Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 7/2024

02.05.2023 | Technical Article

Effect of Compressive Creep Aging on Microstructure and Properties of Al-x%Li-0.1%Sc Alloy

verfasst von: Dingming Xiong, Jialong Chen, Jiayi Zhang

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 7/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of different compression creep parameters on the creep behavior and microstructure of Al-x%Li-0.1%Sc alloy was studied. The Al-Li-Sc alloy with Li content of 1, 3 and 5% and Sc content of 0.1% was subjected to creep compression treatment for 24 h at 155, 175, 245, 285 and 325 °C. It is found that when the effective temperature and time are the same, the higher the content of Li in the sample, the more and finer the equiaxed grains, and the higher the microhardness of the corresponding sample. Additionally, it can be found that the alloys have different texture densities and the phenomenon of Al3Li and Al3 (Sc, Li) precipitates pinning dislocations at different temperature result in different properties with different Li contents under different creep parameters.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Y. Lin, C.G. Lu, C.Y. Wei, and Z.Q. Zheng, Effect of Aging Treatment on Microstructures, Tensile Properties and Intergranular Corrosion Behavior of Al–Cu–Li Alloy, Mater. Charact., 2018, 141, p 163–168.CrossRef Y. Lin, C.G. Lu, C.Y. Wei, and Z.Q. Zheng, Effect of Aging Treatment on Microstructures, Tensile Properties and Intergranular Corrosion Behavior of Al–Cu–Li Alloy, Mater. Charact., 2018, 141, p 163–168.CrossRef
2.
Zurück zum Zitat H.Y. Li, W. Kang, and X.C. Lu, Effect of Age-Forming on Microstructure, Mechanical and Corrosion Properties of a Novel Al–Li Alloy, J. Alloy. Compd., 2015, 640, p 210–218.CrossRef H.Y. Li, W. Kang, and X.C. Lu, Effect of Age-Forming on Microstructure, Mechanical and Corrosion Properties of a Novel Al–Li Alloy, J. Alloy. Compd., 2015, 640, p 210–218.CrossRef
3.
Zurück zum Zitat K. Du, J.Q. Wang, H.R. Cao and C. Liu, Research Progress and Development Trend of Al-Li Alloys for Aerospace Applications, Alum. Fabrication, 2022, 02, p 3–9. K. Du, J.Q. Wang, H.R. Cao and C. Liu, Research Progress and Development Trend of Al-Li Alloys for Aerospace Applications, Alum. Fabrication, 2022, 02, p 3–9.
4.
Zurück zum Zitat R.J.H. Wanhill, N.E. Prasad, and A.A. Gokhale, Historical Development and Present Status of Aluminum–Lithium Alloys, Aluminum-Lithium Alloys: Processing, Properti es, and Applications, R.J.H. Wanhill, N.E. Prasad, A.A. Gokhale, Ed., (Oxford), Elsevier Butterworth Heinemann, 2013, p 3–26. R.J.H. Wanhill, N.E. Prasad, and A.A. Gokhale, Historical Development and Present Status of Aluminum–Lithium Alloys, Aluminum-Lithium Alloys: Processing, Properti es, and Applications, R.J.H. Wanhill, N.E. Prasad, A.A. Gokhale, Ed., (Oxford), Elsevier Butterworth Heinemann, 2013, p 3–26.
5.
Zurück zum Zitat C.H. Liu, J.S. Yang, P.P. Ma, Z.Y. Ma, L.H. Zhan, K.L. Chen et al., Large Creep Formability and Strength–Ductility Synergy Enabled by Engineering Dislocations in Aluminum Alloys, Int. J. Plast, 2020, 134, p 102774.CrossRef C.H. Liu, J.S. Yang, P.P. Ma, Z.Y. Ma, L.H. Zhan, K.L. Chen et al., Large Creep Formability and Strength–Ductility Synergy Enabled by Engineering Dislocations in Aluminum Alloys, Int. J. Plast, 2020, 134, p 102774.CrossRef
6.
Zurück zum Zitat A.C.L. Lam, Z. Shi, H. Yang, L. Wan, M.D. Catrin, J.G. Lin et al., Creep-age Forming AA2219 Plates with Different Stiffener Designs and Pre-form Age Conditions: Experimental and Finite Element Studies, J. Mater. Process. Technol., 2015, 219, p 155–163.CrossRef A.C.L. Lam, Z. Shi, H. Yang, L. Wan, M.D. Catrin, J.G. Lin et al., Creep-age Forming AA2219 Plates with Different Stiffener Designs and Pre-form Age Conditions: Experimental and Finite Element Studies, J. Mater. Process. Technol., 2015, 219, p 155–163.CrossRef
7.
Zurück zum Zitat K. Chen, L.H. Zhan, Y.Q. Xu, and Y.Z. Liu, Effect of Pulsed Current Density on Creep-Aging Behavior and Microstructure of AA7150 Aluminum Alloy, J. Market. Res., 2020, 9, p 15433–15441. K. Chen, L.H. Zhan, Y.Q. Xu, and Y.Z. Liu, Effect of Pulsed Current Density on Creep-Aging Behavior and Microstructure of AA7150 Aluminum Alloy, J. Market. Res., 2020, 9, p 15433–15441.
8.
Zurück zum Zitat Y.L. Yang, L.H. Zhan, C.H. Liu, Y.Q. Xu, G.P. Li, X.T. Wu et al., Tension-Compression Asymmetry of Stress-Relaxation Aging Behavior of AA2219 Alloy Over a Wide Range of Stress Levels, Mater. Sci. Eng., A, 2021, 823, p 141730.CrossRef Y.L. Yang, L.H. Zhan, C.H. Liu, Y.Q. Xu, G.P. Li, X.T. Wu et al., Tension-Compression Asymmetry of Stress-Relaxation Aging Behavior of AA2219 Alloy Over a Wide Range of Stress Levels, Mater. Sci. Eng., A, 2021, 823, p 141730.CrossRef
9.
Zurück zum Zitat A.A. El-Aty, Y. Xu, X.Z. Guo, S.H. Zhang, Y. Ma, and D.Y. Chen, Strengthening Mechanisms, Deformation Behavior, and Anisotropic Mechanical Properties of Al-Li Alloys: A Review, J. Adv. Res., 2018, 10, p 49–67.CrossRef A.A. El-Aty, Y. Xu, X.Z. Guo, S.H. Zhang, Y. Ma, and D.Y. Chen, Strengthening Mechanisms, Deformation Behavior, and Anisotropic Mechanical Properties of Al-Li Alloys: A Review, J. Adv. Res., 2018, 10, p 49–67.CrossRef
10.
Zurück zum Zitat T. Dursun and C. Soutis, Recent Developments in Advanced Aircraft Aluminium Alloys, Mater. Des., 2014, 56, p 862–871.CrossRef T. Dursun and C. Soutis, Recent Developments in Advanced Aircraft Aluminium Alloys, Mater. Des., 2014, 56, p 862–871.CrossRef
11.
Zurück zum Zitat X.Y. Chen, L.H. Zhan, Y.Q. Xu, Z.Y. Ma, and Q.P. Zheng, Anisotropy in Creep Aging Behavior of Textured al-cu Alloy under Different Stress States, Mater. Charact., 2020, 168, p 110539.CrossRef X.Y. Chen, L.H. Zhan, Y.Q. Xu, Z.Y. Ma, and Q.P. Zheng, Anisotropy in Creep Aging Behavior of Textured al-cu Alloy under Different Stress States, Mater. Charact., 2020, 168, p 110539.CrossRef
12.
Zurück zum Zitat L.H. Chen, C.H. Liu, P.P. Ma, J.S. Yang, L.H. Zhan, and M.H. Huang, Strong In-plane Anisotropy of Creep Aging Behavior in Largely Pre-deformed Al-Cu Alloy: Experiments and Constitutive Modeling, Int. J. Plast, 2022, 152, p 103245.CrossRef L.H. Chen, C.H. Liu, P.P. Ma, J.S. Yang, L.H. Zhan, and M.H. Huang, Strong In-plane Anisotropy of Creep Aging Behavior in Largely Pre-deformed Al-Cu Alloy: Experiments and Constitutive Modeling, Int. J. Plast, 2022, 152, p 103245.CrossRef
13.
Zurück zum Zitat T.J. Bian, H. Li, J.C. Yang, C. Lei, C.H. Wu, L.W. Zhang et al., Through-Thickness Heterogeneity and In-plane Anisotropy in Creep Aging of 7050 Al Alloy, Mater. Des., 2020, 196, p 109190.CrossRef T.J. Bian, H. Li, J.C. Yang, C. Lei, C.H. Wu, L.W. Zhang et al., Through-Thickness Heterogeneity and In-plane Anisotropy in Creep Aging of 7050 Al Alloy, Mater. Des., 2020, 196, p 109190.CrossRef
14.
Zurück zum Zitat C.P. Tong, Y. Li, and Z.S. Shi, Investigation of Anisotropic Creep-aging Behaviour of Al-Cu-Li Alloy AA2050, Proced. Manufact., 2020, 50, p 241–247.CrossRef C.P. Tong, Y. Li, and Z.S. Shi, Investigation of Anisotropic Creep-aging Behaviour of Al-Cu-Li Alloy AA2050, Proced. Manufact., 2020, 50, p 241–247.CrossRef
15.
Zurück zum Zitat N.H. Peng, L.H. Zhan, Y.Q. Xu, C.H. Liu, B.L. Ma, K. Chen et al., Anisotropy in Creep-Aging Behavior of Al–Li Alloy under Different Stress Levels: Experimental and Constitutive Modeling, J. Market. Res., 2022, 20, p 3456–3470. N.H. Peng, L.H. Zhan, Y.Q. Xu, C.H. Liu, B.L. Ma, K. Chen et al., Anisotropy in Creep-Aging Behavior of Al–Li Alloy under Different Stress Levels: Experimental and Constitutive Modeling, J. Market. Res., 2022, 20, p 3456–3470.
16.
Zurück zum Zitat M.X. Wang, K. Cen, Z.X. Liu, T.F. Song, S.J. Wang, Z.Y. Liu et al., Effect of Scandium on the Age-hardening Behavior of Al-Li Alloy, Trans. Mater. Heat Treatm., 2022, 02, p 61–65. M.X. Wang, K. Cen, Z.X. Liu, T.F. Song, S.J. Wang, Z.Y. Liu et al., Effect of Scandium on the Age-hardening Behavior of Al-Li Alloy, Trans. Mater. Heat Treatm., 2022, 02, p 61–65.
17.
Zurück zum Zitat X.Y. Wang, Q.L. Pan, C.R. Zou, W.J. Liang, and Z.M. Ying, Resent Situation and Development Trend of Sc Containing Al-Li Alloy, Chinese Rare Earths, 2005, 26, p 70–75. X.Y. Wang, Q.L. Pan, C.R. Zou, W.J. Liang, and Z.M. Ying, Resent Situation and Development Trend of Sc Containing Al-Li Alloy, Chinese Rare Earths, 2005, 26, p 70–75.
18.
Zurück zum Zitat X.F. Wu, K.Y. Wang, F.F. Wu, R.D. Zhao, M.H. Chen, J. Xiang et al., Simultaneous Grain Refinement and Eutectic MgSi Modification in Hypoeutectic Al-11MgSi Alloys by Sc Addition22, J. Alloy. Compd., 2019, 791, p 402–410.CrossRef X.F. Wu, K.Y. Wang, F.F. Wu, R.D. Zhao, M.H. Chen, J. Xiang et al., Simultaneous Grain Refinement and Eutectic MgSi Modification in Hypoeutectic Al-11MgSi Alloys by Sc Addition22, J. Alloy. Compd., 2019, 791, p 402–410.CrossRef
19.
Zurück zum Zitat Y.H. Gao, J. Kuang, J.Y. Zhang, G. Liu, and J. Sun, Tailoring Precipitation Strategy to Optimize Microstructural Evolution, Aging Hardening and Creep Resistance in an Al–Cu–Sc Alloy by Isochronal Aging, Mater. Sci. Eng. A, 2020, 795, p 139943.CrossRef Y.H. Gao, J. Kuang, J.Y. Zhang, G. Liu, and J. Sun, Tailoring Precipitation Strategy to Optimize Microstructural Evolution, Aging Hardening and Creep Resistance in an Al–Cu–Sc Alloy by Isochronal Aging, Mater. Sci. Eng. A, 2020, 795, p 139943.CrossRef
20.
Zurück zum Zitat Y. Peng, Z. Yin, X. Lei, Q. Pan, and Z. He, Microstructure and Properties of Friction Stir Welded Joints of Al-Mg-Sc Alloy Plates, Rare Metal Mater. Eng., 2011, 40, p 201–205.CrossRef Y. Peng, Z. Yin, X. Lei, Q. Pan, and Z. He, Microstructure and Properties of Friction Stir Welded Joints of Al-Mg-Sc Alloy Plates, Rare Metal Mater. Eng., 2011, 40, p 201–205.CrossRef
21.
Zurück zum Zitat O. Prach, O. Trudonoshyn, P. Randelzhofer, C. Körner, and K. Durst, Multi-Alloying Effect of Sc, Zr, Cr on the Al-Mg-Si-Mn High-Pressure Die Casting Alloys, Mater. Charact., 2020, 168, p 110537.CrossRef O. Prach, O. Trudonoshyn, P. Randelzhofer, C. Körner, and K. Durst, Multi-Alloying Effect of Sc, Zr, Cr on the Al-Mg-Si-Mn High-Pressure Die Casting Alloys, Mater. Charact., 2020, 168, p 110537.CrossRef
22.
Zurück zum Zitat P. Xia, S.C. Wang, H.L. Huang, N. Zhou, D.F. Song, and Y.W. Jia, Effect of Sc and Zr Additions on Recrystallization Behavior and Intergranular Corrosion Resistance of Al-Zn-Mg-Cu Alloys, Materials, 2021, 14, p 5516.CrossRefPubMedPubMedCentral P. Xia, S.C. Wang, H.L. Huang, N. Zhou, D.F. Song, and Y.W. Jia, Effect of Sc and Zr Additions on Recrystallization Behavior and Intergranular Corrosion Resistance of Al-Zn-Mg-Cu Alloys, Materials, 2021, 14, p 5516.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat C.C. Shi, G.H. Wu, L. Zhang, X.L. Zhang, J.W. Sun, and J.S. Zhang et al., Microstructure and Mechanical Properties of Casting Al-3Li-2Mg-1Zn-0.1Zr Alloys Modified by Sc Additions, Journal of Alloys and Compounds, 2021, 885, p 161106.CrossRef C.C. Shi, G.H. Wu, L. Zhang, X.L. Zhang, J.W. Sun, and J.S. Zhang et al., Microstructure and Mechanical Properties of Casting Al-3Li-2Mg-1Zn-0.1Zr Alloys Modified by Sc Additions, Journal of Alloys and Compounds, 2021, 885, p 161106.CrossRef
24.
Zurück zum Zitat T. Dorin, M. Ramajayam, J. Lamb, and T. Langan, Effect of Sc and Zr Additions on the Microstructure/Strength of Al-Cu Binary Alloys, Mater. Sci. Eng., A, 2017, 707, p 58–64.CrossRef T. Dorin, M. Ramajayam, J. Lamb, and T. Langan, Effect of Sc and Zr Additions on the Microstructure/Strength of Al-Cu Binary Alloys, Mater. Sci. Eng., A, 2017, 707, p 58–64.CrossRef
25.
Zurück zum Zitat M. Vlach, J. Čížek, B. Smola, O. Melikhova, M. Vlček, and V. Kodetová et al., Heat Treatment and Age Hardening of Al–Si–Mg–Mn Commercial Alloy with Addition of Sc and Zr, Mater. Charact., 2017, 129, p 1–8.CrossRef M. Vlach, J. Čížek, B. Smola, O. Melikhova, M. Vlček, and V. Kodetová et al., Heat Treatment and Age Hardening of Al–Si–Mg–Mn Commercial Alloy with Addition of Sc and Zr, Mater. Charact., 2017, 129, p 1–8.CrossRef
26.
Zurück zum Zitat N.R. Bochvar, O.V. Rybalchenko, N.P. Leonova, N.Y. Tabachkova, G.V. Rybalchenko, and L.L. Rokhlin, Effect of Cold Plastic Deformation and Subsequent Aging on the Strength Properties of Al-Mg2Si Alloys with Combined (Sc + Zr) and (Sc + Hf) Additions, J. Alloy. Compd., 2020, 821, p 153426.CrossRef N.R. Bochvar, O.V. Rybalchenko, N.P. Leonova, N.Y. Tabachkova, G.V. Rybalchenko, and L.L. Rokhlin, Effect of Cold Plastic Deformation and Subsequent Aging on the Strength Properties of Al-Mg2Si Alloys with Combined (Sc + Zr) and (Sc + Hf) Additions, J. Alloy. Compd., 2020, 821, p 153426.CrossRef
27.
Zurück zum Zitat S.K. Tian, J.Y. Li, J.L. Zhang, Z. Wulabieke, and D. Lv, Effect of Zr and Sc on Microstructure and Properties of 7136 Aluminum Alloy, J. Market. Res., 2019, 8, p 4130–4140. S.K. Tian, J.Y. Li, J.L. Zhang, Z. Wulabieke, and D. Lv, Effect of Zr and Sc on Microstructure and Properties of 7136 Aluminum Alloy, J. Market. Res., 2019, 8, p 4130–4140.
28.
Zurück zum Zitat Y. Harada and D. Dunand, Microstructure of Al3Sc with Ternary Transition-Metal Additions, Mater. Sci. Eng. A, 2022, 329, p 686–695. Y. Harada and D. Dunand, Microstructure of Al3Sc with Ternary Transition-Metal Additions, Mater. Sci. Eng. A, 2022, 329, p 686–695.
29.
Zurück zum Zitat J.Y. Zhang, X.Y. Jiang, M.Y. Ma, B. Jiang, B. Wang, and D.Q. Yi, Effect of Scandium Micro-Alloying on the Creep Resistance Properties of Al-0.7Fe Alloy Cables, Mater. Sci. Eng. A, 2017, 699, p 194–200.CrossRef J.Y. Zhang, X.Y. Jiang, M.Y. Ma, B. Jiang, B. Wang, and D.Q. Yi, Effect of Scandium Micro-Alloying on the Creep Resistance Properties of Al-0.7Fe Alloy Cables, Mater. Sci. Eng. A, 2017, 699, p 194–200.CrossRef
30.
Zurück zum Zitat X.Y. Liu, Q.L. Pan, X.L. Zhang, X.L. Shun, F. Gao, and L.Y. Zheng et al., Creep Behavior and Microstructural Evolution of Deformed Al–Cu–Mg–Ag Heat Resistant Alloy, Mater. Sci. Eng. A, 2014, 599, p 160–165.CrossRef X.Y. Liu, Q.L. Pan, X.L. Zhang, X.L. Shun, F. Gao, and L.Y. Zheng et al., Creep Behavior and Microstructural Evolution of Deformed Al–Cu–Mg–Ag Heat Resistant Alloy, Mater. Sci. Eng. A, 2014, 599, p 160–165.CrossRef
31.
Zurück zum Zitat Y.C. Lin, X. Peng, Y. Jiang, and C. Shuai, Effects of Creep-Aging Parameters on Aging Precipitates of a Two-stage Creep-aged Al-Zn-Mg-Cu Alloy Under the Extra Compressive Stress, J. Alloy. Compd., 2018, 743, p 448–455.CrossRef Y.C. Lin, X. Peng, Y. Jiang, and C. Shuai, Effects of Creep-Aging Parameters on Aging Precipitates of a Two-stage Creep-aged Al-Zn-Mg-Cu Alloy Under the Extra Compressive Stress, J. Alloy. Compd., 2018, 743, p 448–455.CrossRef
32.
Zurück zum Zitat L.H. Zhan, J. Lin, T.A. Dean, and M. Huang, Experimental Studies and Constitutive Modelling of the Hardening of Aluminium Alloy 7055 Under Creep Age Forming Conditions, Int. J. Mech. Sci., 2011, 53, p 595–605.CrossRef L.H. Zhan, J. Lin, T.A. Dean, and M. Huang, Experimental Studies and Constitutive Modelling of the Hardening of Aluminium Alloy 7055 Under Creep Age Forming Conditions, Int. J. Mech. Sci., 2011, 53, p 595–605.CrossRef
33.
Zurück zum Zitat F.J. Humphreys and M. Hatherly, Recrystallization of Two-Phase Alloys, Recrystallization and Related Annealing Phenomena, 2nd Ed FJ Humphreys and M Hatherly Ed, (Oxford), Elsevier Butterworth Heinemann, 2004, p 285–319. F.J. Humphreys and M. Hatherly, Recrystallization of Two-Phase Alloys, Recrystallization and Related Annealing Phenomena, 2nd Ed FJ Humphreys and M Hatherly Ed, (Oxford), Elsevier Butterworth Heinemann, 2004, p 285–319.
34.
Zurück zum Zitat Y.T. Zhao and G. Chen, Design of metal matrix composites, Metal Matrix Composites, Y.T. Zhao and G. Chen (Ed.) (China). China Machine Press, 2019, p 52–53 Y.T. Zhao and G. Chen, Design of metal matrix composites, Metal Matrix Composites, Y.T. Zhao and G. Chen (Ed.) (China). China Machine Press, 2019, p 52–53
35.
Zurück zum Zitat J.Y. Zhang, H.X. Wang, D.Q. Yi, B. Wang, and H.S. Wang, Comparative study of Sc and Er addition on microstructure, mechanical properties, and electrical conductivity of Al-0.2Zr-based alloy cables, Mater. Character., 2018, 145, p 126–134.CrossRef J.Y. Zhang, H.X. Wang, D.Q. Yi, B. Wang, and H.S. Wang, Comparative study of Sc and Er addition on microstructure, mechanical properties, and electrical conductivity of Al-0.2Zr-based alloy cables, Mater. Character., 2018, 145, p 126–134.CrossRef
36.
Zurück zum Zitat Y.F. Zeng, X.R. Cai, and M. Koslowski, Effects of the Stacking Fault Energy Fluctuations on the Strengthening of Alloys, Acta Mater., 2019, 164, p 1–11.CrossRef Y.F. Zeng, X.R. Cai, and M. Koslowski, Effects of the Stacking Fault Energy Fluctuations on the Strengthening of Alloys, Acta Mater., 2019, 164, p 1–11.CrossRef
37.
Zurück zum Zitat M. Shih, J.S. Miao, M. Mills, and M. Ghazisaeidi, Stacking Fault Energy in Concentrated Alloys, Nat. Commun., 2021, 3590, p 12. M. Shih, J.S. Miao, M. Mills, and M. Ghazisaeidi, Stacking Fault Energy in Concentrated Alloys, Nat. Commun., 2021, 3590, p 12.
38.
Zurück zum Zitat Q. Ding, Tuning Element Distribution, Structure and Properties by Composition in High-Entropy Alloys, Nature, 2019, 574, p 223–227.CrossRefPubMed Q. Ding, Tuning Element Distribution, Structure and Properties by Composition in High-Entropy Alloys, Nature, 2019, 574, p 223–227.CrossRefPubMed
39.
Zurück zum Zitat H. Li, H.X. Zong, S.Z. Li, S.B. Jin, Y. Chen, and M.J. Cabral et al., Uniting Tensile Ductility with Ultrahigh Strength via Composition Undulation, Nature, 2022, 604, p 273–279.CrossRefPubMed H. Li, H.X. Zong, S.Z. Li, S.B. Jin, Y. Chen, and M.J. Cabral et al., Uniting Tensile Ductility with Ultrahigh Strength via Composition Undulation, Nature, 2022, 604, p 273–279.CrossRefPubMed
40.
Zurück zum Zitat J.Y. Zhang, Z.X. Chen, and H. Wang, Quasi in-situ Analysis of Compressive Creep Behaviors and Microstructure Evolutions in Al–Zr Alloys With Sc and Er Additions, Mater. Sci. Eng., A, 2022, 852, p 143650.CrossRef J.Y. Zhang, Z.X. Chen, and H. Wang, Quasi in-situ Analysis of Compressive Creep Behaviors and Microstructure Evolutions in Al–Zr Alloys With Sc and Er Additions, Mater. Sci. Eng., A, 2022, 852, p 143650.CrossRef
Metadaten
Titel
Effect of Compressive Creep Aging on Microstructure and Properties of Al-x%Li-0.1%Sc Alloy
verfasst von
Dingming Xiong
Jialong Chen
Jiayi Zhang
Publikationsdatum
02.05.2023
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 7/2024
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-023-08242-4

Weitere Artikel der Ausgabe 7/2024

Journal of Materials Engineering and Performance 7/2024 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.