Skip to main content
Erschienen in: Wireless Networks 4/2022

11.03.2022 | Original Paper

Optimal emplacement of sensors by orbit-electron theory in wireless sensor networks

verfasst von: Malathy Sathyamoorthy, Sangeetha Kuppusamy, Anand Nayyar, Rajesh Kumar Dhanaraj

Erschienen in: Wireless Networks | Ausgabe 4/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Wireless sensor networks (WSNs) play a significant role in various applications, ranging from cellphones to highly secure military operations in unmanned areas where continuous monitoring is required. Numerous studies on WSNs have been conducted to develop efficient algorithms that can reduce energy consumption and increase the lifetime of the entire network. In this work, the electron orbital topography algorithm is proposed for sensor deployment, which requires a smaller number of sensor nodes to cover a maximum area. In this method, the number of orbitals is estimated based on the degree of criticality of the vulnerable point. The number of sensors in each orbital is then calculated based on electron arrangement theory. After deploying a specific number of sensors in each orbital, the geographical region around the vulnerable point is divided into sectors. From each sector, a sector supervisor is elected based on the maximum residual energy of the node. Then, the cluster supervisor (CS) is selected from a set of sector supervisors located farthest from the most vulnerable point and possessing maximum residual energy. Subsequently, the virtual polygon network is formed by connecting the coordinates of the CS. The centroid of the polygon is calculated to place the sink in an optimal position from all the CS nodes. Using MATLAB for simulation, the results revealed that the number of sensors was reduced by 31.57%, packet loss decreased by 3.7%, and the area of coverage was improved by 14.7% in the proposed scheme compared to existing deployment strategies.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Boubrima, A., Bechkit, W., & Rivano, H. (2017). Optimal WSN deployment models for air pollution monitoring. IEEE Transactions on Wireless Communications, 16(5), 2723–2735.CrossRef Boubrima, A., Bechkit, W., & Rivano, H. (2017). Optimal WSN deployment models for air pollution monitoring. IEEE Transactions on Wireless Communications, 16(5), 2723–2735.CrossRef
2.
Zurück zum Zitat Menaria, V. K., Jain, S. C., Raju, N., Kumari, R., Nayyar, A., & Hosain, E. (2020). NLFFT: A novel fault tolerance model using artificial intelligence to improve performance in wireless sensor networks. IEEE Access, 8, 149231–149254.CrossRef Menaria, V. K., Jain, S. C., Raju, N., Kumari, R., Nayyar, A., & Hosain, E. (2020). NLFFT: A novel fault tolerance model using artificial intelligence to improve performance in wireless sensor networks. IEEE Access, 8, 149231–149254.CrossRef
3.
Zurück zum Zitat Gheisari, M., Najafabadi, H. E., Alzubi, J. A., Gao, J., Wang, G., Abbasi, A. A., & Castiglione, A. (2021). OBPP: An ontology-based framework for privacy-preserving in IoT-based smart city. Future Generation Computer Systems, 123, 1–13.CrossRef Gheisari, M., Najafabadi, H. E., Alzubi, J. A., Gao, J., Wang, G., Abbasi, A. A., & Castiglione, A. (2021). OBPP: An ontology-based framework for privacy-preserving in IoT-based smart city. Future Generation Computer Systems, 123, 1–13.CrossRef
4.
Zurück zum Zitat Adeel, A., Gogate, M., Farooq, S., Ieracitano, C., Dashtipour, K., Larijani, H. and Hussain, A., 2019. A survey on the role of wireless sensor networks and IoT in disaster management. In Geological disaster monitoring based on sensor networks (pp. 57–66). Springer, Singapore. Adeel, A., Gogate, M., Farooq, S., Ieracitano, C., Dashtipour, K., Larijani, H. and Hussain, A., 2019. A survey on the role of wireless sensor networks and IoT in disaster management. In Geological disaster monitoring based on sensor networks (pp. 57–66). Springer, Singapore.
5.
Zurück zum Zitat Alzubi, J. A. (2021). Bipolar fully recurrent deep structured neural learning based attack detection for securing industrial sensor networks. Transactions on Emerging Telecommunications Technologies, 32(7), e4069.CrossRef Alzubi, J. A. (2021). Bipolar fully recurrent deep structured neural learning based attack detection for securing industrial sensor networks. Transactions on Emerging Telecommunications Technologies, 32(7), e4069.CrossRef
6.
Zurück zum Zitat Shu, L., Mukherjee, M., & Wu, X. (2016). Toxic gas boundary area detection in large-scale petrochemical plants with industrial wireless sensor networks. IEEE Communications Magazine, 54(10), 22–28.CrossRef Shu, L., Mukherjee, M., & Wu, X. (2016). Toxic gas boundary area detection in large-scale petrochemical plants with industrial wireless sensor networks. IEEE Communications Magazine, 54(10), 22–28.CrossRef
7.
Zurück zum Zitat Fu, X., Yao, H., Postolache, O., & Yang, Y. (2019). Message forwarding for WSN-Assisted Opportunistic Network in disaster scenarios. Journal of Network and Computer Applications, 137, 11–24.CrossRef Fu, X., Yao, H., Postolache, O., & Yang, Y. (2019). Message forwarding for WSN-Assisted Opportunistic Network in disaster scenarios. Journal of Network and Computer Applications, 137, 11–24.CrossRef
8.
Zurück zum Zitat Verma, M., Singh, R. J., & Bansal, B. K. (2014). Soft sediments and damage pattern: A few case studies from large Indian earthquakes vis-a-vis seismic risk evaluation. Natural hazards, 74(3), 1829–1851.CrossRef Verma, M., Singh, R. J., & Bansal, B. K. (2014). Soft sediments and damage pattern: A few case studies from large Indian earthquakes vis-a-vis seismic risk evaluation. Natural hazards, 74(3), 1829–1851.CrossRef
9.
Zurück zum Zitat Alphonsa, A. and Ravi, G., 2016, March. Earthquake early warning system by IOT using Wireless sensor networks. In 2016 International conference on wireless communications, signal processing and networking (WiSPNET) (pp. 1201–1205). IEEE. Alphonsa, A. and Ravi, G., 2016, March. Earthquake early warning system by IOT using Wireless sensor networks. In 2016 International conference on wireless communications, signal processing and networking (WiSPNET) (pp. 1201–1205). IEEE.
10.
Zurück zum Zitat Farahani, G. (2017). Network Performance Enhancement with Optimization Sensor Placement in Wireless Sensor Network. In International Journal of Wireless & Mobile Networks (Vol. 9, pp. 9–30). Academy and Industry Research Collaboration Center (AIRCC). https://doi.org/10.5121/ijwmn.2017.9702 Farahani, G. (2017). Network Performance Enhancement with Optimization Sensor Placement in Wireless Sensor Network. In International Journal of Wireless & Mobile Networks (Vol. 9, pp. 9–30). Academy and Industry Research Collaboration Center (AIRCC). https://​doi.​org/​10.​5121/​ijwmn.​2017.​9702
11.
Zurück zum Zitat Babu, M. V., Alzubi, J. A., Sekaran, R., Patan, R., Ramachandran, M., & Gupta, D. (2021). An improved IDAF-FIT clustering based ASLPP-RR routing with secure data aggregation in wireless sensor network. Mobile Networks and Applications, 26(3), 1059–1067.CrossRef Babu, M. V., Alzubi, J. A., Sekaran, R., Patan, R., Ramachandran, M., & Gupta, D. (2021). An improved IDAF-FIT clustering based ASLPP-RR routing with secure data aggregation in wireless sensor network. Mobile Networks and Applications, 26(3), 1059–1067.CrossRef
12.
Zurück zum Zitat Elhoseny, M., & Hassanien, A. E. (2019). Optimizing cluster head selection in WSN to prolong its existence. In Dynamic wireless sensor networks (pp. 93–111). Springer, Cham. Elhoseny, M., & Hassanien, A. E. (2019). Optimizing cluster head selection in WSN to prolong its existence. In Dynamic wireless sensor networks (pp. 93–111). Springer, Cham.
13.
Zurück zum Zitat Priyadarshi, R., Gupta, B., & Anurag, A. (2020). Deployment techniques in wireless sensor networks: a survey, classification, challenges, and future research issues. The Journal of Supercomputing, 76(9), 7333–7373.CrossRef Priyadarshi, R., Gupta, B., & Anurag, A. (2020). Deployment techniques in wireless sensor networks: a survey, classification, challenges, and future research issues. The Journal of Supercomputing, 76(9), 7333–7373.CrossRef
14.
Zurück zum Zitat Cao, B., Zhao, J., Lv, Z., Liu, X., Kang, X., & Yang, S. (2018). Deployment optimization for 3D industrial wireless sensor networks based on particle swarm optimizers with distributed parallelism. Journal of Network and Computer Applications, 103, 225–238.CrossRef Cao, B., Zhao, J., Lv, Z., Liu, X., Kang, X., & Yang, S. (2018). Deployment optimization for 3D industrial wireless sensor networks based on particle swarm optimizers with distributed parallelism. Journal of Network and Computer Applications, 103, 225–238.CrossRef
15.
Zurück zum Zitat Su, H., Wang, G., Sun, X., & Yu, D. (2016). Optimal node deployment strategy for wireless sensor networks based on dynamic ant colony algorithm. International Journal of Embedded Systems, 8(2–3), 258–265.CrossRef Su, H., Wang, G., Sun, X., & Yu, D. (2016). Optimal node deployment strategy for wireless sensor networks based on dynamic ant colony algorithm. International Journal of Embedded Systems, 8(2–3), 258–265.CrossRef
16.
Zurück zum Zitat Gunathillake, A., Savkin, A. V., & Jayasumana, A. P. (2018). Topology mapping algorithm for 2D and 3D wireless sensor networks based on maximum likelihood estimation. Computer Networks, 130, 1–15.CrossRef Gunathillake, A., Savkin, A. V., & Jayasumana, A. P. (2018). Topology mapping algorithm for 2D and 3D wireless sensor networks based on maximum likelihood estimation. Computer Networks, 130, 1–15.CrossRef
18.
Zurück zum Zitat Singh, M., & Khilar, P. M. (2017). A range free geometric technique for localization of wireless sensor network (WSN) based on controlled communication range. Wireless Personal Communications, 94(3), 1359–1385.CrossRef Singh, M., & Khilar, P. M. (2017). A range free geometric technique for localization of wireless sensor network (WSN) based on controlled communication range. Wireless Personal Communications, 94(3), 1359–1385.CrossRef
19.
Zurück zum Zitat Li, F., Luo, J., Xin, S., & He, Y. (2016). Autonomous deployment of wireless sensor networks for optimal coverage with directional sensing model. Computer Networks, 108, 120–132.CrossRef Li, F., Luo, J., Xin, S., & He, Y. (2016). Autonomous deployment of wireless sensor networks for optimal coverage with directional sensing model. Computer Networks, 108, 120–132.CrossRef
20.
Zurück zum Zitat Katti, A., & Lobiyal, D. K. (2017). Node deployment strategies and coverage prediction in 3D wireless sensor network with scheduling. Advances in Computational Sciences and Technology, 10(8), 2243–2255. Katti, A., & Lobiyal, D. K. (2017). Node deployment strategies and coverage prediction in 3D wireless sensor network with scheduling. Advances in Computational Sciences and Technology, 10(8), 2243–2255.
21.
Zurück zum Zitat Bhat, S. J., & Venkata, S. K. (2020). An optimization based localization with area minimization for heterogeneous wireless sensor networks in anisotropic fields. Computer Networks, 179, 107371.CrossRef Bhat, S. J., & Venkata, S. K. (2020). An optimization based localization with area minimization for heterogeneous wireless sensor networks in anisotropic fields. Computer Networks, 179, 107371.CrossRef
22.
Zurück zum Zitat Bouzid, S. E., Serrestou, Y., Raoof, K., Mbarki, M., Omri, M. N., & Dridi, C. (2020). Wireless sensor network deployment optimisation based on coverage, connectivity and cost metrics. International Journal of Sensor Networks, 33(4), 224–238.CrossRef Bouzid, S. E., Serrestou, Y., Raoof, K., Mbarki, M., Omri, M. N., & Dridi, C. (2020). Wireless sensor network deployment optimisation based on coverage, connectivity and cost metrics. International Journal of Sensor Networks, 33(4), 224–238.CrossRef
23.
Zurück zum Zitat Priyadarshi, R., & Gupta, B. (2020). Coverage area enhancement in wireless sensor network. Microsystem Technologies, 26(5), 1417–1426.CrossRef Priyadarshi, R., & Gupta, B. (2020). Coverage area enhancement in wireless sensor network. Microsystem Technologies, 26(5), 1417–1426.CrossRef
24.
Zurück zum Zitat Dhanaraj, R. K., Lalitha, K., Anitha, S., Khaitan, S., Gupta, P., & Goyal, M. K. (2021). Hybrid and dynamic clustering based data aggregation and routing for wireless sensor networks. Journal of Intelligent & Fuzzy Systems, 40(6), 10751–10765. https://doi.org/10.3233/jifs-201756.CrossRef Dhanaraj, R. K., Lalitha, K., Anitha, S., Khaitan, S., Gupta, P., & Goyal, M. K. (2021). Hybrid and dynamic clustering based data aggregation and routing for wireless sensor networks. Journal of Intelligent & Fuzzy Systems, 40(6), 10751–10765. https://​doi.​org/​10.​3233/​jifs-201756.CrossRef
25.
Zurück zum Zitat Behera, T. M., Mohapatra, S. K., Samal, U. C., Khan, M. S., Daneshmand, M., & Gandomi, A. H. (2019). Residual energy-based cluster-head selection in WSNs for IoT application. IEEE Internet of Things Journal, 6(3), 5132–5139.CrossRef Behera, T. M., Mohapatra, S. K., Samal, U. C., Khan, M. S., Daneshmand, M., & Gandomi, A. H. (2019). Residual energy-based cluster-head selection in WSNs for IoT application. IEEE Internet of Things Journal, 6(3), 5132–5139.CrossRef
27.
Zurück zum Zitat Hamzeloei, F., & Dermany, M. K. (2016). A TOPSIS based cluster head selection for wireless sensor network. Procedia Computer Science, 98, 8–15.CrossRef Hamzeloei, F., & Dermany, M. K. (2016). A TOPSIS based cluster head selection for wireless sensor network. Procedia Computer Science, 98, 8–15.CrossRef
28.
Zurück zum Zitat Jha, V., Mohapatra, A. K., & Prakash, N. (2020). An energy efficient and load balanced sink mobility for wireless sensor networks. International Journal of Information and Communication Technology, 17(1), 65–90.CrossRef Jha, V., Mohapatra, A. K., & Prakash, N. (2020). An energy efficient and load balanced sink mobility for wireless sensor networks. International Journal of Information and Communication Technology, 17(1), 65–90.CrossRef
29.
Zurück zum Zitat Krishnasamy, L., Dhanaraj, R. K., Ganesh Gopal, D., Reddy Gadekallu, T., Aboudaif, M. K., & Abouel Nasr, E. (2020). A heuristic angular clustering framework for secured statistical data aggregation in sensor networks. Sensors, 20(17), 4937.CrossRef Krishnasamy, L., Dhanaraj, R. K., Ganesh Gopal, D., Reddy Gadekallu, T., Aboudaif, M. K., & Abouel Nasr, E. (2020). A heuristic angular clustering framework for secured statistical data aggregation in sensor networks. Sensors, 20(17), 4937.CrossRef
30.
Zurück zum Zitat Vijayalakshmi, K., & Anandan, P. (2019). A multi objective Tabu particle swarm optimization for effective cluster head selection in WSN. Cluster computing, 22(5), 12275–12282.CrossRef Vijayalakshmi, K., & Anandan, P. (2019). A multi objective Tabu particle swarm optimization for effective cluster head selection in WSN. Cluster computing, 22(5), 12275–12282.CrossRef
31.
Zurück zum Zitat Mehra, P. S., Doja, M. N., & Alam, B. (2020). Fuzzy based enhanced cluster head selection (FBECS) for WSN. Journal of King Saud University-Science, 32(1), 390–401.CrossRef Mehra, P. S., Doja, M. N., & Alam, B. (2020). Fuzzy based enhanced cluster head selection (FBECS) for WSN. Journal of King Saud University-Science, 32(1), 390–401.CrossRef
32.
Zurück zum Zitat Murugan, T. S., & Sarkar, A. (2018). Optimal cluster head selection by hybridisation of firefly and grey wolf optimisation. International Journal of Wireless and Mobile Computing, 14(3), 296–305.CrossRef Murugan, T. S., & Sarkar, A. (2018). Optimal cluster head selection by hybridisation of firefly and grey wolf optimisation. International Journal of Wireless and Mobile Computing, 14(3), 296–305.CrossRef
33.
Zurück zum Zitat Shankar, T., Karthikeyan, A., Sivasankar, P., & Rajesh, A. (2017). Hybrid approach for optimal cluster head selection in WSN using leach and monkey search algorithms. Journal of Engineering Science and Technology, 12(2), 506–517. Shankar, T., Karthikeyan, A., Sivasankar, P., & Rajesh, A. (2017). Hybrid approach for optimal cluster head selection in WSN using leach and monkey search algorithms. Journal of Engineering Science and Technology, 12(2), 506–517.
34.
Zurück zum Zitat Wu, L., Nie, L., Liu, B., Cui, J., & Xiong, N. (2018). An energy-balanced cluster head selection method for clustering routing in WSN. Journal of Internet Technology, 19(1), 115–125. Wu, L., Nie, L., Liu, B., Cui, J., & Xiong, N. (2018). An energy-balanced cluster head selection method for clustering routing in WSN. Journal of Internet Technology, 19(1), 115–125.
35.
Zurück zum Zitat Priyadarshini, R. R., & Sivakumar, N. (2021). Cluster head selection based on minimum connected dominating set and bi-partite inspired methodology for energy conservation in WSNs. Journal of King Saud University-Computer and Information Sciences, 33(9), 1132–1144.CrossRef Priyadarshini, R. R., & Sivakumar, N. (2021). Cluster head selection based on minimum connected dominating set and bi-partite inspired methodology for energy conservation in WSNs. Journal of King Saud University-Computer and Information Sciences, 33(9), 1132–1144.CrossRef
36.
Zurück zum Zitat Zahedi, A., Arghavani, M., Parandin, F., & Arghavani, A. (2018). Energy efficient reservation-based cluster head selection in WSNs. Wireless Personal Communications, 100(3), 667–679.CrossRef Zahedi, A., Arghavani, M., Parandin, F., & Arghavani, A. (2018). Energy efficient reservation-based cluster head selection in WSNs. Wireless Personal Communications, 100(3), 667–679.CrossRef
38.
Zurück zum Zitat Snasel, V., Kong, L., Tsai, P. W., & Pan, J. S. (2016). Sink node placement strategies based on cat swarm optimization algorithm. Journal of Network Intelligence, 1(2), 52–60. Snasel, V., Kong, L., Tsai, P. W., & Pan, J. S. (2016). Sink node placement strategies based on cat swarm optimization algorithm. Journal of Network Intelligence, 1(2), 52–60.
39.
Zurück zum Zitat Vanitha, C. N., Usha, M., & Nanthiya, D. (2018). Reconstruction of path using resource leveling technique in wireless sensor networks. In 2018 4th international conference on computing communication and automation (ICCCA) (pp. 1–6). IEEE. Vanitha, C. N., Usha, M., & Nanthiya, D. (2018). Reconstruction of path using resource leveling technique in wireless sensor networks. In 2018 4th international conference on computing communication and automation (ICCCA) (pp. 1–6). IEEE.
40.
Zurück zum Zitat Sevgi, C. (2019). Average distance estimation in randomly deployed wireless sensor networks (WSNs): An analytical study. International Journal of Sensor Networks, 29(2), 75–87.CrossRef Sevgi, C. (2019). Average distance estimation in randomly deployed wireless sensor networks (WSNs): An analytical study. International Journal of Sensor Networks, 29(2), 75–87.CrossRef
41.
Zurück zum Zitat Veeramani, S., & Mahammad, N. (2020). An approach to place sink node in a wireless sensor network (WSN). Wireless Personal Communications, 111(2), 1117–1127.CrossRef Veeramani, S., & Mahammad, N. (2020). An approach to place sink node in a wireless sensor network (WSN). Wireless Personal Communications, 111(2), 1117–1127.CrossRef
42.
Zurück zum Zitat Kaur, N., Bedi, R. K., & Gangwar, R. C. (2016, November). A new sink placement strategy for WSNs. In 2016 international conference on ICT in business industry & government (ICTBIG) (pp. 1–5). IEEE. Kaur, N., Bedi, R. K., & Gangwar, R. C. (2016, November). A new sink placement strategy for WSNs. In 2016 international conference on ICT in business industry & government (ICTBIG) (pp. 1–5). IEEE.
43.
Zurück zum Zitat Louail, L., & Felea, V. (2019). Centroid-based single sink placement in wireless sensor networks. Wireless Personal Communications, 108(1), 121–140.CrossRef Louail, L., & Felea, V. (2019). Centroid-based single sink placement in wireless sensor networks. Wireless Personal Communications, 108(1), 121–140.CrossRef
44.
Zurück zum Zitat Snigdh, I., Gosain, D., & Gupta, N. (2016). Optimal sink placement in backbone assisted wireless sensor networks. Egyptian Informatics Journal, 17(2), 217–225.CrossRef Snigdh, I., Gosain, D., & Gupta, N. (2016). Optimal sink placement in backbone assisted wireless sensor networks. Egyptian Informatics Journal, 17(2), 217–225.CrossRef
45.
Zurück zum Zitat Prasanth, A., & Pavalarajan, S. (2019). Zone-based sink mobility in wireless sensor networks. Sensor Review. Prasanth, A., & Pavalarajan, S. (2019). Zone-based sink mobility in wireless sensor networks. Sensor Review.
46.
Zurück zum Zitat Sajid Sarwar, M. M., & Chatterjee, P. (2018). Optimal sink placement in wireless sensor networks to increase network performance. In Industry interactive innovations in science, engineering and technology (pp. 423–433). Springer, Singapore. Sajid Sarwar, M. M., & Chatterjee, P. (2018). Optimal sink placement in wireless sensor networks to increase network performance. In Industry interactive innovations in science, engineering and technology (pp. 423–433). Springer, Singapore.
47.
Zurück zum Zitat Tirani, S. P., & Avokh, A. (2018). On the performance of sink placement in WSNs considering energy-balanced compressive sensing-based data aggregation. Journal of Network and Computer Applications, 107, 38–55.CrossRef Tirani, S. P., & Avokh, A. (2018). On the performance of sink placement in WSNs considering energy-balanced compressive sensing-based data aggregation. Journal of Network and Computer Applications, 107, 38–55.CrossRef
48.
Zurück zum Zitat Wang, X., Zhou, Q., Qu, C., Chen, G., & Xia, J. (2019). Location updating scheme of sink node based on topology balance and reinforcement learning in WSN. IEEE Access, 7, 100066–100080.CrossRef Wang, X., Zhou, Q., Qu, C., Chen, G., & Xia, J. (2019). Location updating scheme of sink node based on topology balance and reinforcement learning in WSN. IEEE Access, 7, 100066–100080.CrossRef
49.
Zurück zum Zitat Krishnan, M., Yun, S., & Jung, Y. M. (2019). Enhanced clustering and ACO-based multiple mobile sinks for efficiency improvement of wireless sensor networks. Computer Networks, 160, 33–40.CrossRef Krishnan, M., Yun, S., & Jung, Y. M. (2019). Enhanced clustering and ACO-based multiple mobile sinks for efficiency improvement of wireless sensor networks. Computer Networks, 160, 33–40.CrossRef
Metadaten
Titel
Optimal emplacement of sensors by orbit-electron theory in wireless sensor networks
verfasst von
Malathy Sathyamoorthy
Sangeetha Kuppusamy
Anand Nayyar
Rajesh Kumar Dhanaraj
Publikationsdatum
11.03.2022
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 4/2022
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-022-02919-9

Weitere Artikel der Ausgabe 4/2022

Wireless Networks 4/2022 Zur Ausgabe

Neuer Inhalt