Skip to main content
Top
Published in: Annals of Data Science 4/2023

02-05-2021

Wind Speed Prediction of Central Region of Chhattisgarh (India) Using Artificial Neural Network and Multiple Linear Regression Technique: A Comparative Study

Authors: Manoj Verma, Harish Kumar Ghritlahre, Ghrithanchi Chandrakar

Published in: Annals of Data Science | Issue 4/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

There are many renewable energy sources available in the earth like the sun, wind, biomass, tides, heat of the earth etc. Wind energy is one of the important energy sources, which can be used for generating electricity, water pumping, grinding of grains with the use of wind energy conversion system. Wind is generated on the earth surface by uneven heating and it is intermittent in nature. Wind speed is a very important factor and its prediction is very useful for wind power generation and many other purposes. In this study, artificial neural network (ANN) and multiple linear regressions (MLR) techniques are utilized to predict wind speed. For this aim, one year’s data has been taken which is a total of 365 data sets. In both techniques, five parameters were taken which are relative humidity, wind direction, ambient temperature, ambient pressure and perceptible water. In the first ANN technique, an MLP model was developed using these parameters in input layer, with wind speed as output variable. The 5-20-1 neural model has been trained by LM learning algorithm and predicted minimum RMSE and MRE values as 0.4558 and 0.1589 respectively and acceptable value of coefficient of correlation (R) as 0.90162. In the second technique of MLR, same parameters have been used as independent variables and dependent variable. The regression model predicted with coefficient of correlation value as 0.77852. The comparative analysis of performance of both models shows that the MLP model is better than MLR model. Additionally, to find the most sensitive variable, sensitivity analysis has also been done. Perceptible water was found to be the most sensitive variable and the sensitivity sequence of the parameters is: Prw > Ta > WD > Pa > RH.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference Heykin T (2004) Introduction to neural networks. Prentice Hall, Prentice Heykin T (2004) Introduction to neural networks. Prentice Hall, Prentice
4.
go back to reference Yang XY, Xiao Y, Chen SY (2005) Wind speed and generated power forecasting in wind farm. Zhongguo Dianji Gongcheng Xuebao/Proc Chin Soc Electr Eng 25:1–5 Yang XY, Xiao Y, Chen SY (2005) Wind speed and generated power forecasting in wind farm. Zhongguo Dianji Gongcheng Xuebao/Proc Chin Soc Electr Eng 25:1–5
5.
go back to reference Olson DL, Shi Y (2007) Introduction to business data mining. McGraw-Hill/Irwin, New York Olson DL, Shi Y (2007) Introduction to business data mining. McGraw-Hill/Irwin, New York
6.
go back to reference Shi Y, Tian YJ, Kou G, Peng Y, Li JP (2011) Optimization based data mining: theory and applications. Springer, BerlinCrossRef Shi Y, Tian YJ, Kou G, Peng Y, Li JP (2011) Optimization based data mining: theory and applications. Springer, BerlinCrossRef
7.
go back to reference Tien JM (2017) Internet of things, real-time decision making, and artificial intelligence. Ann Data Sci 4(2):149–178CrossRef Tien JM (2017) Internet of things, real-time decision making, and artificial intelligence. Ann Data Sci 4(2):149–178CrossRef
8.
go back to reference Sharma M, Khera SN, Sharma PB (2019) Applicability of machine learning in the measurement of emotional intelligence. Ann Data Sci 6:179–187CrossRef Sharma M, Khera SN, Sharma PB (2019) Applicability of machine learning in the measurement of emotional intelligence. Ann Data Sci 6:179–187CrossRef
9.
go back to reference Sen Gupta I, Nganje W, Hanson E (2021) Refinements of Barndorff–Nielsen and Shephard model: an analysis of crude oil price with machine learning. Ann Data Sci 8:39–55CrossRef Sen Gupta I, Nganje W, Hanson E (2021) Refinements of Barndorff–Nielsen and Shephard model: an analysis of crude oil price with machine learning. Ann Data Sci 8:39–55CrossRef
10.
go back to reference Bechrakis DA, Deane JP, McKeogh EJ (2004) Wind resource assessment of an area using short term data correlated to a long term data set. Sol Energy 76(6):725–732CrossRef Bechrakis DA, Deane JP, McKeogh EJ (2004) Wind resource assessment of an area using short term data correlated to a long term data set. Sol Energy 76(6):725–732CrossRef
11.
go back to reference Çam E, Arcaklıoğlu E, Çavuşoğlu A, Akbıyık B (2005) A classification mechanism for determining average wind speed and power in several regions of Turkey using artificial neural networks. Renew Energy 30(2):227–239CrossRef Çam E, Arcaklıoğlu E, Çavuşoğlu A, Akbıyık B (2005) A classification mechanism for determining average wind speed and power in several regions of Turkey using artificial neural networks. Renew Energy 30(2):227–239CrossRef
12.
go back to reference Öztopal A (2006) Artificial neural network approach to spatial estimation of wind velocity data. Energy Convers Manage 47(4):395–406CrossRef Öztopal A (2006) Artificial neural network approach to spatial estimation of wind velocity data. Energy Convers Manage 47(4):395–406CrossRef
13.
go back to reference Kulkarni MA, Patil S, Rama GV, Sen PN (2008) Wind speed prediction using statistical regression and neural network. J Earth Syst Sci 117(4):457–463CrossRef Kulkarni MA, Patil S, Rama GV, Sen PN (2008) Wind speed prediction using statistical regression and neural network. J Earth Syst Sci 117(4):457–463CrossRef
14.
go back to reference Lei M, Shiyan L, Chuanwen J, Hongling L, Zhang Y (2009) A review on the forecasting of wind speed and generated power. Renew Sustain Energy Rev 13(4):915–920CrossRef Lei M, Shiyan L, Chuanwen J, Hongling L, Zhang Y (2009) A review on the forecasting of wind speed and generated power. Renew Sustain Energy Rev 13(4):915–920CrossRef
15.
go back to reference Monfared M, Rastegar H, Kojabadi HM (2009) A new strategy for wind speed forecasting using artificial intelligent methods. Renew Energy 34(3):845–848CrossRef Monfared M, Rastegar H, Kojabadi HM (2009) A new strategy for wind speed forecasting using artificial intelligent methods. Renew Energy 34(3):845–848CrossRef
16.
go back to reference Fadare DA (2010) The application of artificial neural networks to mapping of wind speed profile for energy application in Nigeria. Appl Energy 87(3):934–942CrossRef Fadare DA (2010) The application of artificial neural networks to mapping of wind speed profile for energy application in Nigeria. Appl Energy 87(3):934–942CrossRef
17.
go back to reference Bilgili M, Sahin B (2010) Comparative analysis of regression and artificial neural network models for wind speed prediction. Meteorol Atmos Phys 109(1–2):61–72CrossRef Bilgili M, Sahin B (2010) Comparative analysis of regression and artificial neural network models for wind speed prediction. Meteorol Atmos Phys 109(1–2):61–72CrossRef
18.
go back to reference Cadenas E, Rivera W (2010) Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA–ANN model. Renew Energy 35(12):2732–2738CrossRef Cadenas E, Rivera W (2010) Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA–ANN model. Renew Energy 35(12):2732–2738CrossRef
19.
go back to reference Kusiak A, Wenyan L (2010) Estimation of wind speed: a data-driven approach. J Wind Eng Ind Aerodyn 98(10–11):559–567CrossRef Kusiak A, Wenyan L (2010) Estimation of wind speed: a data-driven approach. J Wind Eng Ind Aerodyn 98(10–11):559–567CrossRef
20.
go back to reference Philippopoulos K, Despina D (2012) Application of artificial neural networks for the spatial estimation of wind speed in a coastal region with complex topography. Renew Energy 38(1):75–82CrossRef Philippopoulos K, Despina D (2012) Application of artificial neural networks for the spatial estimation of wind speed in a coastal region with complex topography. Renew Energy 38(1):75–82CrossRef
21.
go back to reference Cao Q, Ewing BT, Thompson MA (2012) Forecasting wind speed with recurrent neural networks. Eur J Oper Res 221(1):148–154CrossRef Cao Q, Ewing BT, Thompson MA (2012) Forecasting wind speed with recurrent neural networks. Eur J Oper Res 221(1):148–154CrossRef
22.
go back to reference Şahin M, Kaya Y, Uyar M (2013) Comparison of ANN and MLR models for estimating solar radiation in Turkey using NOAA/AVHRR data. Adv Space Res 51(5):891–904CrossRef Şahin M, Kaya Y, Uyar M (2013) Comparison of ANN and MLR models for estimating solar radiation in Turkey using NOAA/AVHRR data. Adv Space Res 51(5):891–904CrossRef
23.
go back to reference Velo R, López P, Maseda F (2014) Wind speed estimation using multilayer perceptron. Energy Convers Manag 81:1–9CrossRef Velo R, López P, Maseda F (2014) Wind speed estimation using multilayer perceptron. Energy Convers Manag 81:1–9CrossRef
24.
go back to reference Ghritlahre HK, Prasad RK (2018) Investigation of thermal performance of unidirectional flow porous bed solar air heater using MLP, GRNN, and RBF models of ANN technique. Thermal Sci Eng Progr 6:226–235CrossRef Ghritlahre HK, Prasad RK (2018) Investigation of thermal performance of unidirectional flow porous bed solar air heater using MLP, GRNN, and RBF models of ANN technique. Thermal Sci Eng Progr 6:226–235CrossRef
27.
go back to reference Feng Y, Cui N, Chen Y, Gong D, Hu X (2019) Development of data-driven models for prediction of daily global horizontal irradiance in northwest China. J Clean Prod 223:136–146CrossRef Feng Y, Cui N, Chen Y, Gong D, Hu X (2019) Development of data-driven models for prediction of daily global horizontal irradiance in northwest China. J Clean Prod 223:136–146CrossRef
30.
go back to reference Verma M, Ahmed S, Bhagoria JL (2016) An analysis for repowering prospects of Jamgodarani wind farm using WAsP. Int J Control Theory Appl 9(21):155–161 Verma M, Ahmed S, Bhagoria JL (2016) An analysis for repowering prospects of Jamgodarani wind farm using WAsP. Int J Control Theory Appl 9(21):155–161
31.
go back to reference Verma M (2020) Wind Farm Repowering Using WAsP Software – An Approach for Reducing CO2 Emissions in the Environment, In: Hashmi S, Choudhury IA (eds) Encyclopedia of Renewable and Sustainable Materials 3:844–859 Verma M (2020) Wind Farm Repowering Using WAsP Software – An Approach for Reducing CO2 Emissions in the Environment, In: Hashmi S, Choudhury IA (eds) Encyclopedia of Renewable and Sustainable Materials 3:844–859
32.
go back to reference Guha S, Govil H, Besoya M (2020) An investigation on seasonal variability between LST and NDWI in an urban environment using Landsat satellite data. Geomat Nat Haz Risk 11(1):1319–1345CrossRef Guha S, Govil H, Besoya M (2020) An investigation on seasonal variability between LST and NDWI in an urban environment using Landsat satellite data. Geomat Nat Haz Risk 11(1):1319–1345CrossRef
33.
go back to reference Mashaly AF, Alazba AA (2016) MLP and MLR models for instantaneous thermal efficiency prediction of solar still under hyper-arid environment. Comput Electron Agric 122:146–155CrossRef Mashaly AF, Alazba AA (2016) MLP and MLR models for instantaneous thermal efficiency prediction of solar still under hyper-arid environment. Comput Electron Agric 122:146–155CrossRef
34.
go back to reference Ghritlahre HK, Prasad RK (2018) Application of ANN technique to predict the performance of solar collector systems—a review. Renew Sustain Energy Rev 84:75–88CrossRef Ghritlahre HK, Prasad RK (2018) Application of ANN technique to predict the performance of solar collector systems—a review. Renew Sustain Energy Rev 84:75–88CrossRef
35.
go back to reference Ghritlahre HK, Prasad RK (2018) Investigation on heat transfer characteristics of roughened solar air heater using ANN technique. Int J Heat Technol 36(1):102–110CrossRef Ghritlahre HK, Prasad RK (2018) Investigation on heat transfer characteristics of roughened solar air heater using ANN technique. Int J Heat Technol 36(1):102–110CrossRef
36.
go back to reference Ghritlahre HK, Prasad RK (2018) Prediction of exergetic efficiency of arc shaped wire roughened solar air heater using ANN model. Int J Heat Technol 36(3):1107–1115CrossRef Ghritlahre HK, Prasad RK (2018) Prediction of exergetic efficiency of arc shaped wire roughened solar air heater using ANN model. Int J Heat Technol 36(3):1107–1115CrossRef
37.
go back to reference Ghritlahre HK, Prasad RK (2018) Development of optimal ANN model to estimate the thermal performance of roughened solar air heater using two different learning algorithms. Annals of Data Sci 5:453–467CrossRef Ghritlahre HK, Prasad RK (2018) Development of optimal ANN model to estimate the thermal performance of roughened solar air heater using two different learning algorithms. Annals of Data Sci 5:453–467CrossRef
Metadata
Title
Wind Speed Prediction of Central Region of Chhattisgarh (India) Using Artificial Neural Network and Multiple Linear Regression Technique: A Comparative Study
Authors
Manoj Verma
Harish Kumar Ghritlahre
Ghrithanchi Chandrakar
Publication date
02-05-2021
Publisher
Springer Berlin Heidelberg
Published in
Annals of Data Science / Issue 4/2023
Print ISSN: 2198-5804
Electronic ISSN: 2198-5812
DOI
https://doi.org/10.1007/s40745-021-00332-1

Other articles of this Issue 4/2023

Annals of Data Science 4/2023 Go to the issue

Premium Partner