Skip to main content
Erschienen in: Wireless Networks 4/2022

22.03.2022 | Original Paper

Trajectory optimization for the UAV assisted data collection in wireless sensor networks

verfasst von: Kartik Saxena, Nitin Gupta, Jahnvi Gupta, Deepak Kumar Sharma, Kapal Dev

Erschienen in: Wireless Networks | Ausgabe 4/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Wireless sensor networks (WSNs) have been imperative means for the collection of information in various fields. Integration of WSN with the latest technology like unmanned aerial vehicles (UAVs) can increase the overall performance of the WSN by increasing the sensor coverage or reducing the latency. However, for full coverage of the sensors to avoid data loss, to reduce the time required to deliver the data to sink and to minimize the calculation of the total path length, overall trajectory optimization is required. In order to solve these challenges, in this work, trajectory of the UAV is considered as a hamiltonian path that covers all the cluster heads in the WSN. The proposed scheme is able to calculate path in polynomial time which is otherwise considered to be NP-Hard. Moreover, data of sensor nodes is sent directly to the UAV thereby eliminating the need of any routing protocol. Simulation results show that the coverage of nodes is improved along with minimized data loss in comparison with single-hop and multi-hop routing protocols of WSN.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat de Souza, B. J. O., & Endler, M. (2020). Evaluating flight coordination approaches of UAV squads for WSN data collection enhancing the internet range on WSN data collection. Journal of Internet Services and Applications, 11(1), 1–44.CrossRef de Souza, B. J. O., & Endler, M. (2020). Evaluating flight coordination approaches of UAV squads for WSN data collection enhancing the internet range on WSN data collection. Journal of Internet Services and Applications, 11(1), 1–44.CrossRef
2.
Zurück zum Zitat Vijay, U., & Gupta, N. (2013). Clustering in WSN based on minimum spanning tree using divide and conquer approach. International Journal of Computer and Information Engineering, 7(7), 926–930. Vijay, U., & Gupta, N. (2013). Clustering in WSN based on minimum spanning tree using divide and conquer approach. International Journal of Computer and Information Engineering, 7(7), 926–930.
3.
Zurück zum Zitat Huang, H., Savkin, A. V., Ding, M., & Huang, C. (2019). Mobile robots in wireless sensor networks: A survey on tasks. Computer Networks, 148, 1–19.CrossRef Huang, H., Savkin, A. V., Ding, M., & Huang, C. (2019). Mobile robots in wireless sensor networks: A survey on tasks. Computer Networks, 148, 1–19.CrossRef
4.
Zurück zum Zitat Popescu, D., Stoican, F., Stamatescu, G., Chenaru, O., & Ichim, L. (2019). A survey of collaborative UAV-WSN systems for efficient monitoring. Sensors, 19(21), 4690.CrossRef Popescu, D., Stoican, F., Stamatescu, G., Chenaru, O., & Ichim, L. (2019). A survey of collaborative UAV-WSN systems for efficient monitoring. Sensors, 19(21), 4690.CrossRef
5.
Zurück zum Zitat Zhang, T., Xu, Y., Loo, J., Yang, D., & Xiao, L. (2019). Joint computation and communication design for UAV-assisted mobile edge computing in IOT. IEEE Transactions on Industrial Informatics, 16(8), 5505–5516.CrossRef Zhang, T., Xu, Y., Loo, J., Yang, D., & Xiao, L. (2019). Joint computation and communication design for UAV-assisted mobile edge computing in IOT. IEEE Transactions on Industrial Informatics, 16(8), 5505–5516.CrossRef
7.
Zurück zum Zitat Zeng, Y., & Zhang, R. (2017). Energy-efficient UAV communication with trajectory optimization. IEEE Transactions on Wireless Communications, 16(6), 3747–3760.CrossRef Zeng, Y., & Zhang, R. (2017). Energy-efficient UAV communication with trajectory optimization. IEEE Transactions on Wireless Communications, 16(6), 3747–3760.CrossRef
8.
Zurück zum Zitat Shi, W., Zhou, H., Li, J., Xu, W., Zhang, N., & Shen, X. (2018). Drone assisted vehicular networks: Architecture, challenges and opportunities. IEEE Network, 32(3), 130–137.CrossRef Shi, W., Zhou, H., Li, J., Xu, W., Zhang, N., & Shen, X. (2018). Drone assisted vehicular networks: Architecture, challenges and opportunities. IEEE Network, 32(3), 130–137.CrossRef
9.
Zurück zum Zitat He, D., Chan, S., & Guizani, M. (2017). Drone-assisted public safety networks: The security aspect. IEEE Communications Magazine, 55(8), 218–223.CrossRef He, D., Chan, S., & Guizani, M. (2017). Drone-assisted public safety networks: The security aspect. IEEE Communications Magazine, 55(8), 218–223.CrossRef
10.
Zurück zum Zitat Grover, K., Kahali, D., Verma, S., & Subramanian, B. (2020). WSN-based system for forest fire detection and mitigation. In B. Subramanian, S. S. Chen, & K. Reddy (Eds.), Emerging technologies for agriculture and environment (pp. 249–260). Springer.CrossRef Grover, K., Kahali, D., Verma, S., & Subramanian, B. (2020). WSN-based system for forest fire detection and mitigation. In B. Subramanian, S. S. Chen, & K. Reddy (Eds.), Emerging technologies for agriculture and environment (pp. 249–260). Springer.CrossRef
11.
Zurück zum Zitat Vera-Amaro, R., Rivero-Ángeles, M. E., & Luviano-Juárez, A. (2020). Data collection schemes for animal monitoring using WSNS-assisted by UAVS: WSNS-oriented or UAV-oriented. Sensors, 20(1), 262.CrossRef Vera-Amaro, R., Rivero-Ángeles, M. E., & Luviano-Juárez, A. (2020). Data collection schemes for animal monitoring using WSNS-assisted by UAVS: WSNS-oriented or UAV-oriented. Sensors, 20(1), 262.CrossRef
12.
Zurück zum Zitat Velez, F. J., Nadziejko, A., Christensen, A. L., Oliveira, S., Rodrigues, T., Costa, V., Duarte, M., Silva, F., & Gomes, J. (2015). Wireless sensor and networking technologies for swarms of aquatic surface drones (Vol. VTC2015-Fall, pp. 1–2). IEEE. Velez, F. J., Nadziejko, A., Christensen, A. L., Oliveira, S., Rodrigues, T., Costa, V., Duarte, M., Silva, F., & Gomes, J. (2015). Wireless sensor and networking technologies for swarms of aquatic surface drones (Vol. VTC2015-Fall, pp. 1–2). IEEE.
13.
Zurück zum Zitat Hefeeda, M., & Bagheri, M. (2009). Forest fire modeling and early detection using wireless sensor networks. Ad-Hoc and Sensor Wireless Networks, 7(3–4), 169–224. Hefeeda, M., & Bagheri, M. (2009). Forest fire modeling and early detection using wireless sensor networks. Ad-Hoc and Sensor Wireless Networks, 7(3–4), 169–224.
14.
Zurück zum Zitat Bahrepour, M., Meratnia, N., & Havinga, P. J. (2008). Automatic fire detection: A survey from wireless sensor network perspective. Pervasive System Group, Univeristy of Twente. Bahrepour, M., Meratnia, N., & Havinga, P. J. (2008). Automatic fire detection: A survey from wireless sensor network perspective. Pervasive System Group, Univeristy of Twente.
15.
Zurück zum Zitat Ngai, E., Zhou, Y., Lyu, M. R., & Liu, J. (2010). A delay-aware reliable event reporting framework for wireless sensor-actuator networks. Ad Hoc Networks, 8(7), 694–707.CrossRef Ngai, E., Zhou, Y., Lyu, M. R., & Liu, J. (2010). A delay-aware reliable event reporting framework for wireless sensor-actuator networks. Ad Hoc Networks, 8(7), 694–707.CrossRef
16.
Zurück zum Zitat Doolin, D. M., & Sitar, N. (2005). Wireless sensors for wildfire monitoring. In Smart structures and materials 2005: Sensors and smart structures technologies for civil, mechanical, and aerospace systems (Vol. 5765, pp. 477–484). International Society for Optics and Photonics. Doolin, D. M., & Sitar, N. (2005). Wireless sensors for wildfire monitoring. In Smart structures and materials 2005: Sensors and smart structures technologies for civil, mechanical, and aerospace systems (Vol. 5765, pp. 477–484). International Society for Optics and Photonics.
17.
Zurück zum Zitat Anisi, M. H., Abdullah, A. H., Razak, S. A., Ngadi, M., et al. (2012). Overview of data routing approaches for wireless sensor networks. Sensors, 12(4), 3964–3996.CrossRef Anisi, M. H., Abdullah, A. H., Razak, S. A., Ngadi, M., et al. (2012). Overview of data routing approaches for wireless sensor networks. Sensors, 12(4), 3964–3996.CrossRef
18.
Zurück zum Zitat Khan, A. W., Abdullah, A. H., Anisi, M. H., & Bangash, J. I. (2014). A comprehensive study of data collection schemes using mobile sinks in wireless sensor networks. Sensors, 14(2), 2510–2548.CrossRef Khan, A. W., Abdullah, A. H., Anisi, M. H., & Bangash, J. I. (2014). A comprehensive study of data collection schemes using mobile sinks in wireless sensor networks. Sensors, 14(2), 2510–2548.CrossRef
19.
Zurück zum Zitat Martinez-de Dios, J. R., Lferd, K., de San Bernabé, A., Núnez, G., Torres-González, A., & Ollero, A. (2013). Cooperation between UAS and wireless sensor networks for efficient data collection in large environments. Journal of Intelligent & Robotic Systems, 70(1), 491–508. Martinez-de Dios, J. R., Lferd, K., de San Bernabé, A., Núnez, G., Torres-González, A., & Ollero, A. (2013). Cooperation between UAS and wireless sensor networks for efficient data collection in large environments. Journal of Intelligent & Robotic Systems, 70(1), 491–508.
20.
Zurück zum Zitat Wang, J., Cao, J., Ji, S., & Park, J. H. (2017). Energy-efficient cluster-based dynamic routes adjustment approach for wireless sensor networks with mobile sinks. The Journal of Supercomputing, 73(7), 3277–3290.CrossRef Wang, J., Cao, J., Ji, S., & Park, J. H. (2017). Energy-efficient cluster-based dynamic routes adjustment approach for wireless sensor networks with mobile sinks. The Journal of Supercomputing, 73(7), 3277–3290.CrossRef
21.
Zurück zum Zitat Wang, C., Ma, F., Yan, J., De, D., & Das, S. K. (2015). Efficient aerial data collection with UAV in large-scale wireless sensor networks. International Journal of Distributed Sensor Networks, 11(11), 286,080.CrossRef Wang, C., Ma, F., Yan, J., De, D., & Das, S. K. (2015). Efficient aerial data collection with UAV in large-scale wireless sensor networks. International Journal of Distributed Sensor Networks, 11(11), 286,080.CrossRef
22.
Zurück zum Zitat Khawaja, W., Guvenc, I., Matolak, D. W., Fiebig, U. C., & Schneckenburger, N. (2019). A survey of air-to-ground propagation channel modeling for unmanned aerial vehicles. IEEE Communications Surveys & Tutorials, 21(3), 2361–2391.CrossRef Khawaja, W., Guvenc, I., Matolak, D. W., Fiebig, U. C., & Schneckenburger, N. (2019). A survey of air-to-ground propagation channel modeling for unmanned aerial vehicles. IEEE Communications Surveys & Tutorials, 21(3), 2361–2391.CrossRef
23.
Zurück zum Zitat Uragun, B. (2011). Energy efficiency for unmanned aerial vehicles. In 2011 10th international conference on machine learning and applications and workshops (Vol. 2, pp. 316–320). IEEE Uragun, B. (2011). Energy efficiency for unmanned aerial vehicles. In 2011 10th international conference on machine learning and applications and workshops (Vol. 2, pp. 316–320). IEEE
24.
Zurück zum Zitat Mozaffari, M., Saad, W., Bennis, M., & Debbah, M. (2017). Mobile unmanned aerial vehicles (UAVS) for energy-efficient internet of things communications. IEEE Transactions on Wireless Communications, 16(11), 7574–7589.CrossRef Mozaffari, M., Saad, W., Bennis, M., & Debbah, M. (2017). Mobile unmanned aerial vehicles (UAVS) for energy-efficient internet of things communications. IEEE Transactions on Wireless Communications, 16(11), 7574–7589.CrossRef
26.
Zurück zum Zitat Fotouhi, A., Qiang, H., Ding, M., Hassan, M., Giordano, L. G., Garcia-Rodriguez, A., & Yuan, J. (2019). Survey on UAV cellular communications: Practical aspects, standardization advancements, regulation, and security challenges. IEEE Communications Surveys & Tutorials, 21(4), 3417–3442.CrossRef Fotouhi, A., Qiang, H., Ding, M., Hassan, M., Giordano, L. G., Garcia-Rodriguez, A., & Yuan, J. (2019). Survey on UAV cellular communications: Practical aspects, standardization advancements, regulation, and security challenges. IEEE Communications Surveys & Tutorials, 21(4), 3417–3442.CrossRef
27.
Zurück zum Zitat Garraffa, M., Bekhti, M., Létocart, L., Achir, N., & Boussetta, K. (2018). Drones path planning for WSN data gathering: A column generation heuristic approach (pp. 1–6). IEEE. Garraffa, M., Bekhti, M., Létocart, L., Achir, N., & Boussetta, K. (2018). Drones path planning for WSN data gathering: A column generation heuristic approach (pp. 1–6). IEEE.
28.
Zurück zum Zitat Pascarella, D., Venticinque, S., & Aversa, R. (2013). Agent-based design for UAV mission planning. In 2013 eighth international conference on P2P, parallel, grid, cloud and internet computing (pp. 76–83). IEEE. Pascarella, D., Venticinque, S., & Aversa, R. (2013). Agent-based design for UAV mission planning. In 2013 eighth international conference on P2P, parallel, grid, cloud and internet computing (pp. 76–83). IEEE.
29.
Zurück zum Zitat Thakur, D., Likhachev, M., Keller, J., Kumar, V., Dobrokhodov, V., Jones, K., Wurz, J., & Kaminer, I. (2013). Planning for opportunistic surveillance with multiple robots. In 2013 IEEE/RSJ international conference on intelligent robots and systems (pp. 5750–5757). IEEE. Thakur, D., Likhachev, M., Keller, J., Kumar, V., Dobrokhodov, V., Jones, K., Wurz, J., & Kaminer, I. (2013). Planning for opportunistic surveillance with multiple robots. In 2013 IEEE/RSJ international conference on intelligent robots and systems (pp. 5750–5757). IEEE.
30.
Zurück zum Zitat Ladosz, P., Oh, H., & Chen, W. H. (2018). Trajectory planning for communication relay unmanned aerial vehicles in urban dynamic environments. Journal of Intelligent & Robotic Systems, 89(1), 7–25.CrossRef Ladosz, P., Oh, H., & Chen, W. H. (2018). Trajectory planning for communication relay unmanned aerial vehicles in urban dynamic environments. Journal of Intelligent & Robotic Systems, 89(1), 7–25.CrossRef
31.
Zurück zum Zitat Wu, Q., Sun, P., & Boukerche, A. (2018). An energy-efficient UAV-based data aggregation protocol in wireless sensor networks. In Proceedings of the 8th ACM symposium on design and analysis of intelligent vehicular networks and applications (pp. 34–40). Wu, Q., Sun, P., & Boukerche, A. (2018). An energy-efficient UAV-based data aggregation protocol in wireless sensor networks. In Proceedings of the 8th ACM symposium on design and analysis of intelligent vehicular networks and applications (pp. 34–40).
32.
Zurück zum Zitat Fu, Y., Ding, M., Zhou, C., & Hu, H. (2013). Route planning for unmanned aerial vehicle (UAV) on the sea using hybrid differential evolution and quantum-behaved particle swarm optimization. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 43(6), 1451–1465.CrossRef Fu, Y., Ding, M., Zhou, C., & Hu, H. (2013). Route planning for unmanned aerial vehicle (UAV) on the sea using hybrid differential evolution and quantum-behaved particle swarm optimization. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 43(6), 1451–1465.CrossRef
33.
Zurück zum Zitat Nikhitha, S., & Panda, M. (2018). Optimal sensor data harvesting using a mobile sink. Procedia Computer Science, 143, 921–930.CrossRef Nikhitha, S., & Panda, M. (2018). Optimal sensor data harvesting using a mobile sink. Procedia Computer Science, 143, 921–930.CrossRef
34.
Zurück zum Zitat Sun, P., & Boukerche, A. (2018). Performance modeling and analysis of a UAV path planning and target detection in a UAV-based wireless sensor network. Computer Networks, 146, 217–231.CrossRef Sun, P., & Boukerche, A. (2018). Performance modeling and analysis of a UAV path planning and target detection in a UAV-based wireless sensor network. Computer Networks, 146, 217–231.CrossRef
35.
Zurück zum Zitat Alemayehu, T. S., & Kim, J. H. (2017). Efficient nearest neighbor heuristic tsp algorithms for reducing data acquisition latency of UAV relay WSN. Wireless Personal Communications, 95(3), 3271–3285.CrossRef Alemayehu, T. S., & Kim, J. H. (2017). Efficient nearest neighbor heuristic tsp algorithms for reducing data acquisition latency of UAV relay WSN. Wireless Personal Communications, 95(3), 3271–3285.CrossRef
36.
Zurück zum Zitat Dong, M., Ota, K., Lin, M., Tang, Z., Du, S., & Zhu, H. (2014). UAV-assisted data gathering in wireless sensor networks. The Journal of Supercomputing, 70(3), 1142–1155.CrossRef Dong, M., Ota, K., Lin, M., Tang, Z., Du, S., & Zhu, H. (2014). UAV-assisted data gathering in wireless sensor networks. The Journal of Supercomputing, 70(3), 1142–1155.CrossRef
37.
Zurück zum Zitat Xu, Y. H., Sun, Q. Y., & Xiao, Y. T. (2018). An environmentally aware scheme of wireless sensor networks for forest fire monitoring and detection. Future Internet, 10(10), 102.CrossRef Xu, Y. H., Sun, Q. Y., & Xiao, Y. T. (2018). An environmentally aware scheme of wireless sensor networks for forest fire monitoring and detection. Future Internet, 10(10), 102.CrossRef
38.
Zurück zum Zitat Molina-Pico, A., Cuesta-Frau, D., Araujo, A., Alejandre, J., & Rozas, A. (2016). Forest monitoring and wildland early fire detection by a hierarchical wireless sensor network. Journal of Sensors, 2016, 1–8.CrossRef Molina-Pico, A., Cuesta-Frau, D., Araujo, A., Alejandre, J., & Rozas, A. (2016). Forest monitoring and wildland early fire detection by a hierarchical wireless sensor network. Journal of Sensors, 2016, 1–8.CrossRef
39.
Zurück zum Zitat Mozaffari, M., Saad, W., Bennis, M., Nam, Y. H., & Debbah, M. (2019). A tutorial on UAVS for wireless networks: Applications, challenges, and open problems. IEEE Communications Surveys & Tutorials, 21(3), 2334–2360.CrossRef Mozaffari, M., Saad, W., Bennis, M., Nam, Y. H., & Debbah, M. (2019). A tutorial on UAVS for wireless networks: Applications, challenges, and open problems. IEEE Communications Surveys & Tutorials, 21(3), 2334–2360.CrossRef
40.
Zurück zum Zitat Rahman, M. N., Hanuranto, M. I. A. T., & Mayasari, S. R. (2017). Trilateration and iterative multilateration algorithm for localization schemes on wireless sensor network. In 2017 international conference on control, electronics, renewable energy and communications (ICCREC) (pp. 88–92). IEEE. Rahman, M. N., Hanuranto, M. I. A. T., & Mayasari, S. R. (2017). Trilateration and iterative multilateration algorithm for localization schemes on wireless sensor network. In 2017 international conference on control, electronics, renewable energy and communications (ICCREC) (pp. 88–92). IEEE.
41.
Zurück zum Zitat Xu, J., Jin, N., Lou, X., Peng, T., Zhou, Q., & Chen, Y. (2012). Improvement of leach protocol for WSN. In 2012 9th international conference on fuzzy systems and knowledge discovery (pp. 2174–2177). IEEE. Xu, J., Jin, N., Lou, X., Peng, T., Zhou, Q., & Chen, Y. (2012). Improvement of leach protocol for WSN. In 2012 9th international conference on fuzzy systems and knowledge discovery (pp. 2174–2177). IEEE.
44.
Zurück zum Zitat Dargie, W., & Poellabauer, C. (2010). Fundamentals of wireless sensor networks: Theory and practice. Wiley.CrossRef Dargie, W., & Poellabauer, C. (2010). Fundamentals of wireless sensor networks: Theory and practice. Wiley.CrossRef
45.
Zurück zum Zitat Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to algorithms. MIT Press.MATH Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to algorithms. MIT Press.MATH
46.
Zurück zum Zitat Fitriawan, H., Susanto, M., Arifin, A.S., Mausa, D., Trisanto, A. (2017). Zigbee based wireless sensor networks and performance analysis in various environments. In 2017 15th international conference on quality in research (QiR): International symposium on electrical and computer engineering (pp. 272–275). IEEE. Fitriawan, H., Susanto, M., Arifin, A.S., Mausa, D., Trisanto, A. (2017). Zigbee based wireless sensor networks and performance analysis in various environments. In 2017 15th international conference on quality in research (QiR): International symposium on electrical and computer engineering (pp. 272–275). IEEE.
50.
Zurück zum Zitat Xing, G., Wang, T., Xie, Z., & Jia, W. (2008). Rendezvous planning in wireless sensor networks with mobile elements. IEEE Transactions on Mobile Computing, 7(12), 1430–1443.CrossRef Xing, G., Wang, T., Xie, Z., & Jia, W. (2008). Rendezvous planning in wireless sensor networks with mobile elements. IEEE Transactions on Mobile Computing, 7(12), 1430–1443.CrossRef
51.
Zurück zum Zitat Mazayev, A., Correia, N., & Schütz, G. (2016). Data gathering in wireless sensor networks using unmanned aerial vehicles. International Journal of Wireless Information Networks, 23(4), 297–309.CrossRef Mazayev, A., Correia, N., & Schütz, G. (2016). Data gathering in wireless sensor networks using unmanned aerial vehicles. International Journal of Wireless Information Networks, 23(4), 297–309.CrossRef
52.
Zurück zum Zitat Liu, S., Wei, Z., Guo, Z., Yuan, X., & Feng, Z. (2018). Performance analysis of UAVS assisted data collection in wireless sensor network. In 2018 IEEE 87th vehicular technology conference (VTC Spring) (pp. 1–5). IEEE. Liu, S., Wei, Z., Guo, Z., Yuan, X., & Feng, Z. (2018). Performance analysis of UAVS assisted data collection in wireless sensor network. In 2018 IEEE 87th vehicular technology conference (VTC Spring) (pp. 1–5). IEEE.
53.
Zurück zum Zitat Sharma, G., Bala, S., & Verma, A. K. (2013). Extending certificateless authentication for wireless sensor networks: A novel insight. International Journal of Computer Science Issues (IJCSI), 10(6), 167. Sharma, G., Bala, S., & Verma, A. K. (2013). Extending certificateless authentication for wireless sensor networks: A novel insight. International Journal of Computer Science Issues (IJCSI), 10(6), 167.
54.
Zurück zum Zitat Yaacoub, E., Abu-Dayya, A., & Matin, M. (2012). Multihop routing for energy efficiency in wireless sensor networks. In Wireless sensor networks—Technology and protocols (pp. 165–186). InTech Press. Yaacoub, E., Abu-Dayya, A., & Matin, M. (2012). Multihop routing for energy efficiency in wireless sensor networks. In Wireless sensor networks—Technology and protocols (pp. 165–186). InTech Press.
Metadaten
Titel
Trajectory optimization for the UAV assisted data collection in wireless sensor networks
verfasst von
Kartik Saxena
Nitin Gupta
Jahnvi Gupta
Deepak Kumar Sharma
Kapal Dev
Publikationsdatum
22.03.2022
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 4/2022
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-022-02934-w

Weitere Artikel der Ausgabe 4/2022

Wireless Networks 4/2022 Zur Ausgabe

Neuer Inhalt