Skip to main content
Top
Published in: Pattern Recognition and Image Analysis 4/2020

01-10-2020 | APPLIED PROBLEMS

Wrapper Filter Approach for Accelerometer-Based Human Activity Recognition

Authors: Laith Al-Frady, Ali Al-Taei

Published in: Pattern Recognition and Image Analysis | Issue 4/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

With the widespread use of mobile devices all over the world, a new interesting and challenging research area known as Activity Recognition (AR) with many application domains is evolved. Basically, activity recognition aims to identify certain physical activities such as walking, jogging, sitting, standing, etc., performed daily by humans. In this paper, we investigated the effectiveness of wrapper-based feature selection approach for accelerometer-based human activity recognition. Our approach utilizes Sequential Forward Selection (SFS) technique based on three machine learning algorithms: Random Forest (RF), K-Nearest Neighbor (K-NN), and Gradient-Boosted Tree (GBT). A standard and publicly available dataset called WISDM (Wireless Sensor Data Mining), which contains accelerometer-based time series data collected from thirty-six volunteers, was used for performance evaluation of the proposed model. The experimental results showed that our GBT-based recognition model outperforms previously suggested solutions and establishing state-of-the-art performance for this dataset.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference D. Micucci, M. Mobilio, and P. Napoletano, “Unimib shar: A dataset for human activity recognition using acceleration data from smartphones,” Appl. Sci. 7, 1101 (2017).CrossRef D. Micucci, M. Mobilio, and P. Napoletano, “Unimib shar: A dataset for human activity recognition using acceleration data from smartphones,” Appl. Sci. 7, 1101 (2017).CrossRef
2.
go back to reference A. Bayat, M. Pomplun, and D. A. Tran, “A study on human activity recognition using accelerometer data from smartphones,” Procedia Comput. Sci. 34, 450–457 (2014).CrossRef A. Bayat, M. Pomplun, and D. A. Tran, “A study on human activity recognition using accelerometer data from smartphones,” Procedia Comput. Sci. 34, 450–457 (2014).CrossRef
3.
go back to reference Y. Tian, X. Wang, Y. Geng, Z. Liuand, and L. Chen, “Inertial sensor-based human activity recognition via ensemble extreme learning machines optimized by quantum-behaved particle swarm,” J. Intell. Fuzzy Syst. 38, 1443–1453 (2020).CrossRef Y. Tian, X. Wang, Y. Geng, Z. Liuand, and L. Chen, “Inertial sensor-based human activity recognition via ensemble extreme learning machines optimized by quantum-behaved particle swarm,” J. Intell. Fuzzy Syst. 38, 1443–1453 (2020).CrossRef
4.
go back to reference D. S. Sisodia and A. K. Yogi, “Performance evaluation of ensemble learners on smartphone sensor generated human activity data set,” in Data, Engineering, and Applications (Springer, 2019), pp. 277–284. D. S. Sisodia and A. K. Yogi, “Performance evaluation of ensemble learners on smartphone sensor generated human activity data set,” in Data, Engineering, and Applications (Springer, 2019), pp. 277–284.
5.
go back to reference P. Gupta and T. Dallas, “Feature selection and activity recognition system using a single triaxial accelerometer,” IEEE Trans. Biomed. Eng. 61, 1780–1786 (2014).CrossRef P. Gupta and T. Dallas, “Feature selection and activity recognition system using a single triaxial accelerometer,” IEEE Trans. Biomed. Eng. 61, 1780–1786 (2014).CrossRef
6.
go back to reference G. Song, S. Wang, Q. Huang, and Q. Tian, “Harmonized multimodal learning with Gaussian process latent variable models,” IEEE Trans. Pattern Analysis Mach. Intell. (2019). G. Song, S. Wang, Q. Huang, and Q. Tian, “Harmonized multimodal learning with Gaussian process latent variable models,” IEEE Trans. Pattern Analysis Mach. Intell. (2019).
7.
go back to reference G. Song, S. Wang, Q. Huang, and Q. Tian, “Multimodal similarity Gaussian process latent variable model,” IEEE Trans. Image Process. 26, 4168–4181 (2017).MathSciNetCrossRef G. Song, S. Wang, Q. Huang, and Q. Tian, “Multimodal similarity Gaussian process latent variable model,” IEEE Trans. Image Process. 26, 4168–4181 (2017).MathSciNetCrossRef
8.
go back to reference N. Zerrouki, F. Harrou, Y. Sun, and A. Houacine, “Vision-based human action classification using adaptive boosting algorithm,” IEEE Sensors J. 18, 5115–5121 (2018).CrossRef N. Zerrouki, F. Harrou, Y. Sun, and A. Houacine, “Vision-based human action classification using adaptive boosting algorithm,” IEEE Sensors J. 18, 5115–5121 (2018).CrossRef
9.
go back to reference I. Jegham, A. B. Khalifa, I. Alouani, and M. A. Mahjoub, “Vision-based human action recognition: An overview and real world challenges,” Forensic Sci. Int.: Digital Invest. 32, 200901 (2020). I. Jegham, A. B. Khalifa, I. Alouani, and M. A. Mahjoub, “Vision-based human action recognition: An overview and real world challenges,” Forensic Sci. Int.: Digital Invest. 32, 200901 (2020).
10.
go back to reference F. Feldwieser, M. Marchollek, M. Meis, M. Gietzelt, and E. Steinhagen-Thiessen, “Acceptance of seniors towards automatic in home fall detection devices,” J. Assistive Technol. 10, 178–186 (2016).CrossRef F. Feldwieser, M. Marchollek, M. Meis, M. Gietzelt, and E. Steinhagen-Thiessen, “Acceptance of seniors towards automatic in home fall detection devices,” J. Assistive Technol. 10, 178–186 (2016).CrossRef
11.
go back to reference E. Jeffs, S. Vollam, J. D. Young, L. Horsington, B. Lynch, and P. J. Watkinson, “Wearable monitors for patients following discharge from an intensive care unit: Practical lessons learnt from an observational study,” J. Adv. Nurs. 72, 1851–1862 (2016).CrossRef E. Jeffs, S. Vollam, J. D. Young, L. Horsington, B. Lynch, and P. J. Watkinson, “Wearable monitors for patients following discharge from an intensive care unit: Practical lessons learnt from an observational study,” J. Adv. Nurs. 72, 1851–1862 (2016).CrossRef
12.
go back to reference D. Pal, S. Funilkul, N. Charoenkitkarn, and P. Kanthamanon, “Internet-of-things and smart homes for elderly healthcare: An end user perspective,” IEEE Access 6, 10483–10496 (2018).CrossRef D. Pal, S. Funilkul, N. Charoenkitkarn, and P. Kanthamanon, “Internet-of-things and smart homes for elderly healthcare: An end user perspective,” IEEE Access 6, 10483–10496 (2018).CrossRef
13.
go back to reference S. Yusif, J. Soar, and A. Hafeez-Baig, “Older people, assistive technologies, and the barriers to adoption: A systematic review,” Int. J. Med. Inf. 94, 112–116 (2016).CrossRef S. Yusif, J. Soar, and A. Hafeez-Baig, “Older people, assistive technologies, and the barriers to adoption: A systematic review,” Int. J. Med. Inf. 94, 112–116 (2016).CrossRef
14.
go back to reference J.-L. Reyes-Ortiz, L. Oneto, A. Samà, X. Parra, and D. Anguita, “Transition-aware human activity recognition using smartphones,” Neurocomputing 171, 754–767 (2016).CrossRef J.-L. Reyes-Ortiz, L. Oneto, A. Samà, X. Parra, and D. Anguita, “Transition-aware human activity recognition using smartphones,” Neurocomputing 171, 754–767 (2016).CrossRef
15.
go back to reference D. Riboni and M. Murtas, “Sensor-based activity recognition: One picture is worth a thousand words,” Future Gener. Comput. Syst. 101, 709–722 (2019).CrossRef D. Riboni and M. Murtas, “Sensor-based activity recognition: One picture is worth a thousand words,” Future Gener. Comput. Syst. 101, 709–722 (2019).CrossRef
16.
go back to reference R. San-Segundo, J. Lorenzo-Trueba, B. Martínez-González, and J. M. Pardo, “Segmenting human activities based on HMMs using smartphone inertial sensors,” Pervasive Mobile Comput. 30, 84–96 (2016).CrossRef R. San-Segundo, J. Lorenzo-Trueba, B. Martínez-González, and J. M. Pardo, “Segmenting human activities based on HMMs using smartphone inertial sensors,” Pervasive Mobile Comput. 30, 84–96 (2016).CrossRef
17.
go back to reference Y. Kwon, K. Kang, and C. Bae, “Unsupervised learning for human activity recognition using smartphone sensors,” Expert Syst. Appl. 41, 6067–6074 (2014).CrossRef Y. Kwon, K. Kang, and C. Bae, “Unsupervised learning for human activity recognition using smartphone sensors,” Expert Syst. Appl. 41, 6067–6074 (2014).CrossRef
18.
go back to reference R. Luque, E. Casilari, M.-J. Morón, and G. Redondo, “Comparison and characterization of Android-based fall detection systems,” Sensors 14, 18543–18574 (2014).CrossRef R. Luque, E. Casilari, M.-J. Morón, and G. Redondo, “Comparison and characterization of Android-based fall detection systems,” Sensors 14, 18543–18574 (2014).CrossRef
19.
go back to reference T. Vilarinho, B. Farshchian, D. G. Bajer, O. H. Dahl, I. Egge, S. S. Hegdal, et al., “A combined smartphone and smartwatch fall detection system,” in 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic, and Secure Computing; Pervasive Intelligence and Computing (2015), pp. 1443–1448. T. Vilarinho, B. Farshchian, D. G. Bajer, O. H. Dahl, I. Egge, S. S. Hegdal, et al., “A combined smartphone and smartwatch fall detection system,” in 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic, and Secure Computing; Pervasive Intelligence and Computing (2015), pp. 1443–1448.
20.
go back to reference Q. Mourcou, A. Fleury, C. Franco, F. Klopcic, and N. Vuillerme, “Performance evaluation of smartphone inertial sensors measurement for range of motion,” Sensors 15, 23168–23187 (2015).CrossRef Q. Mourcou, A. Fleury, C. Franco, F. Klopcic, and N. Vuillerme, “Performance evaluation of smartphone inertial sensors measurement for range of motion,” Sensors 15, 23168–23187 (2015).CrossRef
21.
go back to reference C. Catal, S. Tufekci, E. Pirmit, and G. Kocabag, “On the use of ensemble of classifiers for accelerometer-based activity recognition,” Appl. Soft Comput. 37, 1018–1022 (2015).CrossRef C. Catal, S. Tufekci, E. Pirmit, and G. Kocabag, “On the use of ensemble of classifiers for accelerometer-based activity recognition,” Appl. Soft Comput. 37, 1018–1022 (2015).CrossRef
22.
go back to reference A. Ignatov, “Real-time human activity recognition from accelerometer data using Convolutional Neural Networks,” Appl. Soft Comput. 62, 915–922 (2018).CrossRef A. Ignatov, “Real-time human activity recognition from accelerometer data using Convolutional Neural Networks,” Appl. Soft Comput. 62, 915–922 (2018).CrossRef
23.
go back to reference A. R. Raut and S. Khandait, “Review on data mining techniques in wireless sensor networks,” in 2015 2nd International Conference on Electronics and Communication Systems (ICECS) (2015), pp. 390–394. A. R. Raut and S. Khandait, “Review on data mining techniques in wireless sensor networks,” in 2015 2nd International Conference on Electronics and Communication Systems (ICECS) (2015), pp. 390–394.
24.
go back to reference C. C. Poon, B. P. Lo, M. R. Yuce, A. Alomainy, and Y. Hao, “Body sensor networks: In the era of Big Data and beyond,” IEEE Rev. Biomed. Eng. 8, 4–16 (2015).CrossRef C. C. Poon, B. P. Lo, M. R. Yuce, A. Alomainy, and Y. Hao, “Body sensor networks: In the era of Big Data and beyond,” IEEE Rev. Biomed. Eng. 8, 4–16 (2015).CrossRef
25.
go back to reference J. R. Kwapisz, G. M. Weiss, and S. A. Moore, “Activity recognition using cell phone accelerometers,” ACM SigKDD Explor. Newsl. 12, 74–82 (2011).CrossRef J. R. Kwapisz, G. M. Weiss, and S. A. Moore, “Activity recognition using cell phone accelerometers,” ACM SigKDD Explor. Newsl. 12, 74–82 (2011).CrossRef
26.
go back to reference K. Kuspa and T. Pratkanis, Classification of Mobile Device Accelerometer Data for Unique Activity Identification (Stanford Center for Professional Development, Palo Alto, 2013). K. Kuspa and T. Pratkanis, Classification of Mobile Device Accelerometer Data for Unique Activity Identification (Stanford Center for Professional Development, Palo Alto, 2013).
27.
go back to reference T. Daghistani and R. Alshammari, “Improving accelerometer-based activity recognition by using ensemble of classifiers,” Int. J. Adv. Comput. Sci. Appl. 7, 128–133 (2016). T. Daghistani and R. Alshammari, “Improving accelerometer-based activity recognition by using ensemble of classifiers,” Int. J. Adv. Comput. Sci. Appl. 7, 128–133 (2016).
28.
go back to reference A. Al-Taei, “A smartphone-based model for human activity recognition,” Ibn Al-Haitham J. Pure Appl. Sci. 30, 243–250 (2017). A. Al-Taei, “A smartphone-based model for human activity recognition,” Ibn Al-Haitham J. Pure Appl. Sci. 30, 243–250 (2017).
29.
go back to reference M. S. M. Azmi and M. N. Sulaiman, “Accelerator-based human activity recognition using voting technique with NBTree and MLP classifiers,” Int. J. Adv. Sci. Eng. Inf. Technol. 7, 146–152 (2017).CrossRef M. S. M. Azmi and M. N. Sulaiman, “Accelerator-based human activity recognition using voting technique with NBTree and MLP classifiers,” Int. J. Adv. Sci. Eng. Inf. Technol. 7, 146–152 (2017).CrossRef
30.
go back to reference B. Kolosnjaji and C. Eckert, “Neural network-based user-independent physical activity recognition for mobile devices,” in International Conference on Intelligent Data Engineering and Automated Learning (2015), pp. 378–386. B. Kolosnjaji and C. Eckert, “Neural network-based user-independent physical activity recognition for mobile devices,” in International Conference on Intelligent Data Engineering and Automated Learning (2015), pp. 378–386.
31.
go back to reference M. A. K. Quaid and A. Jalal, “Wearable sensors based human behavioral pattern recognition using statistical features and reweighted genetic algorithm,” Multimedia Tools Appl. 79, 6061–6083 (2020).CrossRef M. A. K. Quaid and A. Jalal, “Wearable sensors based human behavioral pattern recognition using statistical features and reweighted genetic algorithm,” Multimedia Tools Appl. 79, 6061–6083 (2020).CrossRef
32.
go back to reference U. M. Khaire and R. Dhanalakshmi, “Stability of feature selection algorithm: A review,” J. King Saud Univ. Comput. Inf. Sci. (2019). U. M. Khaire and R. Dhanalakshmi, “Stability of feature selection algorithm: A review,” J. King Saud Univ. Comput. Inf. Sci. (2019).
33.
go back to reference F. Ros and S. Guillaume, “From supervised instance and feature selection algorithms to dual selection: A review,” in Sampling Techniques for Supervised or Unsupervised Tasks (Springer, 2020), pp. 83–128.CrossRef F. Ros and S. Guillaume, “From supervised instance and feature selection algorithms to dual selection: A review,” in Sampling Techniques for Supervised or Unsupervised Tasks (Springer, 2020), pp. 83–128.CrossRef
34.
go back to reference N. El Aboudi and L. Benhlima, “Review on wrapper feature selection approaches,” in 2016 International Conference on Engineering and MIS (ICEMIS) (2016), pp. 1–5. N. El Aboudi and L. Benhlima, “Review on wrapper feature selection approaches,” in 2016 International Conference on Engineering and MIS (ICEMIS) (2016), pp. 1–5.
35.
go back to reference V. Bolón-Canedo and A. Alonso-Betanzos, “Ensembles for feature selection: A review and future trends,” Inf. Fusion 52, 1–12 (2019).CrossRef V. Bolón-Canedo and A. Alonso-Betanzos, “Ensembles for feature selection: A review and future trends,” Inf. Fusion 52, 1–12 (2019).CrossRef
36.
go back to reference R. J. Urbanowicz, M. Meeker, W. La Cava, R. S. Olson, and J. H. Moore, “Relief-based feature selection: Introduction and review,” J. Biomed. Inf. 85, 189–203 (2018).CrossRef R. J. Urbanowicz, M. Meeker, W. La Cava, R. S. Olson, and J. H. Moore, “Relief-based feature selection: Introduction and review,” J. Biomed. Inf. 85, 189–203 (2018).CrossRef
37.
go back to reference J. Tang, S. Alelyani, and H. Liu, “Feature selection for classification: A review,” in Data Classification: Algorithms and Applications (CRC Press, 2014), pp. 37–64. J. Tang, S. Alelyani, and H. Liu, “Feature selection for classification: A review,” in Data Classification: Algorithms and Applications (CRC Press, 2014), pp. 37–64.
Metadata
Title
Wrapper Filter Approach for Accelerometer-Based Human Activity Recognition
Authors
Laith Al-Frady
Ali Al-Taei
Publication date
01-10-2020
Publisher
Pleiades Publishing
Published in
Pattern Recognition and Image Analysis / Issue 4/2020
Print ISSN: 1054-6618
Electronic ISSN: 1555-6212
DOI
https://doi.org/10.1134/S1054661820040033

Other articles of this Issue 4/2020

Pattern Recognition and Image Analysis 4/2020 Go to the issue

MATHEMATICAL THEORY OF IMAGES AND SIGNALS REPRESENTING, PROCESSING, ANALYSIS, RECOGNITION, AND UNDERSTANDING

Tight Semi-nonnegative Matrix Factorization

MATHEMATICAL THEORY OF IMAGES AND SIGNALS REPRESENTING, PROCESSING, ANALYSIS, RECOGNITION, AND UNDERSTANDING

Robust and Fast Hypothesis Verification in 3D Object Recognition

MATHEMATICAL THEORY OF IMAGES AND SIGNALS REPRESENTING, PROCESSING, ANALYSIS, RECOGNITION, AND UNDERSTANDING

Image Classification by Mixed Finite Element Method and Orthogonal Legendre Moments

PATTERN RECOGNITION AND IMAGE ANALYSIS AUTOMATED SYSTEMS, HARDWARE AND SOFTWARE

FTViewer Application for Analysis and Visualization of Functional Tomograms of Complex Systems

MATHEMATICAL THEORY OF IMAGES AND SIGNALS REPRESENTING, PROCESSING, ANALYSIS, RECOGNITION, AND UNDERSTANDING

Local Tetra-Directional Pattern–A New Texture Descriptor for Content-Based Image Retrieval

Premium Partner