Skip to main content
Top
Published in: Wireless Networks 4/2022

11-03-2022 | Original Paper

Optimal emplacement of sensors by orbit-electron theory in wireless sensor networks

Authors: Malathy Sathyamoorthy, Sangeetha Kuppusamy, Anand Nayyar, Rajesh Kumar Dhanaraj

Published in: Wireless Networks | Issue 4/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Wireless sensor networks (WSNs) play a significant role in various applications, ranging from cellphones to highly secure military operations in unmanned areas where continuous monitoring is required. Numerous studies on WSNs have been conducted to develop efficient algorithms that can reduce energy consumption and increase the lifetime of the entire network. In this work, the electron orbital topography algorithm is proposed for sensor deployment, which requires a smaller number of sensor nodes to cover a maximum area. In this method, the number of orbitals is estimated based on the degree of criticality of the vulnerable point. The number of sensors in each orbital is then calculated based on electron arrangement theory. After deploying a specific number of sensors in each orbital, the geographical region around the vulnerable point is divided into sectors. From each sector, a sector supervisor is elected based on the maximum residual energy of the node. Then, the cluster supervisor (CS) is selected from a set of sector supervisors located farthest from the most vulnerable point and possessing maximum residual energy. Subsequently, the virtual polygon network is formed by connecting the coordinates of the CS. The centroid of the polygon is calculated to place the sink in an optimal position from all the CS nodes. Using MATLAB for simulation, the results revealed that the number of sensors was reduced by 31.57%, packet loss decreased by 3.7%, and the area of coverage was improved by 14.7% in the proposed scheme compared to existing deployment strategies.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Boubrima, A., Bechkit, W., & Rivano, H. (2017). Optimal WSN deployment models for air pollution monitoring. IEEE Transactions on Wireless Communications, 16(5), 2723–2735.CrossRef Boubrima, A., Bechkit, W., & Rivano, H. (2017). Optimal WSN deployment models for air pollution monitoring. IEEE Transactions on Wireless Communications, 16(5), 2723–2735.CrossRef
2.
go back to reference Menaria, V. K., Jain, S. C., Raju, N., Kumari, R., Nayyar, A., & Hosain, E. (2020). NLFFT: A novel fault tolerance model using artificial intelligence to improve performance in wireless sensor networks. IEEE Access, 8, 149231–149254.CrossRef Menaria, V. K., Jain, S. C., Raju, N., Kumari, R., Nayyar, A., & Hosain, E. (2020). NLFFT: A novel fault tolerance model using artificial intelligence to improve performance in wireless sensor networks. IEEE Access, 8, 149231–149254.CrossRef
3.
go back to reference Gheisari, M., Najafabadi, H. E., Alzubi, J. A., Gao, J., Wang, G., Abbasi, A. A., & Castiglione, A. (2021). OBPP: An ontology-based framework for privacy-preserving in IoT-based smart city. Future Generation Computer Systems, 123, 1–13.CrossRef Gheisari, M., Najafabadi, H. E., Alzubi, J. A., Gao, J., Wang, G., Abbasi, A. A., & Castiglione, A. (2021). OBPP: An ontology-based framework for privacy-preserving in IoT-based smart city. Future Generation Computer Systems, 123, 1–13.CrossRef
4.
go back to reference Adeel, A., Gogate, M., Farooq, S., Ieracitano, C., Dashtipour, K., Larijani, H. and Hussain, A., 2019. A survey on the role of wireless sensor networks and IoT in disaster management. In Geological disaster monitoring based on sensor networks (pp. 57–66). Springer, Singapore. Adeel, A., Gogate, M., Farooq, S., Ieracitano, C., Dashtipour, K., Larijani, H. and Hussain, A., 2019. A survey on the role of wireless sensor networks and IoT in disaster management. In Geological disaster monitoring based on sensor networks (pp. 57–66). Springer, Singapore.
5.
go back to reference Alzubi, J. A. (2021). Bipolar fully recurrent deep structured neural learning based attack detection for securing industrial sensor networks. Transactions on Emerging Telecommunications Technologies, 32(7), e4069.CrossRef Alzubi, J. A. (2021). Bipolar fully recurrent deep structured neural learning based attack detection for securing industrial sensor networks. Transactions on Emerging Telecommunications Technologies, 32(7), e4069.CrossRef
6.
go back to reference Shu, L., Mukherjee, M., & Wu, X. (2016). Toxic gas boundary area detection in large-scale petrochemical plants with industrial wireless sensor networks. IEEE Communications Magazine, 54(10), 22–28.CrossRef Shu, L., Mukherjee, M., & Wu, X. (2016). Toxic gas boundary area detection in large-scale petrochemical plants with industrial wireless sensor networks. IEEE Communications Magazine, 54(10), 22–28.CrossRef
7.
go back to reference Fu, X., Yao, H., Postolache, O., & Yang, Y. (2019). Message forwarding for WSN-Assisted Opportunistic Network in disaster scenarios. Journal of Network and Computer Applications, 137, 11–24.CrossRef Fu, X., Yao, H., Postolache, O., & Yang, Y. (2019). Message forwarding for WSN-Assisted Opportunistic Network in disaster scenarios. Journal of Network and Computer Applications, 137, 11–24.CrossRef
8.
go back to reference Verma, M., Singh, R. J., & Bansal, B. K. (2014). Soft sediments and damage pattern: A few case studies from large Indian earthquakes vis-a-vis seismic risk evaluation. Natural hazards, 74(3), 1829–1851.CrossRef Verma, M., Singh, R. J., & Bansal, B. K. (2014). Soft sediments and damage pattern: A few case studies from large Indian earthquakes vis-a-vis seismic risk evaluation. Natural hazards, 74(3), 1829–1851.CrossRef
9.
go back to reference Alphonsa, A. and Ravi, G., 2016, March. Earthquake early warning system by IOT using Wireless sensor networks. In 2016 International conference on wireless communications, signal processing and networking (WiSPNET) (pp. 1201–1205). IEEE. Alphonsa, A. and Ravi, G., 2016, March. Earthquake early warning system by IOT using Wireless sensor networks. In 2016 International conference on wireless communications, signal processing and networking (WiSPNET) (pp. 1201–1205). IEEE.
10.
go back to reference Farahani, G. (2017). Network Performance Enhancement with Optimization Sensor Placement in Wireless Sensor Network. In International Journal of Wireless & Mobile Networks (Vol. 9, pp. 9–30). Academy and Industry Research Collaboration Center (AIRCC). https://doi.org/10.5121/ijwmn.2017.9702 Farahani, G. (2017). Network Performance Enhancement with Optimization Sensor Placement in Wireless Sensor Network. In International Journal of Wireless & Mobile Networks (Vol. 9, pp. 9–30). Academy and Industry Research Collaboration Center (AIRCC). https://​doi.​org/​10.​5121/​ijwmn.​2017.​9702
11.
go back to reference Babu, M. V., Alzubi, J. A., Sekaran, R., Patan, R., Ramachandran, M., & Gupta, D. (2021). An improved IDAF-FIT clustering based ASLPP-RR routing with secure data aggregation in wireless sensor network. Mobile Networks and Applications, 26(3), 1059–1067.CrossRef Babu, M. V., Alzubi, J. A., Sekaran, R., Patan, R., Ramachandran, M., & Gupta, D. (2021). An improved IDAF-FIT clustering based ASLPP-RR routing with secure data aggregation in wireless sensor network. Mobile Networks and Applications, 26(3), 1059–1067.CrossRef
12.
go back to reference Elhoseny, M., & Hassanien, A. E. (2019). Optimizing cluster head selection in WSN to prolong its existence. In Dynamic wireless sensor networks (pp. 93–111). Springer, Cham. Elhoseny, M., & Hassanien, A. E. (2019). Optimizing cluster head selection in WSN to prolong its existence. In Dynamic wireless sensor networks (pp. 93–111). Springer, Cham.
13.
go back to reference Priyadarshi, R., Gupta, B., & Anurag, A. (2020). Deployment techniques in wireless sensor networks: a survey, classification, challenges, and future research issues. The Journal of Supercomputing, 76(9), 7333–7373.CrossRef Priyadarshi, R., Gupta, B., & Anurag, A. (2020). Deployment techniques in wireless sensor networks: a survey, classification, challenges, and future research issues. The Journal of Supercomputing, 76(9), 7333–7373.CrossRef
14.
go back to reference Cao, B., Zhao, J., Lv, Z., Liu, X., Kang, X., & Yang, S. (2018). Deployment optimization for 3D industrial wireless sensor networks based on particle swarm optimizers with distributed parallelism. Journal of Network and Computer Applications, 103, 225–238.CrossRef Cao, B., Zhao, J., Lv, Z., Liu, X., Kang, X., & Yang, S. (2018). Deployment optimization for 3D industrial wireless sensor networks based on particle swarm optimizers with distributed parallelism. Journal of Network and Computer Applications, 103, 225–238.CrossRef
15.
go back to reference Su, H., Wang, G., Sun, X., & Yu, D. (2016). Optimal node deployment strategy for wireless sensor networks based on dynamic ant colony algorithm. International Journal of Embedded Systems, 8(2–3), 258–265.CrossRef Su, H., Wang, G., Sun, X., & Yu, D. (2016). Optimal node deployment strategy for wireless sensor networks based on dynamic ant colony algorithm. International Journal of Embedded Systems, 8(2–3), 258–265.CrossRef
16.
go back to reference Gunathillake, A., Savkin, A. V., & Jayasumana, A. P. (2018). Topology mapping algorithm for 2D and 3D wireless sensor networks based on maximum likelihood estimation. Computer Networks, 130, 1–15.CrossRef Gunathillake, A., Savkin, A. V., & Jayasumana, A. P. (2018). Topology mapping algorithm for 2D and 3D wireless sensor networks based on maximum likelihood estimation. Computer Networks, 130, 1–15.CrossRef
18.
go back to reference Singh, M., & Khilar, P. M. (2017). A range free geometric technique for localization of wireless sensor network (WSN) based on controlled communication range. Wireless Personal Communications, 94(3), 1359–1385.CrossRef Singh, M., & Khilar, P. M. (2017). A range free geometric technique for localization of wireless sensor network (WSN) based on controlled communication range. Wireless Personal Communications, 94(3), 1359–1385.CrossRef
19.
go back to reference Li, F., Luo, J., Xin, S., & He, Y. (2016). Autonomous deployment of wireless sensor networks for optimal coverage with directional sensing model. Computer Networks, 108, 120–132.CrossRef Li, F., Luo, J., Xin, S., & He, Y. (2016). Autonomous deployment of wireless sensor networks for optimal coverage with directional sensing model. Computer Networks, 108, 120–132.CrossRef
20.
go back to reference Katti, A., & Lobiyal, D. K. (2017). Node deployment strategies and coverage prediction in 3D wireless sensor network with scheduling. Advances in Computational Sciences and Technology, 10(8), 2243–2255. Katti, A., & Lobiyal, D. K. (2017). Node deployment strategies and coverage prediction in 3D wireless sensor network with scheduling. Advances in Computational Sciences and Technology, 10(8), 2243–2255.
21.
go back to reference Bhat, S. J., & Venkata, S. K. (2020). An optimization based localization with area minimization for heterogeneous wireless sensor networks in anisotropic fields. Computer Networks, 179, 107371.CrossRef Bhat, S. J., & Venkata, S. K. (2020). An optimization based localization with area minimization for heterogeneous wireless sensor networks in anisotropic fields. Computer Networks, 179, 107371.CrossRef
22.
go back to reference Bouzid, S. E., Serrestou, Y., Raoof, K., Mbarki, M., Omri, M. N., & Dridi, C. (2020). Wireless sensor network deployment optimisation based on coverage, connectivity and cost metrics. International Journal of Sensor Networks, 33(4), 224–238.CrossRef Bouzid, S. E., Serrestou, Y., Raoof, K., Mbarki, M., Omri, M. N., & Dridi, C. (2020). Wireless sensor network deployment optimisation based on coverage, connectivity and cost metrics. International Journal of Sensor Networks, 33(4), 224–238.CrossRef
23.
go back to reference Priyadarshi, R., & Gupta, B. (2020). Coverage area enhancement in wireless sensor network. Microsystem Technologies, 26(5), 1417–1426.CrossRef Priyadarshi, R., & Gupta, B. (2020). Coverage area enhancement in wireless sensor network. Microsystem Technologies, 26(5), 1417–1426.CrossRef
24.
go back to reference Dhanaraj, R. K., Lalitha, K., Anitha, S., Khaitan, S., Gupta, P., & Goyal, M. K. (2021). Hybrid and dynamic clustering based data aggregation and routing for wireless sensor networks. Journal of Intelligent & Fuzzy Systems, 40(6), 10751–10765. https://doi.org/10.3233/jifs-201756.CrossRef Dhanaraj, R. K., Lalitha, K., Anitha, S., Khaitan, S., Gupta, P., & Goyal, M. K. (2021). Hybrid and dynamic clustering based data aggregation and routing for wireless sensor networks. Journal of Intelligent & Fuzzy Systems, 40(6), 10751–10765. https://​doi.​org/​10.​3233/​jifs-201756.CrossRef
25.
go back to reference Behera, T. M., Mohapatra, S. K., Samal, U. C., Khan, M. S., Daneshmand, M., & Gandomi, A. H. (2019). Residual energy-based cluster-head selection in WSNs for IoT application. IEEE Internet of Things Journal, 6(3), 5132–5139.CrossRef Behera, T. M., Mohapatra, S. K., Samal, U. C., Khan, M. S., Daneshmand, M., & Gandomi, A. H. (2019). Residual energy-based cluster-head selection in WSNs for IoT application. IEEE Internet of Things Journal, 6(3), 5132–5139.CrossRef
27.
go back to reference Hamzeloei, F., & Dermany, M. K. (2016). A TOPSIS based cluster head selection for wireless sensor network. Procedia Computer Science, 98, 8–15.CrossRef Hamzeloei, F., & Dermany, M. K. (2016). A TOPSIS based cluster head selection for wireless sensor network. Procedia Computer Science, 98, 8–15.CrossRef
28.
go back to reference Jha, V., Mohapatra, A. K., & Prakash, N. (2020). An energy efficient and load balanced sink mobility for wireless sensor networks. International Journal of Information and Communication Technology, 17(1), 65–90.CrossRef Jha, V., Mohapatra, A. K., & Prakash, N. (2020). An energy efficient and load balanced sink mobility for wireless sensor networks. International Journal of Information and Communication Technology, 17(1), 65–90.CrossRef
29.
go back to reference Krishnasamy, L., Dhanaraj, R. K., Ganesh Gopal, D., Reddy Gadekallu, T., Aboudaif, M. K., & Abouel Nasr, E. (2020). A heuristic angular clustering framework for secured statistical data aggregation in sensor networks. Sensors, 20(17), 4937.CrossRef Krishnasamy, L., Dhanaraj, R. K., Ganesh Gopal, D., Reddy Gadekallu, T., Aboudaif, M. K., & Abouel Nasr, E. (2020). A heuristic angular clustering framework for secured statistical data aggregation in sensor networks. Sensors, 20(17), 4937.CrossRef
30.
go back to reference Vijayalakshmi, K., & Anandan, P. (2019). A multi objective Tabu particle swarm optimization for effective cluster head selection in WSN. Cluster computing, 22(5), 12275–12282.CrossRef Vijayalakshmi, K., & Anandan, P. (2019). A multi objective Tabu particle swarm optimization for effective cluster head selection in WSN. Cluster computing, 22(5), 12275–12282.CrossRef
31.
go back to reference Mehra, P. S., Doja, M. N., & Alam, B. (2020). Fuzzy based enhanced cluster head selection (FBECS) for WSN. Journal of King Saud University-Science, 32(1), 390–401.CrossRef Mehra, P. S., Doja, M. N., & Alam, B. (2020). Fuzzy based enhanced cluster head selection (FBECS) for WSN. Journal of King Saud University-Science, 32(1), 390–401.CrossRef
32.
go back to reference Murugan, T. S., & Sarkar, A. (2018). Optimal cluster head selection by hybridisation of firefly and grey wolf optimisation. International Journal of Wireless and Mobile Computing, 14(3), 296–305.CrossRef Murugan, T. S., & Sarkar, A. (2018). Optimal cluster head selection by hybridisation of firefly and grey wolf optimisation. International Journal of Wireless and Mobile Computing, 14(3), 296–305.CrossRef
33.
go back to reference Shankar, T., Karthikeyan, A., Sivasankar, P., & Rajesh, A. (2017). Hybrid approach for optimal cluster head selection in WSN using leach and monkey search algorithms. Journal of Engineering Science and Technology, 12(2), 506–517. Shankar, T., Karthikeyan, A., Sivasankar, P., & Rajesh, A. (2017). Hybrid approach for optimal cluster head selection in WSN using leach and monkey search algorithms. Journal of Engineering Science and Technology, 12(2), 506–517.
34.
go back to reference Wu, L., Nie, L., Liu, B., Cui, J., & Xiong, N. (2018). An energy-balanced cluster head selection method for clustering routing in WSN. Journal of Internet Technology, 19(1), 115–125. Wu, L., Nie, L., Liu, B., Cui, J., & Xiong, N. (2018). An energy-balanced cluster head selection method for clustering routing in WSN. Journal of Internet Technology, 19(1), 115–125.
35.
go back to reference Priyadarshini, R. R., & Sivakumar, N. (2021). Cluster head selection based on minimum connected dominating set and bi-partite inspired methodology for energy conservation in WSNs. Journal of King Saud University-Computer and Information Sciences, 33(9), 1132–1144.CrossRef Priyadarshini, R. R., & Sivakumar, N. (2021). Cluster head selection based on minimum connected dominating set and bi-partite inspired methodology for energy conservation in WSNs. Journal of King Saud University-Computer and Information Sciences, 33(9), 1132–1144.CrossRef
36.
go back to reference Zahedi, A., Arghavani, M., Parandin, F., & Arghavani, A. (2018). Energy efficient reservation-based cluster head selection in WSNs. Wireless Personal Communications, 100(3), 667–679.CrossRef Zahedi, A., Arghavani, M., Parandin, F., & Arghavani, A. (2018). Energy efficient reservation-based cluster head selection in WSNs. Wireless Personal Communications, 100(3), 667–679.CrossRef
38.
go back to reference Snasel, V., Kong, L., Tsai, P. W., & Pan, J. S. (2016). Sink node placement strategies based on cat swarm optimization algorithm. Journal of Network Intelligence, 1(2), 52–60. Snasel, V., Kong, L., Tsai, P. W., & Pan, J. S. (2016). Sink node placement strategies based on cat swarm optimization algorithm. Journal of Network Intelligence, 1(2), 52–60.
39.
go back to reference Vanitha, C. N., Usha, M., & Nanthiya, D. (2018). Reconstruction of path using resource leveling technique in wireless sensor networks. In 2018 4th international conference on computing communication and automation (ICCCA) (pp. 1–6). IEEE. Vanitha, C. N., Usha, M., & Nanthiya, D. (2018). Reconstruction of path using resource leveling technique in wireless sensor networks. In 2018 4th international conference on computing communication and automation (ICCCA) (pp. 1–6). IEEE.
40.
go back to reference Sevgi, C. (2019). Average distance estimation in randomly deployed wireless sensor networks (WSNs): An analytical study. International Journal of Sensor Networks, 29(2), 75–87.CrossRef Sevgi, C. (2019). Average distance estimation in randomly deployed wireless sensor networks (WSNs): An analytical study. International Journal of Sensor Networks, 29(2), 75–87.CrossRef
41.
go back to reference Veeramani, S., & Mahammad, N. (2020). An approach to place sink node in a wireless sensor network (WSN). Wireless Personal Communications, 111(2), 1117–1127.CrossRef Veeramani, S., & Mahammad, N. (2020). An approach to place sink node in a wireless sensor network (WSN). Wireless Personal Communications, 111(2), 1117–1127.CrossRef
42.
go back to reference Kaur, N., Bedi, R. K., & Gangwar, R. C. (2016, November). A new sink placement strategy for WSNs. In 2016 international conference on ICT in business industry & government (ICTBIG) (pp. 1–5). IEEE. Kaur, N., Bedi, R. K., & Gangwar, R. C. (2016, November). A new sink placement strategy for WSNs. In 2016 international conference on ICT in business industry & government (ICTBIG) (pp. 1–5). IEEE.
43.
go back to reference Louail, L., & Felea, V. (2019). Centroid-based single sink placement in wireless sensor networks. Wireless Personal Communications, 108(1), 121–140.CrossRef Louail, L., & Felea, V. (2019). Centroid-based single sink placement in wireless sensor networks. Wireless Personal Communications, 108(1), 121–140.CrossRef
44.
go back to reference Snigdh, I., Gosain, D., & Gupta, N. (2016). Optimal sink placement in backbone assisted wireless sensor networks. Egyptian Informatics Journal, 17(2), 217–225.CrossRef Snigdh, I., Gosain, D., & Gupta, N. (2016). Optimal sink placement in backbone assisted wireless sensor networks. Egyptian Informatics Journal, 17(2), 217–225.CrossRef
45.
go back to reference Prasanth, A., & Pavalarajan, S. (2019). Zone-based sink mobility in wireless sensor networks. Sensor Review. Prasanth, A., & Pavalarajan, S. (2019). Zone-based sink mobility in wireless sensor networks. Sensor Review.
46.
go back to reference Sajid Sarwar, M. M., & Chatterjee, P. (2018). Optimal sink placement in wireless sensor networks to increase network performance. In Industry interactive innovations in science, engineering and technology (pp. 423–433). Springer, Singapore. Sajid Sarwar, M. M., & Chatterjee, P. (2018). Optimal sink placement in wireless sensor networks to increase network performance. In Industry interactive innovations in science, engineering and technology (pp. 423–433). Springer, Singapore.
47.
go back to reference Tirani, S. P., & Avokh, A. (2018). On the performance of sink placement in WSNs considering energy-balanced compressive sensing-based data aggregation. Journal of Network and Computer Applications, 107, 38–55.CrossRef Tirani, S. P., & Avokh, A. (2018). On the performance of sink placement in WSNs considering energy-balanced compressive sensing-based data aggregation. Journal of Network and Computer Applications, 107, 38–55.CrossRef
48.
go back to reference Wang, X., Zhou, Q., Qu, C., Chen, G., & Xia, J. (2019). Location updating scheme of sink node based on topology balance and reinforcement learning in WSN. IEEE Access, 7, 100066–100080.CrossRef Wang, X., Zhou, Q., Qu, C., Chen, G., & Xia, J. (2019). Location updating scheme of sink node based on topology balance and reinforcement learning in WSN. IEEE Access, 7, 100066–100080.CrossRef
49.
go back to reference Krishnan, M., Yun, S., & Jung, Y. M. (2019). Enhanced clustering and ACO-based multiple mobile sinks for efficiency improvement of wireless sensor networks. Computer Networks, 160, 33–40.CrossRef Krishnan, M., Yun, S., & Jung, Y. M. (2019). Enhanced clustering and ACO-based multiple mobile sinks for efficiency improvement of wireless sensor networks. Computer Networks, 160, 33–40.CrossRef
Metadata
Title
Optimal emplacement of sensors by orbit-electron theory in wireless sensor networks
Authors
Malathy Sathyamoorthy
Sangeetha Kuppusamy
Anand Nayyar
Rajesh Kumar Dhanaraj
Publication date
11-03-2022
Publisher
Springer US
Published in
Wireless Networks / Issue 4/2022
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-022-02919-9

Other articles of this Issue 4/2022

Wireless Networks 4/2022 Go to the issue