Skip to main content
Erschienen in: Wireless Personal Communications 3/2022

03.09.2021

Improved K-Means Based Q Learning Algorithm for Optimal Clustering and Node Balancing in WSN

verfasst von: Malathy Sathyamoorthy, Sangeetha Kuppusamy, Rajesh Kumar Dhanaraj, Vinayakumar Ravi

Erschienen in: Wireless Personal Communications | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A wireless sensor network is a potential technique which is most suitable for continuous monitoring applications where the human intervention is not possible. It employs large number of sensor nodes, which will perform various operations like data gathering, transmission and forwarding. An optimal Q-learning based clustering and load balancing technique using improved K-Means algorithm is proposed. It contains two phases namely clustering phase and node balancing phase. The proposed algorithm uses Q-learning technique for deploying sensor nodes in appropriate clusters and cluster head CH election. In the clustering phase, the node will be placed in appropriate clusters based on the computation of the mean values. Once the sensors are placed in an appropriate cluster, then the cluster will be divided into ‘k’ partitions. The node which is having maximum residual energy in each partition will be elected as the partition head PH. In node balancing phase, the number of sensors in each partition will be evenly distributed by considering the area of the cluster and the number of sensors inside the cluster. Among the PHs, the node which is having residual energy to the maximum and also having the minimal distance to the sink is elected as the CH. The residual energy of the CH is monitored periodically. If it falls below the threshold level, then another partition head PH which is having residual energy to the maximum level and possessing minimum distance to the sink node will be elected as CH. The proposed Q-Learning based clustering technique maximize the reward by considering the throughput, end-to-end delay, packet delivery ratio and energy consumption. Finally, the performance of the Q-learning based clustering algorithm is evaluated and compared existing k-means based clustering algorithms. Our results indicate that the proposed method reduces end to end delay by 8.23%, throughput is increased by 2.34%, network lifetime is increased by 3.34%, packet delivery ratio is improved by 1.56%.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Jin, Y., Kwak, K. S., & Yoo, S.-J.J.I.S.J. (2020). A novel energy supply strategy for stable sensor data delivery in wireless sensor networks. IEEE Systems Journal, 14(3), 3418–3429.CrossRef Jin, Y., Kwak, K. S., & Yoo, S.-J.J.I.S.J. (2020). A novel energy supply strategy for stable sensor data delivery in wireless sensor networks. IEEE Systems Journal, 14(3), 3418–3429.CrossRef
2.
Zurück zum Zitat Wang, S., Wan, J., Li, D., & Zhang, C. (2016). Implementing smart factory of industrie 4.0: an outlook. International Journal of Distributed Sensor Networks, 12(1), 3159805.CrossRef Wang, S., Wan, J., Li, D., & Zhang, C. (2016). Implementing smart factory of industrie 4.0: an outlook. International Journal of Distributed Sensor Networks, 12(1), 3159805.CrossRef
3.
Zurück zum Zitat Rani, S., Maheswar, R., Kanagachidambaresan, G. R., & Jayarajan, P. (2020). Integration of WSN and IoT for Smart Cities. Berlin: Springer.CrossRef Rani, S., Maheswar, R., Kanagachidambaresan, G. R., & Jayarajan, P. (2020). Integration of WSN and IoT for Smart Cities. Berlin: Springer.CrossRef
4.
Zurück zum Zitat Huang, J., Hong, Y., Zhao, Z. & Yuan, Y. (2017). An energy-efficient multi-hop routing protocol based on grid clustering for wireless sensor networks. Cluster Computing, 20(4), 3071–3083.CrossRef Huang, J., Hong, Y., Zhao, Z. & Yuan, Y. (2017). An energy-efficient multi-hop routing protocol based on grid clustering for wireless sensor networks. Cluster Computing, 20(4), 3071–3083.CrossRef
5.
Zurück zum Zitat Khan, Z. A., & Samad, A. J. I. J. C. N. A. (2017). A study of machine learning in wireless sensor network. International Journal of Computer Networks And Applications, 4(4), 105–112.CrossRef Khan, Z. A., & Samad, A. J. I. J. C. N. A. (2017). A study of machine learning in wireless sensor network. International Journal of Computer Networks And Applications, 4(4), 105–112.CrossRef
6.
Zurück zum Zitat Kumar, D. P., Amgoth, T., & Annavarapu, C. S. R. J. I. F. (2019). Machine learning algorithms for wireless sensor networks: A survey. Information Fusion, 49, 1–25.CrossRef Kumar, D. P., Amgoth, T., & Annavarapu, C. S. R. J. I. F. (2019). Machine learning algorithms for wireless sensor networks: A survey. Information Fusion, 49, 1–25.CrossRef
7.
Zurück zum Zitat Wang, Z., Wang, Z., Liu, Y., Ma, Z., Liu, X., & Ma, J. (2020). LiPSG: lightweight privacy-preserving Q-learning-Based energy management for the IoT-enabled smart grid. IEEE Internet of Things Journal, 7(5), 3935–3947.CrossRef Wang, Z., Wang, Z., Liu, Y., Ma, Z., Liu, X., & Ma, J. (2020). LiPSG: lightweight privacy-preserving Q-learning-Based energy management for the IoT-enabled smart grid. IEEE Internet of Things Journal, 7(5), 3935–3947.CrossRef
8.
Zurück zum Zitat Hajjej, F., Hamdi, M., Ejbali, R., & Zaied, M. (2020). A distributed coverage hole recovery approach based on reinforcement learning for Wireless Sensor Networks. Ad Hoc Networks, 101, 102082.CrossRef Hajjej, F., Hamdi, M., Ejbali, R., & Zaied, M. (2020). A distributed coverage hole recovery approach based on reinforcement learning for Wireless Sensor Networks. Ad Hoc Networks, 101, 102082.CrossRef
9.
Zurück zum Zitat Sharma, A., & Chauhan, S. J. W. N. (2020). A distributed reinforcement learning based sensor node scheduling algorithm for coverage and connectivity maintenance in wireless sensor network. Wireless Networks, 26(6), 4411–4429.CrossRef Sharma, A., & Chauhan, S. J. W. N. (2020). A distributed reinforcement learning based sensor node scheduling algorithm for coverage and connectivity maintenance in wireless sensor network. Wireless Networks, 26(6), 4411–4429.CrossRef
10.
Zurück zum Zitat Kosunalp, S. J. I. A. (2016). A new energy prediction algorithm for energy-harvesting wireless sensor networks with Q-learning. IEEE Access, 4, 5755–5763.CrossRef Kosunalp, S. J. I. A. (2016). A new energy prediction algorithm for energy-harvesting wireless sensor networks with Q-learning. IEEE Access, 4, 5755–5763.CrossRef
11.
Zurück zum Zitat Srivastava, V., Tripathi, S. Singh, K., & Son, L. H. (2020). Energy efficient optimized rate based congestion control routing in wireless sensor network. Journal of Ambient Intelligence and Humanized Computing, 11(3), 1325–1338.CrossRef Srivastava, V., Tripathi, S. Singh, K., & Son, L. H. (2020). Energy efficient optimized rate based congestion control routing in wireless sensor network. Journal of Ambient Intelligence and Humanized Computing, 11(3), 1325–1338.CrossRef
12.
Zurück zum Zitat Karimi-Bidhendi, S., Guo, J., & H.J.I.T.o.W.C. Jafarkhani, . (2020). Energy-efficient node deployment in heterogeneous two-tier wireless sensor networks with limited communication range. IEEE Transactions on Wireless Communications, 20, 40.CrossRef Karimi-Bidhendi, S., Guo, J., & H.J.I.T.o.W.C. Jafarkhani, . (2020). Energy-efficient node deployment in heterogeneous two-tier wireless sensor networks with limited communication range. IEEE Transactions on Wireless Communications, 20, 40.CrossRef
13.
Zurück zum Zitat Feng, Y., Zhao, S., & Liu, H. J. I. A. (2020). Analysis of network coverage optimization based on feedback k-means clustering and artificial fish swarm algorithm. Electronics, 8, 42864–42876. Feng, Y., Zhao, S., & Liu, H. J. I. A. (2020). Analysis of network coverage optimization based on feedback k-means clustering and artificial fish swarm algorithm. Electronics, 8, 42864–42876.
14.
Zurück zum Zitat Ahmed, M., Seraj, R., & Islam, S. M. S. J. E. (2020). The k-means algorithm: A comprehensive survey and performance evaluation. Electronics, 9(8), 1295.CrossRef Ahmed, M., Seraj, R., & Islam, S. M. S. J. E. (2020). The k-means algorithm: A comprehensive survey and performance evaluation. Electronics, 9(8), 1295.CrossRef
15.
Zurück zum Zitat Hassan, A. A.-h., Md. Shah, W., Othman, M. F. I., & Hassan, H. A. H. (2020) Evaluate the performance of K-Means and the fuzzy C-Means algorithms to formation balanced clusters in wireless sensor networks. International Journal of Electrical and Computer Engineering 10(2). Hassan, A. A.-h., Md. Shah, W., Othman, M. F. I., & Hassan, H. A. H. (2020) Evaluate the performance of K-Means and the fuzzy C-Means algorithms to formation balanced clusters in wireless sensor networks. International Journal of Electrical and Computer Engineering 10(2).
16.
Zurück zum Zitat Ezenugu, I. A. & D.H. Ugochi, K-means-based energy-aware cluster head selection in wireless sensor networks. Ezenugu, I. A. & D.H. Ugochi, K-means-based energy-aware cluster head selection in wireless sensor networks.
17.
Zurück zum Zitat Benmahdi, M. B., & Lehsaini, , M. J. (2020). Computing, Performance evaluation of main approaches for determining optimal number of clusters in wireless sensor networks. IEEE Transactions on Wireless Communications, 33(3), 184–195. Benmahdi, M. B., & Lehsaini, , M. J. (2020). Computing, Performance evaluation of main approaches for determining optimal number of clusters in wireless sensor networks. IEEE Transactions on Wireless Communications, 33(3), 184–195.
18.
Zurück zum Zitat El Khediri, S., et al. (2020). Improved node localization using K-means clustering for Wireless Sensor Networks 37: 100284. El Khediri, S., et al. (2020). Improved node localization using K-means clustering for Wireless Sensor Networks 37: 100284.
19.
Zurück zum Zitat Zhu, B., et al., Improved Soft-k-Means Clustering Algorithm for Balancing Energy Consumption in Wireless Sensor Networks. 2020. Zhu, B., et al., Improved Soft-k-Means Clustering Algorithm for Balancing Energy Consumption in Wireless Sensor Networks. 2020.
20.
Zurück zum Zitat Mostafavi, S., & Hakami, V. J. (2020). A new rank-order clustering algorithm for prolonging the lifetime of wireless sensor networks. International Journal of Communication Systems, 33(7), 4313.CrossRef Mostafavi, S., & Hakami, V. J. (2020). A new rank-order clustering algorithm for prolonging the lifetime of wireless sensor networks. International Journal of Communication Systems, 33(7), 4313.CrossRef
21.
Zurück zum Zitat Chandrawanshi, V.S., et al., An intelligent low power consumption routing protocol to extend the lifetime of wireless sensor networks based on fuzzy C-Means++ clustering algorithm. 2020(Preprint): p. 1–10. Chandrawanshi, V.S., et al., An intelligent low power consumption routing protocol to extend the lifetime of wireless sensor networks based on fuzzy C-Means++ clustering algorithm. 2020(Preprint): p. 1–10.
22.
Zurück zum Zitat Sinaga, K. P., & Yang, M.-S.J.I.A. (2020). Unsupervised K-means clustering algorithm. IEEE Access, 8, 80716–80727.CrossRef Sinaga, K. P., & Yang, M.-S.J.I.A. (2020). Unsupervised K-means clustering algorithm. IEEE Access, 8, 80716–80727.CrossRef
23.
Zurück zum Zitat Mehta, D., (2020) Saxena, and Systems, MCH-EOR: Multi-objective cluster head based energy-aware optimized routing algorithm in wireless sensor networks. 28: 100406. Mehta, D., (2020) Saxena, and Systems, MCH-EOR: Multi-objective cluster head based energy-aware optimized routing algorithm in wireless sensor networks. 28: 100406.
24.
Zurück zum Zitat Augustine, S., & Ananth, J. J. W. N. (2020). Taylor kernel fuzzy C-means clustering algorithm for trust and energy-aware cluster head selection in wireless sensor networks., 26, 5113–5132. Augustine, S., & Ananth, J. J. W. N. (2020). Taylor kernel fuzzy C-means clustering algorithm for trust and energy-aware cluster head selection in wireless sensor networks., 26, 5113–5132.
25.
Zurück zum Zitat Baradaran, A. A., & Navi, K. J. F. S. (2020). Systems, HQCA-WSN: High-quality clustering algorithm and optimal cluster head selection using fuzzy logic in wireless sensor networks. Fuzzy Sets and Systems, 389, 114–144.MathSciNetCrossRef Baradaran, A. A., & Navi, K. J. F. S. (2020). Systems, HQCA-WSN: High-quality clustering algorithm and optimal cluster head selection using fuzzy logic in wireless sensor networks. Fuzzy Sets and Systems, 389, 114–144.MathSciNetCrossRef
26.
Zurück zum Zitat Huang, H. Y., Kim, K. T., & H.Y.J.F.o.C.S. Youn, . (2021). Determining node duty cycle using Q-learning and linear regression for WSN. Frontiers of Computer Science, 15(1), 1–7.CrossRef Huang, H. Y., Kim, K. T., & H.Y.J.F.o.C.S. Youn, . (2021). Determining node duty cycle using Q-learning and linear regression for WSN. Frontiers of Computer Science, 15(1), 1–7.CrossRef
27.
Zurück zum Zitat Ahmad, T.J.J.o.I. and O. Sciences, . (2020). Energy EC: An artificial bee colony optimization based energy efficient cluster leader selection for wireless sensor networks. Journal of Information and Optimization Sciences, 41(2), 587–597.CrossRef Ahmad, T.J.J.o.I. and O. Sciences, . (2020). Energy EC: An artificial bee colony optimization based energy efficient cluster leader selection for wireless sensor networks. Journal of Information and Optimization Sciences, 41(2), 587–597.CrossRef
28.
Zurück zum Zitat Wang, N.-C., & Hsu, W.-J.J.I.A. (2020). Energy efficient two-tier data dissemination based on Q-learning for wireless sensor networks. IEEE Access, 8, 74129–74136.CrossRef Wang, N.-C., & Hsu, W.-J.J.I.A. (2020). Energy efficient two-tier data dissemination based on Q-learning for wireless sensor networks. IEEE Access, 8, 74129–74136.CrossRef
29.
Zurück zum Zitat Yun, W.-K., & Yoo, S.-J.J.I.A. (2021). Q-learning-based data-aggregation-aware energy-efficient routing protocol for wireless sensor networks. IEEE Access, 9, 10737–10750.CrossRef Yun, W.-K., & Yoo, S.-J.J.I.A. (2021). Q-learning-based data-aggregation-aware energy-efficient routing protocol for wireless sensor networks. IEEE Access, 9, 10737–10750.CrossRef
30.
Zurück zum Zitat Kalaimani, D., Zah, Z., & Vashist, S. J. A. (2020). Energy-efficient density-based Fuzzy C-means clustering in WSN for smart grids. Australian Journal of Multi-Disciplinary Engineering, 17, 1–16. Kalaimani, D., Zah, Z., & Vashist, S. J. A. (2020). Energy-efficient density-based Fuzzy C-means clustering in WSN for smart grids. Australian Journal of Multi-Disciplinary Engineering, 17, 1–16.
Metadaten
Titel
Improved K-Means Based Q Learning Algorithm for Optimal Clustering and Node Balancing in WSN
verfasst von
Malathy Sathyamoorthy
Sangeetha Kuppusamy
Rajesh Kumar Dhanaraj
Vinayakumar Ravi
Publikationsdatum
03.09.2021
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 3/2022
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-09028-4

Weitere Artikel der Ausgabe 3/2022

Wireless Personal Communications 3/2022 Zur Ausgabe

Neuer Inhalt