing Al-Li Alloy, Chinese Rare Earths, 2005, 26, p 70–75.
18.
go back to reference X.F. Wu, K.Y. Wang, F.F. Wu, R.D. Zhao, M.H. Chen, J. Xiang et al., Simultaneous Grain Refinement and Eutectic MgSi Modification in Hypoeutectic Al-11MgSi Alloys by Sc Addition22, J. Alloy. Compd., 2019, 791, p 402–410.CrossRef X.F. Wu, K.Y. Wang, F.F. Wu, R.D. Zhao, M.H. Chen, J. Xiang et al., Simultaneous Grain Refinement and Eutectic MgSi Modification in Hypoeutectic Al-11MgSi Alloys by Sc Addition22, J. Alloy. Compd., 2019, 791, p 402–410.CrossRef
19.
go back to reference Y.H. Gao, J. Kuang, J.Y. Zhang, G. Liu, and J. Sun, Tailoring Precipitation Strategy to Optimize Microstructural Evolution, Aging Hardening and Creep Resistance in an Al–Cu–Sc Alloy by Isochronal Aging, Mater. Sci. Eng. A, 2020, 795, p 139943.CrossRef Y.H. Gao, J. Kuang, J.Y. Zhang, G. Liu, and J. Sun, Tailoring Precipitation Strategy to Optimize Microstructural Evolution, Aging Hardening and Creep Resistance in an Al–Cu–Sc Alloy by Isochronal Aging, Mater. Sci. Eng. A, 2020, 795, p 139943.CrossRef
20.
go back to reference Y. Peng, Z. Yin, X. Lei, Q. Pan, and Z. He, Microstructure and Properties of Friction Stir Welded Joints of Al-Mg-Sc Alloy Plates, Rare Metal Mater. Eng., 2011, 40, p 201–205.CrossRef Y. Peng, Z. Yin, X. Lei, Q. Pan, and Z. He, Microstructure and Properties of Friction Stir Welded Joints of Al-Mg-Sc Alloy Plates, Rare Metal Mater. Eng., 2011, 40, p 201–205.CrossRef
21.
go back to reference O. Prach, O. Trudonoshyn, P. Randelzhofer, C. Körner, and K. Durst, Multi-Alloying Effect of Sc, Zr, Cr on the Al-Mg-Si-Mn High-Pressure Die Casting Alloys, Mater. Charact., 2020, 168, p 110537.CrossRef O. Prach, O. Trudonoshyn, P. Randelzhofer, C. Körner, and K. Durst, Multi-Alloying Effect of Sc, Zr, Cr on the Al-Mg-Si-Mn High-Pressure Die Casting Alloys, Mater. Charact., 2020, 168, p 110537.CrossRef
22.
go back to reference P. Xia, S.C. Wang, H.L. Huang, N. Zhou, D.F. Song, and Y.W. Jia, Effect of Sc and Zr Additions on Recrystallization Behavior and Intergranular Corrosion Resistance of Al-Zn-Mg-Cu Alloys, Materials, 2021, 14, p 5516.CrossRefPubMedPubMedCentral P. Xia, S.C. Wang, H.L. Huang, N. Zhou, D.F. Song, and Y.W. Jia, Effect of Sc and Zr Additions on Recrystallization Behavior and Intergranular Corrosion Resistance of Al-Zn-Mg-Cu Alloys, Materials, 2021, 14, p 5516.CrossRefPubMedPubMedCentral
23.
go back to reference C.C. Shi, G.H. Wu, L. Zhang, X.L. Zhang, J.W. Sun, and J.S. Zhang et al., Microstructure and Mechanical Properties of Casting Al-3Li-2Mg-1Zn-0.1Zr Alloys Modified by Sc Additions, Journal of Alloys and Compounds, 2021, 885, p 161106.CrossRef C.C. Shi, G.H. Wu, L. Zhang, X.L. Zhang, J.W. Sun, and J.S. Zhang et al., Microstructure and Mechanical Properties of Casting Al-3Li-2Mg-1Zn-0.1Zr Alloys Modified by Sc Additions, Journal of Alloys and Compounds, 2021, 885, p 161106.CrossRef
24.
go back to reference T. Dorin, M. Ramajayam, J. Lamb, and T. Langan, Effect of Sc and Zr Additions on the Microstructure/Strength of Al-Cu Binary Alloys, Mater. Sci. Eng., A, 2017, 707, p 58–64.CrossRef T. Dorin, M. Ramajayam, J. Lamb, and T. Langan, Effect of Sc and Zr Additions on the Microstructure/Strength of Al-Cu Binary Alloys, Mater. Sci. Eng., A, 2017, 707, p 58–64.CrossRef
25.
go back to reference M. Vlach, J. Čížek, B. Smola, O. Melikhova, M. Vlček, and V. Kodetová et al., Heat Treatment and Age Hardening of Al–Si–Mg–Mn Commercial Alloy with Addition of Sc and Zr, Mater. Charact., 2017, 129, p 1–8.CrossRef M. Vlach, J. Čížek, B. Smola, O. Melikhova, M. Vlček, and V. Kodetová et al., Heat Treatment and Age Hardening of Al–Si–Mg–Mn Commercial Alloy with Addition of Sc and Zr, Mater. Charact., 2017, 129, p 1–8.CrossRef
26.
go back to reference N.R. Bochvar, O.V. Rybalchenko, N.P. Leonova, N.Y. Tabachkova, G.V. Rybalchenko, and L.L. Rokhlin, Effect of Cold Plastic Deformation and Subsequent Aging on the Strength Properties of Al-Mg2Si Alloys with Combined (Sc + Zr) and (Sc + Hf) Additions, J. Alloy. Compd., 2020, 821, p 153426.CrossRef N.R. Bochvar, O.V. Rybalchenko, N.P. Leonova, N.Y. Tabachkova, G.V. Rybalchenko, and L.L. Rokhlin, Effect of Cold Plastic Deformation and Subsequent Aging on the Strength Properties of Al-Mg2Si Alloys with Combined (Sc + Zr) and (Sc + Hf) Additions, J. Alloy. Compd., 2020, 821, p 153426.CrossRef
27.
go back to reference S.K. Tian, J.Y. Li, J.L. Zhang, Z. Wulabieke, and D. Lv, Effect of Zr and Sc on Microstructure and Properties of 7136 Aluminum Alloy, J. Market. Res., 2019, 8, p 4130–4140. S.K. Tian, J.Y. Li, J.L. Zhang, Z. Wulabieke, and D. Lv, Effect of Zr and Sc on Microstructure and Properties of 7136 Aluminum Alloy, J. Market. Res., 2019, 8, p 4130–4140.
28.
go back to reference Y. Harada and D. Dunand, Microstructure of Al3Sc with Ternary Transition-Metal Additions, Mater. Sci. Eng. A, 2022, 329, p 686–695. Y. Harada and D. Dunand, Microstructure of Al3Sc with Ternary Transition-Metal Additions, Mater. Sci. Eng. A, 2022, 329, p 686–695.
29.
go back to reference J.Y. Zhang, X.Y. Jiang, M.Y. Ma, B. Jiang, B. Wang, and D.Q. Yi, Effect of Scandium Micro-Alloying on the Creep Resistance Properties of Al-0.7Fe Alloy Cables, Mater. Sci. Eng. A, 2017, 699, p 194–200.CrossRef J.Y. Zhang, X.Y. Jiang, M.Y. Ma, B. Jiang, B. Wang, and D.Q. Yi, Effect of Scandium Micro-Alloying on the Creep Resistance Properties of Al-0.7Fe Alloy Cables, Mater. Sci. Eng. A, 2017, 699, p 194–200.CrossRef
30.
go back to reference X.Y. Liu, Q.L. Pan, X.L. Zhang, X.L. Shun, F. Gao, and L.Y. Zheng et al., Creep Behavior and Microstructural Evolution of Deformed Al–Cu–Mg–Ag Heat Resistant Alloy, Mater. Sci. Eng. A, 2014, 599, p 160–165.CrossRef X.Y. Liu, Q.L. Pan, X.L. Zhang, X.L. Shun, F. Gao, and L.Y. Zheng et al., Creep Behavior and Microstructural Evolution of Deformed Al–Cu–Mg–Ag Heat Resistant Alloy, Mater. Sci. Eng. A, 2014, 599, p 160–165.CrossRef
31.
go back to reference Y.C. Lin, X. Peng, Y. Jiang, and C. Shuai, Effects of Creep-Aging Parameters on Aging Precipitates of a Two-stage Creep-aged Al-Zn-Mg-Cu Alloy Under the Extra Compressive Stress, J. Alloy. Compd., 2018, 743, p 448–455.CrossRef Y.C. Lin, X. Peng, Y. Jiang, and C. Shuai, Effects of Creep-Aging Parameters on Aging Precipitates of a Two-stage Creep-aged Al-Zn-Mg-Cu Alloy Under the Extra Compressive Stress, J. Alloy. Compd., 2018, 743, p 448–455.CrossRef
32.
go back to reference L.H. Zhan, J. Lin, T.A. Dean, and M. Huang, Experimental Studies and Constitutive Modelling of the Hardening of Aluminium Alloy 7055 Under Creep Age Forming Conditions, Int. J. Mech. Sci., 2011, 53, p 595–605.CrossRef L.H. Zhan, J. Lin, T.A. Dean, and M. Huang, Experimental Studies and Constitutive Modelling of the Hardening of Aluminium Alloy 7055 Under Creep Age Forming Conditions, Int. J. Mech. Sci., 2011, 53, p 595–605.CrossRef
33.
go back to reference F.J. Humphreys and M. Hatherly, Recrystallization of Two-Phase Alloys, Recrystallization and Related Annealing Phenomena, 2nd Ed FJ Humphreys and M Hatherly Ed, (Oxford), Elsevier Butterworth Heinemann, 2004, p 285–319. F.J. Humphreys and M. Hatherly, Recrystallization of Two-Phase Alloys, Recrystallization and Related Annealing Phenomena, 2nd Ed FJ Humphreys and M Hatherly Ed, (Oxford), Elsevier Butterworth Heinemann, 2004, p 285–319.
34.
go back to reference Y.T. Zhao and G. Chen, Design of metal matrix composites, Metal Matrix Composites, Y.T. Zhao and G. Chen (Ed.) (China). China Machine Press, 2019, p 52–53 Y.T. Zhao and G. Chen, Design of metal matrix composites, Metal Matrix Composites, Y.T. Zhao and G. Chen (Ed.) (China). China Machine Press, 2019, p 52–53
35.
go back to reference J.Y. Zhang, H.X. Wang, D.Q. Yi, B. Wang, and H.S. Wang, Comparative study of Sc and Er addition on microstructure, mechanical properties, and electrical conductivity of Al-0.2Zr-based alloy cables, Mater. Character., 2018, 145, p 126–134.CrossRef J.Y. Zhang, H.X. Wang, D.Q. Yi, B. Wang, and H.S. Wang, Comparative study of Sc and Er addition on microstructure, mechanical properties, and electrical conductivity of Al-0.2Zr-based alloy cables, Mater. Character., 2018, 145, p 126–134.CrossRef
36.
go back to reference Y.F. Zeng, X.R. Cai, and M. Koslowski, Effects of the Stacking Fault Energy Fluctuations on the Strengthening of Alloys, Acta Mater., 2019, 164, p 1–11.CrossRef Y.F. Zeng, X.R. Cai, and M. Koslowski, Effects of the Stacking Fault Energy Fluctuations on the Strengthening of Alloys, Acta Mater., 2019, 164, p 1–11.CrossRef
37.
go back to reference M. Shih, J.S. Miao, M. Mills, and M. Ghazisaeidi, Stacking Fault Energy in Concentrated Alloys, Nat. Commun., 2021, 3590, p 12. M. Shih, J.S. Miao, M. Mills, and M. Ghazisaeidi, Stacking Fault Energy in Concentrated Alloys, Nat. Commun., 2021, 3590, p 12.
38.
go back to reference Q. Ding, Tuning Element Distribution, Structure and Properties by Composition in High-Entropy Alloys, Nature, 2019, 574, p 223–227.CrossRefPubMed Q. Ding, Tuning Element Distribution, Structure and Properties by Composition in High-Entropy Alloys, Nature, 2019, 574, p 223–227.CrossRefPubMed
39.
go back to reference H. Li, H.X. Zong, S.Z. Li, S.B. Jin, Y. Chen, and M.J. Cabral et al., Uniting Tensile Ductility with Ultrahigh Strength via Composition Undulation, Nature, 2022, 604, p 273–279.CrossRefPubMed H. Li, H.X. Zong, S.Z. Li, S.B. Jin, Y. Chen, and M.J. Cabral et al., Uniting Tensile Ductility with Ultrahigh Strength via Composition Undulation, Nature, 2022, 604, p 273–279.CrossRefPubMed
40.
go back to reference J.Y. Zhang, Z.X. Chen, and H. Wang, Quasi in-situ Analysis of Compressive Creep Behaviors and Microstructure Evolutions in Al–Zr Alloys With Sc and Er Additions, Mater. Sci. Eng., A, 2022, 852, p 143650.CrossRef J.Y. Zhang, Z.X. Chen, and H. Wang, Quasi in-situ Analysis of Compressive Creep Behaviors and Microstructure Evolutions in Al–Zr Alloys With Sc and Er Additions, Mater. Sci. Eng., A, 2022, 852, p 143650.CrossRef
Metadata
Title
Effect of Compressive Creep Aging on Microstructure and Properties of Al-x%Li-0.1%Sc Alloy
Authors
Dingming Xiong
Jialong Chen
Jiayi Zhang
Publication date
02-05-2023
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 7/2024
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-023-08242-4

Other articles of this Issue 7/2024

Journal of Materials Engineering and Performance 7/2024 Go to the issue

Premium Partners