Skip to main content
Top
Published in: Wireless Networks 4/2022

22-03-2022 | Original Paper

Wireless powered backscatter-aided cooperative communication scheme for IoT

Authors: Shivam Gujral, Siddhartha Sarma

Published in: Wireless Networks | Issue 4/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper demonstrates that the cooperation between two types of user equipment—backscatter devices and radio frequency energy harvesting devices—leads to increased weighted sum throughput when the reflected signal from a backscatter device is leveraged. In our system model, a hybrid access point acts as a source of energy as well as a sink for both the devices by first emitting an energy signal to both the devices over the downlink and then receiving the information signal transmitted by those devices over the uplink in the consecutive slots. By recognizing the dependency of the weighted sum throughput on the antenna gain values and the duration over which the energy signal is transmitted, we formulate an optimization problem to maximize the weighted sum throughput over a joint set of these two system variables. To solve this optimization problem, which is non-convex due to the chosen objective function, we present an iterative algorithm, based on the coordinate descent method along with its convergence analysis. We even develop a low-complexity solution technique that provides a sub-optimal solution to the same optimization problem. The simulation results illustrate the superiority of our proposed scheme by presenting its comparison with two other schemes and a benchmark scheme when the system’s key parameters such as the transmit power, the distance between the devices, etc. are varied.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
It is considered to be monostatic because the backscatter transmitter and receiver are assumed to be co-located in HAP. Note that the ambient backscatter configuration can be employed at the BCD by considering the carrier emitter as an ambient RF source. The mathematical formulations and analysis for this case can be worked on similar lines as presented.
 
2
A semi-passive tag has some inbuilt power supply/battery to support its low-power circuitry operations.
 
3
The semi-passive tag enable us to keep the scaling factor as close to 1 [35] such that it reflects majority of the power towards the reader. This also benefits in reflecting the HTTD’s information to the HAP in second time slot. Henceforth, we consider the value of scaling factor equal to 1 and omit introducing it explicitly in our analysis.
 
Literature
1.
go back to reference Ashraf, M., Adnan Shahid, J., Jang, W., & Lee, K.-G. (2017). Energy harvesting non-orthogonal multiple access system with multi-antenna relay and base station. IEEE Access, 5, 17660–17670.CrossRef Ashraf, M., Adnan Shahid, J., Jang, W., & Lee, K.-G. (2017). Energy harvesting non-orthogonal multiple access system with multi-antenna relay and base station. IEEE Access, 5, 17660–17670.CrossRef
2.
go back to reference Boyer, C., & Roy, S. (2013). invited paper-backscatter communication and rfid: Coding, energy, and mimo analysis. IEEE Transactions on Communications, 62(3), 770–785.CrossRef Boyer, C., & Roy, S. (2013). invited paper-backscatter communication and rfid: Coding, energy, and mimo analysis. IEEE Transactions on Communications, 62(3), 770–785.CrossRef
3.
go back to reference Chen, H., Li, Y., Rebelatto, J. L., Uchôa Filho, B. F., & Vucetic, B. (2015). Harvest-then-cooperate: Wireless-powered cooperative communications. IEEE Transactions on Signal Processing, 63(7), 1700–1711.MathSciNetCrossRef Chen, H., Li, Y., Rebelatto, J. L., Uchôa Filho, B. F., & Vucetic, B. (2015). Harvest-then-cooperate: Wireless-powered cooperative communications. IEEE Transactions on Signal Processing, 63(7), 1700–1711.MathSciNetCrossRef
4.
go back to reference Chen, Z., Cai, L. X., Cheng, Yu., & Shan, H. (2017). Sustainable cooperative communication in wireless powered networks with energy harvesting relay. IEEE Transactions on Wireless Communications, 16(12), 8175–8189.CrossRef Chen, Z., Cai, L. X., Cheng, Yu., & Shan, H. (2017). Sustainable cooperative communication in wireless powered networks with energy harvesting relay. IEEE Transactions on Wireless Communications, 16(12), 8175–8189.CrossRef
5.
go back to reference Choi, S. H. & Kim, D. I. (2015). Backscatter radio communication for wireless powered communication networks. In 2015 21st Asia-Pacific conference on communications (APCC), pp. 370–374. IEEE. Choi, S. H. & Kim, D. I. (2015). Backscatter radio communication for wireless powered communication networks. In 2015 21st Asia-Pacific conference on communications (APCC), pp. 370–374. IEEE.
6.
go back to reference Ergen, S. C., & Varaiya, P. (2010). Tdma scheduling algorithms for wireless sensor networks. Wireless Networks, 16(4), 985–997.CrossRef Ergen, S. C., & Varaiya, P. (2010). Tdma scheduling algorithms for wireless sensor networks. Wireless Networks, 16(4), 985–997.CrossRef
7.
go back to reference Geraci, G., Couillet, R., Yuan, J., Debbah, M., & Collings, I. B. (2013). Large system analysis of linear precoding in miso broadcast channels with confidential messages. IEEE Journal on Selected Areas in Communications, 31(9), 1660–1671.CrossRef Geraci, G., Couillet, R., Yuan, J., Debbah, M., & Collings, I. B. (2013). Large system analysis of linear precoding in miso broadcast channels with confidential messages. IEEE Journal on Selected Areas in Communications, 31(9), 1660–1671.CrossRef
8.
go back to reference Gong, S., Jing, X., Niyato, D., Huang, X., & Han, Z. (2019). Backscatter-aided cooperative relay communications in wireless-powered hybrid radio networks. IEEE Network, 33(5), 234–241.CrossRef Gong, S., Jing, X., Niyato, D., Huang, X., & Han, Z. (2019). Backscatter-aided cooperative relay communications in wireless-powered hybrid radio networks. IEEE Network, 33(5), 234–241.CrossRef
9.
go back to reference Gujral, S. & Sarma, S. (2019). Cooperative communication in hybrid user scenario incorporating backscattering and energy harvesting. In 2019 IEEE ANTS. IEEE, pp. 1–6. Gujral, S. & Sarma, S. (2019). Cooperative communication in hybrid user scenario incorporating backscattering and energy harvesting. In 2019 IEEE ANTS. IEEE, pp. 1–6.
10.
go back to reference Guo, H., Liang, Y.-C., Long, R., & Zhang, Q. (2019). Cooperative ambient backscatter system: A symbiotic radio paradigm for passive iot. IEEE Wireless Communications Letters, 8(4), 1191–1194.CrossRef Guo, H., Liang, Y.-C., Long, R., & Zhang, Q. (2019). Cooperative ambient backscatter system: A symbiotic radio paradigm for passive iot. IEEE Wireless Communications Letters, 8(4), 1191–1194.CrossRef
11.
go back to reference Hong, M., Razaviyayn, M., Luo, Z.-Q., & Pang, J.-S. (2015). A unified algorithmic framework for block-structured optimization involving big data: With applications in machine learning and signal processing. IEEE Signal Processing Magazine, 33(1), 57–77.CrossRef Hong, M., Razaviyayn, M., Luo, Z.-Q., & Pang, J.-S. (2015). A unified algorithmic framework for block-structured optimization involving big data: With applications in machine learning and signal processing. IEEE Signal Processing Magazine, 33(1), 57–77.CrossRef
12.
go back to reference Huang, J., Subramanian, V. G., Agrawal, R., & Berry, R. A. (2009). Downlink scheduling and resource allocation for ofdm systems. IEEE Transactions on Wireless Communications, 8(1), 288–296.CrossRef Huang, J., Subramanian, V. G., Agrawal, R., & Berry, R. A. (2009). Downlink scheduling and resource allocation for ofdm systems. IEEE Transactions on Wireless Communications, 8(1), 288–296.CrossRef
13.
go back to reference Hyungsik, J., & Zhang, R. (2013). Throughput maximization in wireless powered communication networks. IEEE Transactions on Wireless Communications, 13(1), 418–428. Hyungsik, J., & Zhang, R. (2013). Throughput maximization in wireless powered communication networks. IEEE Transactions on Wireless Communications, 13(1), 418–428.
14.
go back to reference Kim, S. H. & Kim D. I. (2019). Backscatter based cooperative transmission in wireless-powered heterogeneous networks. In 2019 IEEE 90th vehicular technology conference (VTC2019-Fall). IEEE, pp. 1–5. Kim, S. H. & Kim D. I. (2019). Backscatter based cooperative transmission in wireless-powered heterogeneous networks. In 2019 IEEE 90th vehicular technology conference (VTC2019-Fall). IEEE, pp. 1–5.
15.
go back to reference Le, T. A., & Kong, H. Y. (2020). Energy harvesting relay-antenna selection in cooperative mimo/noma network over rayleigh fading. Wireless Networks, 26(3), 2075–2087.CrossRef Le, T. A., & Kong, H. Y. (2020). Energy harvesting relay-antenna selection in cooperative mimo/noma network over rayleigh fading. Wireless Networks, 26(3), 2075–2087.CrossRef
16.
go back to reference Li, D. (2020). Backscatter communication via harvest-then-transmit relaying. IEEE Transactions on Vehicular Technology, 69(6), 6843–6847.CrossRef Li, D. (2020). Backscatter communication via harvest-then-transmit relaying. IEEE Transactions on Vehicular Technology, 69(6), 6843–6847.CrossRef
17.
go back to reference Li, D., & Liang, Y.-C. (2018). Adaptive ambient backscatter communication systems with mrc. IEEE Transactions on Vehicular Technology, 67(12), 12352–12357.CrossRef Li, D., & Liang, Y.-C. (2018). Adaptive ambient backscatter communication systems with mrc. IEEE Transactions on Vehicular Technology, 67(12), 12352–12357.CrossRef
18.
go back to reference Liaqat, M., Noordin, K. A., Latef, T. A., & Dimyati, K. (2020). Power-domain non orthogonal multiple access (pd-noma) in cooperative networks: an overview. Wireless Networks, 26(1), 181–203.CrossRef Liaqat, M., Noordin, K. A., Latef, T. A., & Dimyati, K. (2020). Power-domain non orthogonal multiple access (pd-noma) in cooperative networks: an overview. Wireless Networks, 26(1), 181–203.CrossRef
19.
go back to reference Liu, W., Huang, K., Zhou, X., & Durrani, S. (2017). Full-duplex backscatter interference networks based on time-hopping spread spectrum. IEEE Transactions on Wireless Communications, 16(7), 4361–4377.CrossRef Liu, W., Huang, K., Zhou, X., & Durrani, S. (2017). Full-duplex backscatter interference networks based on time-hopping spread spectrum. IEEE Transactions on Wireless Communications, 16(7), 4361–4377.CrossRef
20.
go back to reference Liu, Y. (2016). Wireless information and power transfer for multirelay-assisted cooperative communication. IEEE Communications Letters, 20(4), 784–787.CrossRef Liu, Y. (2016). Wireless information and power transfer for multirelay-assisted cooperative communication. IEEE Communications Letters, 20(4), 784–787.CrossRef
21.
go back to reference Lu, X., Wang, P., Niyato, D., Kim, D. I., & Han, Z. (2014). Wireless networks with rf energy harvesting: A contemporary survey. IEEE Communications Surveys & Tutorials, 17(2), 757–789.CrossRef Lu, X., Wang, P., Niyato, D., Kim, D. I., & Han, Z. (2014). Wireless networks with rf energy harvesting: A contemporary survey. IEEE Communications Surveys & Tutorials, 17(2), 757–789.CrossRef
22.
go back to reference Luo, Y., Zhang, J., & Letaief, K. B. (2013). Relay selection for energy harvesting cooperative communication systems. In 2013 IEEE global communications conference (GLOBECOM). IEEE, pp. 2514–2519. Luo, Y., Zhang, J., & Letaief, K. B. (2013). Relay selection for energy harvesting cooperative communication systems. In 2013 IEEE global communications conference (GLOBECOM). IEEE, pp. 2514–2519.
23.
go back to reference Lyu, B., Hoang, D. T., & Yang, Z. (2019). User cooperation in wireless-powered backscatter communication networks. IEEE Wireless Communications Letters, 8(2), 632–635.CrossRef Lyu, B., Hoang, D. T., & Yang, Z. (2019). User cooperation in wireless-powered backscatter communication networks. IEEE Wireless Communications Letters, 8(2), 632–635.CrossRef
24.
go back to reference Lyu, B., Yang, Z., Gui, G., & Feng, Y. (2017). Wireless powered communication networks assisted by backscatter communication. IEEE Access, 5, 7254–7262.CrossRef Lyu, B., Yang, Z., Gui, G., & Feng, Y. (2017). Wireless powered communication networks assisted by backscatter communication. IEEE Access, 5, 7254–7262.CrossRef
25.
go back to reference Lyu, B., Yang, Z., Guo, H., Tian, F., & Gui, G. (2018). Relay cooperation enhanced backscatter communication for internet-of-things. IEEE Internet of Things Journal, 6(2), 2860–2871.CrossRef Lyu, B., Yang, Z., Guo, H., Tian, F., & Gui, G. (2018). Relay cooperation enhanced backscatter communication for internet-of-things. IEEE Internet of Things Journal, 6(2), 2860–2871.CrossRef
26.
go back to reference Malak, D., Huang, H., & Andrews, J. G. (2018). Throughput maximization for delay-sensitive random access communication. IEEE Transactions on Wireless Communications, 18(1), 709–723.CrossRef Malak, D., Huang, H., & Andrews, J. G. (2018). Throughput maximization for delay-sensitive random access communication. IEEE Transactions on Wireless Communications, 18(1), 709–723.CrossRef
27.
go back to reference Minasian, A., ShahbazPanahi, S., & Adve, R. S. (2014). Energy harvesting cooperative communication systems. IEEE Transactions on Wireless Communications, 13(11), 6118–6131.CrossRef Minasian, A., ShahbazPanahi, S., & Adve, R. S. (2014). Energy harvesting cooperative communication systems. IEEE Transactions on Wireless Communications, 13(11), 6118–6131.CrossRef
28.
go back to reference Miranda, J., Abrishambaf, R., Gomes, T., Gonçalves, P., Cabral, J., Tavares, A., & Monteiro, J. (2013). Path loss exponent analysis in wireless sensor networks: Experimental evaluation. In 2013 11th IEEE international conference on industrial informatics (INDIN). IEEE, pp. 54–58. Miranda, J., Abrishambaf, R., Gomes, T., Gonçalves, P., Cabral, J., Tavares, A., & Monteiro, J. (2013). Path loss exponent analysis in wireless sensor networks: Experimental evaluation. In 2013 11th IEEE international conference on industrial informatics (INDIN). IEEE, pp. 54–58.
29.
go back to reference Miraz, M. H., Ali, M., Excell, P. S, & Picking, R. (2015). A review on internet of things (iot), internet of everything (ioe) and internet of nano things (iont). In 2015 Internet technologies and applications (ITA). IEEE, pp. 219–224. Miraz, M. H., Ali, M., Excell, P. S, & Picking, R. (2015). A review on internet of things (iot), internet of everything (ioe) and internet of nano things (iont). In 2015 Internet technologies and applications (ITA). IEEE, pp. 219–224.
30.
go back to reference Mishra, D., & Larsson, E. G. (2019). Novel multiantenna reader design for multi-tag backscattered throughput fairness maximization. In 2019 IEEE 20th international workshop on signal processing advances in wireless communications (SPAWC). IEEE, pp. 1–5. Mishra, D., & Larsson, E. G. (2019). Novel multiantenna reader design for multi-tag backscattered throughput fairness maximization. In 2019 IEEE 20th international workshop on signal processing advances in wireless communications (SPAWC). IEEE, pp. 1–5.
31.
go back to reference Mishra, D., & Larsson, E. G. (2019). Sum throughput maximization in multi-tag backscattering to multiantenna reader. IEEE Transactions on Communications, 67(8), 5689–5705.CrossRef Mishra, D., & Larsson, E. G. (2019). Sum throughput maximization in multi-tag backscattering to multiantenna reader. IEEE Transactions on Communications, 67(8), 5689–5705.CrossRef
32.
go back to reference Mishra, D., & Yuan, J. (2020). Optimizing backscattering coefficient design for minimizing ber at monostatic mimo reader. In ICASSP 2020-2020 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, pp. 9165–9169. Mishra, D., & Yuan, J. (2020). Optimizing backscattering coefficient design for minimizing ber at monostatic mimo reader. In ICASSP 2020-2020 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, pp. 9165–9169.
33.
go back to reference Rappaport, T. S. (1996). Wireless communications: Principles and practice (Vol. 2). Prentice Hall PTR. Rappaport, T. S. (1996). Wireless communications: Principles and practice (Vol. 2). Prentice Hall PTR.
34.
go back to reference Sifaou, H., Kammoun, A., Sanguinetti, L., Debbah, M., & Alouini, M.-S. (2016). Max-min sinr in large-scale single-cell mu-mimo: Asymptotic analysis and low-complexity transceivers. IEEE Transactions on Signal Processing, 65(7), 1841–1854.MathSciNetCrossRef Sifaou, H., Kammoun, A., Sanguinetti, L., Debbah, M., & Alouini, M.-S. (2016). Max-min sinr in large-scale single-cell mu-mimo: Asymptotic analysis and low-complexity transceivers. IEEE Transactions on Signal Processing, 65(7), 1841–1854.MathSciNetCrossRef
35.
go back to reference Thomas, S. J., Wheeler, E., Teizer, J., & Reynolds, M. S. (2012). Quadrature amplitude modulated backscatter in passive and semipassive uhf rfid systems. IEEE Transactions on Microwave Theory and Techniques, 60(4), 1175–1182.CrossRef Thomas, S. J., Wheeler, E., Teizer, J., & Reynolds, M. S. (2012). Quadrature amplitude modulated backscatter in passive and semipassive uhf rfid systems. IEEE Transactions on Microwave Theory and Techniques, 60(4), 1175–1182.CrossRef
36.
go back to reference Tse, D., & Viswanath, P. (2005). Fundamentals of wireless communication. Cambridge Univ Press. Tse, D., & Viswanath, P. (2005). Fundamentals of wireless communication. Cambridge Univ Press.
37.
go back to reference Vamvakas, P., Tsiropoulou, E. E., Vomvas, M., & Papavassiliou, S. (2017). Adaptive power management in wireless powered communication networks: A user-centric approach. In 2017 IEEE 38th Sarnoff symposium. IEEE, pp. 1–6. Vamvakas, P., Tsiropoulou, E. E., Vomvas, M., & Papavassiliou, S. (2017). Adaptive power management in wireless powered communication networks: A user-centric approach. In 2017 IEEE 38th Sarnoff symposium. IEEE, pp. 1–6.
38.
go back to reference Van Huynh, N., Hoang, D. T., Xiao, L., Niyato, D., Wang, P., & Kim, D. I. (2018). Ambient backscatter communications: A contemporary survey. IEEE Communications Surveys & Tutorials, 20(4), 2889–2922.CrossRef Van Huynh, N., Hoang, D. T., Xiao, L., Niyato, D., Wang, P., & Kim, D. I. (2018). Ambient backscatter communications: A contemporary survey. IEEE Communications Surveys & Tutorials, 20(4), 2889–2922.CrossRef
39.
go back to reference Visser, H. J., & Vullers, R. J. M. (2013). Rf energy harvesting and transport for wireless sensor network applications: Principles and requirements. Proceedings of the IEEE, 101(6), 1410–1423.CrossRef Visser, H. J., & Vullers, R. J. M. (2013). Rf energy harvesting and transport for wireless sensor network applications: Principles and requirements. Proceedings of the IEEE, 101(6), 1410–1423.CrossRef
40.
go back to reference Wang, F., Guo, S., Yang, Y., & Xiao, B. (2016). Relay selection and power allocation for cooperative communication networks with energy harvesting. IEEE Systems Journal, 12(1), 735–746.CrossRef Wang, F., Guo, S., Yang, Y., & Xiao, B. (2016). Relay selection and power allocation for cooperative communication networks with energy harvesting. IEEE Systems Journal, 12(1), 735–746.CrossRef
41.
go back to reference Wang, P., Wang, N., Dabaghchian, M., Zeng, K., & Yan, Z. (2019). Optimal resource allocation for secure multi-user wireless powered backscatter communication with artificial noise. In IEEE INFOCOM 2019-IEEE conference on computer communications. IEEE, pp. 460–468. IEEE. Wang, P., Wang, N., Dabaghchian, M., Zeng, K., & Yan, Z. (2019). Optimal resource allocation for secure multi-user wireless powered backscatter communication with artificial noise. In IEEE INFOCOM 2019-IEEE conference on computer communications. IEEE, pp. 460–468. IEEE.
42.
go back to reference Xu, W., Bi, S., Lin, X. and Wang, J (2018). Reusing wireless power transfer for backscatter-assisted cooperation in wpcn. In International conference on machine learning and intelligent communications. Springer, pp. 229–239. Xu, W., Bi, S., Lin, X. and Wang, J (2018). Reusing wireless power transfer for backscatter-assisted cooperation in wpcn. In International conference on machine learning and intelligent communications. Springer, pp. 229–239.
43.
go back to reference Yang, G., Yuan, D., Liang, Y.-C., Zhang, R., & Leung, V. C. M. (2018). Optimal resource allocation in full-duplex ambient backscatter communication networks for wireless-powered iot. IEEE Internet of Things Journal, 6(2), 2612–2625.CrossRef Yang, G., Yuan, D., Liang, Y.-C., Zhang, R., & Leung, V. C. M. (2018). Optimal resource allocation in full-duplex ambient backscatter communication networks for wireless-powered iot. IEEE Internet of Things Journal, 6(2), 2612–2625.CrossRef
44.
go back to reference Yang, G., Zhang, Q., & Liang, Y.-C. (2018). Cooperative ambient backscatter communications for green internet-of-things. IEEE Internet of Things Journal, 5(2), 1116–1130.CrossRef Yang, G., Zhang, Q., & Liang, Y.-C. (2018). Cooperative ambient backscatter communications for green internet-of-things. IEEE Internet of Things Journal, 5(2), 1116–1130.CrossRef
45.
go back to reference Zhang, P., Gummeson, J., & Ganesan, D. (2012). Blink: A high throughput link layer for backscatter communication. In Proceedings of the 10th international conference on Mobile systems, applications, and services, pp. 99–112. Zhang, P., Gummeson, J., & Ganesan, D. (2012). Blink: A high throughput link layer for backscatter communication. In Proceedings of the 10th international conference on Mobile systems, applications, and services, pp. 99–112.
46.
go back to reference Zhang, Rui, & Liang, Ying-Chang. (2008). Exploiting multi-antennas for opportunistic spectrum sharing in cognitive radio networks. IEEE Journal of Selected Topics in Signal Processing, 2(1), 88–102.CrossRef Zhang, Rui, & Liang, Ying-Chang. (2008). Exploiting multi-antennas for opportunistic spectrum sharing in cognitive radio networks. IEEE Journal of Selected Topics in Signal Processing, 2(1), 88–102.CrossRef
Metadata
Title
Wireless powered backscatter-aided cooperative communication scheme for IoT
Authors
Shivam Gujral
Siddhartha Sarma
Publication date
22-03-2022
Publisher
Springer US
Published in
Wireless Networks / Issue 4/2022
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-022-02941-x

Other articles of this Issue 4/2022

Wireless Networks 4/2022 Go to the issue