Skip to main content
Top
Published in: Wireless Networks 4/2022

12-03-2022 | Original Paper

Comparison of range-based versus range-free WSNs localization using adaptive SSA algorithm

Authors: Prabhjot Singh, Nitin Mittal, Rohit Salgotra

Published in: Wireless Networks | Issue 4/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the majority of wireless sensor network applications, location information is crucial. Numerous localization techniques have been presented in recent years, the majority of them are oriented at two-dimensional applications. Whereas the challenge is more complicated in three-dimensional systems due to the broad range of altitude levels. For these purposes, two-dimensional localization models are unreliable. In this research, we use only one anchor node to identify the location of unknown sensors in a three-dimensional scenario utilizing both range-based and range-free strategies (with fuzzy logic). The middle and lower layers include sensor nodes with uncertain positions, whereas the top layer contains an anchor node. These heterogeneous mobile target nodes are deployed in an anisotropic environment having Degree of Irregularity of 0.01. The simulation results demonstrate that range-based localization techniques are significantly more efficient than range-free techniques by applying a new Adaptive SSA technique and other meta-heuristic algorithms to compute the results of range-based and range-free techniques in terms of localization error, computational time, and number of localized sensor nodes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Arampatzis, T., Lygeros, J., Manesis, S. (2005). A survey of applications of wireless sensors and wireless sensor networks. In Proceedings of the 2005 IEEE International Symposium on, Mediterrean Conference on Control and Automation Intelligent Control, pp. 719–724. Arampatzis, T., Lygeros, J., Manesis, S. (2005). A survey of applications of wireless sensors and wireless sensor networks. In Proceedings of the 2005 IEEE International Symposium on, Mediterrean Conference on Control and Automation Intelligent Control, pp. 719–724.
3.
go back to reference Rongbai, Z., Guohua, C. (2010). Research on major hazard installations monitoring system based on wsn, In 2nd International Conference on Future Computer and Communication, 1, V1–741. Rongbai, Z., Guohua, C. (2010). Research on major hazard installations monitoring system based on wsn, In 2nd International Conference on Future Computer and Communication, 1, V1–741.
4.
go back to reference Ghelardoni, L., Ghio, A., Anguita, D. (2012). Smart underwater wireless sensor networks. In IEEE 27th Convention of Electrical and Electronics Engineers in Israel, IEEE, pp. 1–5. Ghelardoni, L., Ghio, A., Anguita, D. (2012). Smart underwater wireless sensor networks. In IEEE 27th Convention of Electrical and Electronics Engineers in Israel, IEEE, pp. 1–5.
5.
go back to reference Zhou, Y., Ao, X., Xia, S. (2008). An improved APIT node self-localization algorithm in WSN. In 7th World Congress on Intelligent Control and Automation (WCICA 2008), pp. 7582–7586. Zhou, Y., Ao, X., Xia, S. (2008). An improved APIT node self-localization algorithm in WSN. In 7th World Congress on Intelligent Control and Automation (WCICA 2008), pp. 7582–7586.
6.
go back to reference Bachrach, J., Taylor, C. (2005). Localization in sensor networks. In Handbook of Sensor Networks. 277–310. Bachrach, J., Taylor, C. (2005). Localization in sensor networks. In Handbook of Sensor Networks. 277–310.
7.
go back to reference Gao, G., Lei, L. (2010). An improved node localization algorithm based on DV-HOP in WSN. In 2nd International Conference on Advanced Computer Control (ICACC), 4, 321–324. Gao, G., Lei, L. (2010). An improved node localization algorithm based on DV-HOP in WSN. In 2nd International Conference on Advanced Computer Control (ICACC), 4, 321–324.
8.
go back to reference Doherty, L., & El Ghaoui, L. (2001). Convex position estimation in wireless sensor networks. Proceeding of INFOCOM, 3, 1655–1663. Doherty, L., & El Ghaoui, L. (2001). Convex position estimation in wireless sensor networks. Proceeding of INFOCOM, 3, 1655–1663.
9.
go back to reference Teng, R., & Zhang, B. (2010). On-demand information retrieval in sensor networks with localised query and energy-balanced data collection. Sensors, 11(1), 341–361.CrossRef Teng, R., & Zhang, B. (2010). On-demand information retrieval in sensor networks with localised query and energy-balanced data collection. Sensors, 11(1), 341–361.CrossRef
10.
go back to reference Bulusu, N., Heidemann, J., & Estrin, D. (2000). GPS-less low-cost outdoor localization for very small devices. IEEE Personal Communications, 7(5), 28–34.CrossRef Bulusu, N., Heidemann, J., & Estrin, D. (2000). GPS-less low-cost outdoor localization for very small devices. IEEE Personal Communications, 7(5), 28–34.CrossRef
11.
go back to reference Graefenstein, J., Albert, A., Biber, P., Schilling, A. (2009). Wireless node localization based on RSSI using a rotating antenna on a mobile robot. In 6th Workshop on Positioning, Navigation and Communication (pp. 253–259). Hannover, Germany: IEEE. Graefenstein, J., Albert, A., Biber, P., Schilling, A. (2009). Wireless node localization based on RSSI using a rotating antenna on a mobile robot. In 6th Workshop on Positioning, Navigation and Communication (pp. 253–259). Hannover, Germany: IEEE.
12.
go back to reference Sumathi, R., Srinivasan, R. (2011). RSS-based location estimation in mobility assisted wireless sensor networks. In 6th International Conference on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS) (vol. 2, pp. 848–852). Sumathi, R., Srinivasan, R. (2011). RSS-based location estimation in mobility assisted wireless sensor networks. In 6th International Conference on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS) (vol. 2, pp. 848–852).
13.
go back to reference Guo, G.Z., Hong, Y., Jin, F., Feng, Y., & Liu, Y. (2010). Perpendicular intersection: locating wireless sensors with mobile beacon. IEEE Transactions on Vehicular Technology, 59(7), 3501–3509.CrossRef Guo, G.Z., Hong, Y., Jin, F., Feng, Y., & Liu, Y. (2010). Perpendicular intersection: locating wireless sensors with mobile beacon. IEEE Transactions on Vehicular Technology, 59(7), 3501–3509.CrossRef
14.
go back to reference Wang, L., Zhang, J., Cao, D. (2012). A new 3-dimensional dv-hop localization algorithm. Journal of Computer Information Systems, 8(6), 2463–2475. Wang, L., Zhang, J., Cao, D. (2012). A new 3-dimensional dv-hop localization algorithm. Journal of Computer Information Systems, 8(6), 2463–2475.
15.
go back to reference Xu, E., Ding, Z., & Dasgupta, S. (2011). Source localization in wireless sensor networks from signal time-of-arrival measurements. IEEE Transactions on Signal Processing, 59(6), 2887–2897.MathSciNetCrossRef Xu, E., Ding, Z., & Dasgupta, S. (2011). Source localization in wireless sensor networks from signal time-of-arrival measurements. IEEE Transactions on Signal Processing, 59(6), 2887–2897.MathSciNetCrossRef
16.
go back to reference Li, H., Wang, J., Li, X., Ma, H. (2008). Real-time path planning of mobile anchor node in localization for wireless sensor networks. In: International Conference on Information and Automation (pp. 384–389). Li, H., Wang, J., Li, X., Ma, H. (2008). Real-time path planning of mobile anchor node in localization for wireless sensor networks. In: International Conference on Information and Automation (pp. 384–389).
17.
go back to reference Ahmad, T., Li, X.J., Seet, B.C. (2017). Parametric loop division for 3d localization in wireless sensor networks. Sensors, 17(7), 1–20. Ahmad, T., Li, X.J., Seet, B.C. (2017). Parametric loop division for 3d localization in wireless sensor networks. Sensors, 17(7), 1–20.
18.
go back to reference Gopakumar, A., Lillykutty, J. (2008) Localization in wireless sensor networks using particle swarm optimization. Proceeding of IET International Conference on Wireless, Mobile and Multimedia Networks (pp. 227–230). IEEE. Gopakumar, A., Lillykutty, J. (2008) Localization in wireless sensor networks using particle swarm optimization. Proceeding of IET International Conference on Wireless, Mobile and Multimedia Networks (pp. 227–230). IEEE.
19.
go back to reference Cheng, L., Wu, C.-D., Zhang, Y.-Z. (2011). Indoor robot localization based on wireless sensor networks. IEEE Transactions on Consumer Electronics, 57(3). Cheng, L., Wu, C.-D., Zhang, Y.-Z. (2011). Indoor robot localization based on wireless sensor networks. IEEE Transactions on Consumer Electronics, 57(3).
20.
go back to reference Kulkarni, R.V., Venayagamoorthy, G.K., Cheng, M.X. (2009). Bio-inspired node localization in wireless sensor networks. In Proceeding of IEEE International Conference on Systems, Man and Cybernetics (pp. 205–210). IEEE. Kulkarni, R.V., Venayagamoorthy, G.K., Cheng, M.X. (2009). Bio-inspired node localization in wireless sensor networks. In Proceeding of IEEE International Conference on Systems, Man and Cybernetics (pp. 205–210). IEEE.
21.
go back to reference Kumar, A., Singh, K. (2015). Optimized range-free 3D node localization in wireless sensor networks using firefly algorithm. In Proceeding of International conference on Signal Processing and Communication (pp. 14–19). IEEE. Kumar, A., Singh, K. (2015). Optimized range-free 3D node localization in wireless sensor networks using firefly algorithm. In Proceeding of International conference on Signal Processing and Communication (pp. 14–19). IEEE.
22.
go back to reference Arora, S., Singh, S. (2017). Node localization in wireless sensor networks using butterfly optimization algorithm. Arabian Journal for Science and Engineering, 42(8), 3325–3335. Arora, S., Singh, S. (2017). Node localization in wireless sensor networks using butterfly optimization algorithm. Arabian Journal for Science and Engineering, 42(8), 3325–3335.
23.
go back to reference Zhang, B., Fan, J., Dai, G., & Luan, T. H. (2015). A hybrid localization approach in 3d wireless sensor network. International Journal of Distributed Sensor Networks, 2014, 1–11. Zhang, B., Fan, J., Dai, G., & Luan, T. H. (2015). A hybrid localization approach in 3d wireless sensor network. International Journal of Distributed Sensor Networks, 2014, 1–11.
24.
go back to reference Xiong, H., & Sichitiu, M. L. (2019). A lightweight localization solution for small, low resources wsns. Journal of Sensor and Actuator Networks, 8(2), 1–26.CrossRef Xiong, H., & Sichitiu, M. L. (2019). A lightweight localization solution for small, low resources wsns. Journal of Sensor and Actuator Networks, 8(2), 1–26.CrossRef
25.
go back to reference Sivasakthiselvan, S., & Nagarajan, V. (2019). A new localization technique for node positioning in wireless sensor networks. Cluster Computing, 22(2), 4027–4034.CrossRef Sivasakthiselvan, S., & Nagarajan, V. (2019). A new localization technique for node positioning in wireless sensor networks. Cluster Computing, 22(2), 4027–4034.CrossRef
26.
go back to reference Chen, H., & Tan, G. (2019). Adaptive iteration localization algorithm based on rssi in wireless sensor networks. Cluster Computing, 22(2), 3059–3067.CrossRef Chen, H., & Tan, G. (2019). Adaptive iteration localization algorithm based on rssi in wireless sensor networks. Cluster Computing, 22(2), 3059–3067.CrossRef
27.
go back to reference Nguyen, T.L.N, Vy, T. D., & Shin, Y. (2019). An efficient hybrid rss-aoa localization for 3d wireless sensor networks. Sensors, 19(9), 1–20.CrossRef Nguyen, T.L.N, Vy, T. D., & Shin, Y. (2019). An efficient hybrid rss-aoa localization for 3d wireless sensor networks. Sensors, 19(9), 1–20.CrossRef
28.
go back to reference Kumar, A., Khosla, A., Saini, J. S., & Sidhu, S. S. (2015). Range-free 3d node localization in anisotropic wireless sensor networks. Applied Soft Computing, 34, 438–448.CrossRef Kumar, A., Khosla, A., Saini, J. S., & Sidhu, S. S. (2015). Range-free 3d node localization in anisotropic wireless sensor networks. Applied Soft Computing, 34, 438–448.CrossRef
29.
go back to reference Sharma, G., & Kumar, A. (2018). Fuzzy logic based 3d localization in wireless sensor networks using invasive weed and bacterial foraging optimization. Telecommunication Systems, 67(2), 149–162.CrossRef Sharma, G., & Kumar, A. (2018). Fuzzy logic based 3d localization in wireless sensor networks using invasive weed and bacterial foraging optimization. Telecommunication Systems, 67(2), 149–162.CrossRef
30.
go back to reference Lee, S., Park, C., Lee, M. J., & Kim, S. (2014). Multihop range-free localization with approximate shortest path in anisotropic wireless sensor networks. EURASIP Journal on Wireless Communications and Networking, 1–20. Lee, S., Park, C., Lee, M. J., & Kim, S. (2014). Multihop range-free localization with approximate shortest path in anisotropic wireless sensor networks. EURASIP Journal on Wireless Communications and Networking, 1–20.
31.
go back to reference Chen, Y.-S., Ting, Y.-J., Ke, C.-H., Chilamkruti, N., & Park, J. H. (2013). Efficient localization scheme with ring overlapping by utilizing mobile anchors in wireless sensor networks. ACM Transactions on Embedded Computing Systems (TECS), 12(2), 1–18.CrossRef Chen, Y.-S., Ting, Y.-J., Ke, C.-H., Chilamkruti, N., & Park, J. H. (2013). Efficient localization scheme with ring overlapping by utilizing mobile anchors in wireless sensor networks. ACM Transactions on Embedded Computing Systems (TECS), 12(2), 1–18.CrossRef
32.
go back to reference Chaurasiya, V. K., Jain, N., & Nandi, G. C. (2014). A novel distance estimation approach for 3d localization in wireless sensor network using multidimensional scaling. Information Fusion, 15, 5–18.CrossRef Chaurasiya, V. K., Jain, N., & Nandi, G. C. (2014). A novel distance estimation approach for 3d localization in wireless sensor network using multidimensional scaling. Information Fusion, 15, 5–18.CrossRef
33.
go back to reference Zhang, X., Wang, T., & Fang, J. (2014). A node localization approach using particle swarm optimization in wireless sensor networks. In International Conference on Identification, Information and Knowledge in the Internet of Things (IIKI) (pp. 84–87). Zhang, X., Wang, T., & Fang, J. (2014). A node localization approach using particle swarm optimization in wireless sensor networks. In International Conference on Identification, Information and Knowledge in the Internet of Things (IIKI) (pp. 84–87).
34.
go back to reference Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017). Salp swarm algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering Software, 114, 163–191.CrossRef Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017). Salp swarm algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering Software, 114, 163–191.CrossRef
35.
go back to reference Chen, T., Wang, M., Huang, X., & Xie, Q. (2018). Tdoa-aoa localization based on improved salp swarm algorithm. In 2018 14th IEEE International Conference on Signal Processing (ICSP) (pp. 108–112). IEEE. Chen, T., Wang, M., Huang, X., & Xie, Q. (2018). Tdoa-aoa localization based on improved salp swarm algorithm. In 2018 14th IEEE International Conference on Signal Processing (ICSP) (pp. 108–112). IEEE.
36.
go back to reference Qais, M. H., Hasanien, H. M., & Alghuwainem, S. (2019). Enhanced salp swarm algorithm: Application to variable speed wind generators. Engineering Applications of Artificial Intelligence, 80, 82–96.CrossRef Qais, M. H., Hasanien, H. M., & Alghuwainem, S. (2019). Enhanced salp swarm algorithm: Application to variable speed wind generators. Engineering Applications of Artificial Intelligence, 80, 82–96.CrossRef
37.
go back to reference Li, S., Yu, Y., Sugiyama, D., Li, Q. & Gao, S. (2018). A hybrid salp swarm algorithm with gravitational search mechanism. In 2018 5th IEEE International Conference on Cloud Computing and Intelligence Systems (CCIS) (pp. 257–261). IEEE. Li, S., Yu, Y., Sugiyama, D., Li, Q. & Gao, S. (2018). A hybrid salp swarm algorithm with gravitational search mechanism. In 2018 5th IEEE International Conference on Cloud Computing and Intelligence Systems (CCIS) (pp. 257–261). IEEE.
38.
go back to reference Salgotra, R., Singh, U., Singh, S., Singh, G., & Mittal, N. (2021). Self-adaptive salp swarm algorithm for engineering optimization problems. Applied Mathematical Modelling, 89(1), 188–207.MathSciNetCrossRef Salgotra, R., Singh, U., Singh, S., Singh, G., & Mittal, N. (2021). Self-adaptive salp swarm algorithm for engineering optimization problems. Applied Mathematical Modelling, 89(1), 188–207.MathSciNetCrossRef
39.
go back to reference Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61.CrossRef Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61.CrossRef
40.
go back to reference Yang, X.-S., & Deb, S. (2010). Engineering optimisation by cuckoo search. International Journal of Mathematical Modelling and Numerical Optimisation, 1(4), 330–343.CrossRef Yang, X.-S., & Deb, S. (2010). Engineering optimisation by cuckoo search. International Journal of Mathematical Modelling and Numerical Optimisation, 1(4), 330–343.CrossRef
Metadata
Title
Comparison of range-based versus range-free WSNs localization using adaptive SSA algorithm
Authors
Prabhjot Singh
Nitin Mittal
Rohit Salgotra
Publication date
12-03-2022
Publisher
Springer US
Published in
Wireless Networks / Issue 4/2022
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-022-02908-y

Other articles of this Issue 4/2022

Wireless Networks 4/2022 Go to the issue