Skip to main content
Top
Published in: Rare Metals 5/2021

07-01-2021 | Original Article

Zr–Ti–Al–Fe–Cu bulk metallic glasses for biomedical device application

Authors: Kai-Ming Han, Hui Jiang, Ying-Min Wang, Jian-Bing Qiang

Published in: Rare Metals | Issue 5/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A series of Zr63.5−xTixAl9Fe4.5Cu23 (x = 0, 1.5, 3.0, 4.5, 6.0; at%) bulk metallic glasses (BMGs) were designed and produced by means of copper mold suction casting. The effect of Ti addition on the glass-forming ability (GFA) and mechanical properties of Zr63.5−xTixAl9Fe4.5Cu23 alloys was first investigated. The glass-forming ability and room-temperature plasticity of BMGs increase first and then reduced with Ti content increasing. At x = 3.0, the Zr60.5Ti3Al9Fe4.5Cu23 BMG showed a critical glass formation diameter of 10 mm and excellent room-temperature compressive plasticity (ɛP = 4.7%) by using the samples with dimensions of Φ3 mm × 6 mm. Meanwhile, the BMG also showed better biocompatibility and biocorrosion resistance compared with Ti6Al4V alloy. Under the imitated human body condition, the corrosion current density (Icorr) of BMG was 6.61 × 10–10 A·cm−2, which is two orders of magnitude lower than that of conventional Ti6Al4V alloy. Moreover, the CCD-986sk cell viabilities are, respectively, 65.4% and 46.6% on the BMG and Ti6Al4V alloy, indicating better biocompatibility of BMG. The Zr60.5Ti3Al9Fe4.5Cu23 BMG with larger GFA, excellent mechanical properties, biocompatibility and biocorrosion resistance is considered as a potential material in biomedical device fields.

Graphic abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci. 2009;54(3):397. CrossRef Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci. 2009;54(3):397. CrossRef
[2]
go back to reference Zhang LC, Chen LY. A review on biomedical titanium alloys: recent progress and prospect. Adv Eng Mater. 2019;21(4):1801215. CrossRef Zhang LC, Chen LY. A review on biomedical titanium alloys: recent progress and prospect. Adv Eng Mater. 2019;21(4):1801215. CrossRef
[3]
go back to reference Costa BC, Tokuhara CK, Rocha LA, Oliveira RC, Lisboa-Filho PN, Pessoa JC. Vanadium ionic species from degradation of Ti–6Al–4V metallic implants: in vitro cytotoxicity and speciation evaluation. Mater Sci Eng C Mater Biol Appl. 2019;96:730. CrossRef Costa BC, Tokuhara CK, Rocha LA, Oliveira RC, Lisboa-Filho PN, Pessoa JC. Vanadium ionic species from degradation of Ti–6Al–4V metallic implants: in vitro cytotoxicity and speciation evaluation. Mater Sci Eng C Mater Biol Appl. 2019;96:730. CrossRef
[4]
go back to reference Long M, Rack H. Titanium alloys in total joint replacement—a materials science perspective. Biomaterials. 1998;19(18):1621. CrossRef Long M, Rack H. Titanium alloys in total joint replacement—a materials science perspective. Biomaterials. 1998;19(18):1621. CrossRef
[5]
go back to reference Yan HM, Liu Y, Pang SJ, Zhang T. Glass formation and properties of Ti-based bulk metallic glasses as potential biomaterials with Nb additions. Rare Met. 2018;37(10):831. CrossRef Yan HM, Liu Y, Pang SJ, Zhang T. Glass formation and properties of Ti-based bulk metallic glasses as potential biomaterials with Nb additions. Rare Met. 2018;37(10):831. CrossRef
[6]
go back to reference Liu Y, Wang HJ, Pang SJ, Zhang T. Ti–Zr–Cu–Fe–Sn–Si–Ag–Ta bulk metallic glasses with good corrosion resistance as potential biomaterials. Rare Met. 2020;39(6):688. CrossRef Liu Y, Wang HJ, Pang SJ, Zhang T. Ti–Zr–Cu–Fe–Sn–Si–Ag–Ta bulk metallic glasses with good corrosion resistance as potential biomaterials. Rare Met. 2020;39(6):688. CrossRef
[7]
go back to reference Han KM, Qiang JB, Wang YM, Zhao BB, Häussler P. Zr55.8Al19.4(Co1−xCux)24.8 (x = 0–0.8 at%) bulk metallic glasses for surgical devices applications. J Iron Steel Res Int. 2018;25(6):644. CrossRef Han KM, Qiang JB, Wang YM, Zhao BB, Häussler P. Zr55.8Al19.4(Co1−xCux)24.8 (x = 0–0.8 at%) bulk metallic glasses for surgical devices applications. J Iron Steel Res Int. 2018;25(6):644. CrossRef
[8]
go back to reference Han KM, Qiang JB, Wang YM, Häussler P. Zr–Al–Co–Cu bulk metallic glasses for biomedical devices applications. J Alloy Compd. 2017;729:144. CrossRef Han KM, Qiang JB, Wang YM, Häussler P. Zr–Al–Co–Cu bulk metallic glasses for biomedical devices applications. J Alloy Compd. 2017;729:144. CrossRef
[9]
go back to reference Li HF, Zheng YF. Recent advances in bulk metallic glasses for biomedical applications. Acta Biomater. 2016;36:1. CrossRef Li HF, Zheng YF. Recent advances in bulk metallic glasses for biomedical applications. Acta Biomater. 2016;36:1. CrossRef
[10]
go back to reference Tsai PH, Lin YZ, Li JB, Jian SR, Jang JSC, Li C, Chu JP, Huang JC. Sharpness improvement of surgical blade by means of ZrCuAlAgSi metallic glass and metallic glass thin film coating. Intermetallics. 2012;31:127. CrossRef Tsai PH, Lin YZ, Li JB, Jian SR, Jang JSC, Li C, Chu JP, Huang JC. Sharpness improvement of surgical blade by means of ZrCuAlAgSi metallic glass and metallic glass thin film coating. Intermetallics. 2012;31:127. CrossRef
[11]
go back to reference Peker A, Johnson WL. A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl Phys Lett. 1993;63(17):2342. CrossRef Peker A, Johnson WL. A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl Phys Lett. 1993;63(17):2342. CrossRef
[12]
go back to reference Inoue A, Zhang T. Fabrication of bulk glassy Zr55Al10Ni5Cu30 alloy of 30 mm in diameter by a suction casting method. Mater Trans JIM. 1996;37(2):185. CrossRef Inoue A, Zhang T. Fabrication of bulk glassy Zr55Al10Ni5Cu30 alloy of 30 mm in diameter by a suction casting method. Mater Trans JIM. 1996;37(2):185. CrossRef
[13]
go back to reference Jin K, Löffler JF. Bulk metallic glass formation in Zr–Cu–Fe–Al alloys. Appl Phys Lett. 2005;86(24):241909. CrossRef Jin K, Löffler JF. Bulk metallic glass formation in Zr–Cu–Fe–Al alloys. Appl Phys Lett. 2005;86(24):241909. CrossRef
[14]
go back to reference Zhang QS, Zhang W, Inoue A. Preparation of Cu36Zr48Ag8Al8 bulk metallic glass with a diameter of 25 mm by copper mold casting. Mater Trans. 2007;48(3):629. CrossRef Zhang QS, Zhang W, Inoue A. Preparation of Cu36Zr48Ag8Al8 bulk metallic glass with a diameter of 25 mm by copper mold casting. Mater Trans. 2007;48(3):629. CrossRef
[15]
go back to reference Wada T, Qin FX, Wang XM, Yoshimura M, Inoue A, Sugiyama N, Ito R, Matsushita N. Formation and bioactivation of Zr–Al–Co bulk metallic glasses. J Mater Res. 2011;24(09):2941. CrossRef Wada T, Qin FX, Wang XM, Yoshimura M, Inoue A, Sugiyama N, Ito R, Matsushita N. Formation and bioactivation of Zr–Al–Co bulk metallic glasses. J Mater Res. 2011;24(09):2941. CrossRef
[16]
go back to reference Inoue A, Takeuchi A. Recent development and application products of bulk glassy alloys. Acta Mater. 2011;59(6):2243. CrossRef Inoue A, Takeuchi A. Recent development and application products of bulk glassy alloys. Acta Mater. 2011;59(6):2243. CrossRef
[17]
go back to reference Zhang QS, Zhang W, Inoue A. Ni-free Zr–Fe–Al–Cu bulk metallic glasses with high glass-forming ability. Scripta Mater. 2009;61(3):241. CrossRef Zhang QS, Zhang W, Inoue A. Ni-free Zr–Fe–Al–Cu bulk metallic glasses with high glass-forming ability. Scripta Mater. 2009;61(3):241. CrossRef
[18]
go back to reference Monfared A, Vali H, Faghihi S. Biocorrosion and biocompatibility of Zr–Cu–Fe–Al bulk metallic glasses. Surf Interface Anal. 2013;45(11–12):1714. CrossRef Monfared A, Vali H, Faghihi S. Biocorrosion and biocompatibility of Zr–Cu–Fe–Al bulk metallic glasses. Surf Interface Anal. 2013;45(11–12):1714. CrossRef
[19]
go back to reference Yu DC, Shi XG, Fu HM, Geng Y, Zhu ZW, Qi Y, Zhang HF. Glass formation in Zr–Al–Fe–Cu system. Mater Lett. 2015;157:299. CrossRef Yu DC, Shi XG, Fu HM, Geng Y, Zhu ZW, Qi Y, Zhang HF. Glass formation in Zr–Al–Fe–Cu system. Mater Lett. 2015;157:299. CrossRef
[20]
go back to reference Wang SS, Wang YL, Wu YD, Wang T, Hui XD. High plastic Zr–Cu–Fe–Al–Nb bulk metallic glasses for biomedical applications. Int J Miner Metall Mater. 2015;22(6):648. CrossRef Wang SS, Wang YL, Wu YD, Wang T, Hui XD. High plastic Zr–Cu–Fe–Al–Nb bulk metallic glasses for biomedical applications. Int J Miner Metall Mater. 2015;22(6):648. CrossRef
[21]
go back to reference Han KM, Wang YM, Qiang JB, Zhang HB, Qin SX, Jiang H, Zhang S, Dong C. Dual-cluster formulas for eutectic-type bulk metallic glasses and experimental verification in Zr–Al–Fe–Cu system. Mater Des. 2019;183:108142. CrossRef Han KM, Wang YM, Qiang JB, Zhang HB, Qin SX, Jiang H, Zhang S, Dong C. Dual-cluster formulas for eutectic-type bulk metallic glasses and experimental verification in Zr–Al–Fe–Cu system. Mater Des. 2019;183:108142. CrossRef
[22]
go back to reference Shi HQ, Zhao WB, Wei XW, Ding Y, Shen XD, Liu WJ. Effect of Ti addition on mechanical properties and corrosion resistance of Ni-free Zr-based bulk metallic glasses for potential biomedical applications. J Alloy Compd. 2020;815:152636. CrossRef Shi HQ, Zhao WB, Wei XW, Ding Y, Shen XD, Liu WJ. Effect of Ti addition on mechanical properties and corrosion resistance of Ni-free Zr-based bulk metallic glasses for potential biomedical applications. J Alloy Compd. 2020;815:152636. CrossRef
[23]
go back to reference Han KM, Wang YM, Qiang JB, Jiang H, Gu LW. Low-cost Zr-based bulk metallic glasses for biomedical devices applications. J Non-Cryst Solids. 2019;520:119442. CrossRef Han KM, Wang YM, Qiang JB, Jiang H, Gu LW. Low-cost Zr-based bulk metallic glasses for biomedical devices applications. J Non-Cryst Solids. 2019;520:119442. CrossRef
[24]
go back to reference Pajor K, Kozieł T, Cios G, Błyskun P, Bała P, Zielińska-Lipiec A. Glass forming ability of the Zr50Cu40Al10 alloy with two oxygen levels. J Non-Cryst Solids. 2018;496:42. CrossRef Pajor K, Kozieł T, Cios G, Błyskun P, Bała P, Zielińska-Lipiec A. Glass forming ability of the Zr50Cu40Al10 alloy with two oxygen levels. J Non-Cryst Solids. 2018;496:42. CrossRef
[26]
go back to reference Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 2000;48(1):279. CrossRef Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 2000;48(1):279. CrossRef
[27]
go back to reference Turnbull D. Under what conditions can a glass be formed? Contemp Phys. 1969;10(5):473. CrossRef Turnbull D. Under what conditions can a glass be formed? Contemp Phys. 1969;10(5):473. CrossRef
[28]
go back to reference Zhang Y, Liu JP, Chen SY, Xie X, Liaw PK, Dahmen KA, Qiao JW, Wang YL. Serration and noise behaviors in materials. Prog Mater Sci. 2017;90:358. CrossRef Zhang Y, Liu JP, Chen SY, Xie X, Liaw PK, Dahmen KA, Qiao JW, Wang YL. Serration and noise behaviors in materials. Prog Mater Sci. 2017;90:358. CrossRef
[29]
go back to reference Trexler MM, Thadhani NN. Mechanical properties of bulk metallic glasses. Prog Mater Sci. 2010;55(8):759. CrossRef Trexler MM, Thadhani NN. Mechanical properties of bulk metallic glasses. Prog Mater Sci. 2010;55(8):759. CrossRef
[30]
go back to reference Deng XD, Chen SS, Hu Q, Xie SH, Zou JZ, Sial MAZG, Zeng XR. Excellent room-temperature mechanical properties in the high glass- forming Zr–Cu–Ni–Al–Nb alloy system. Mater Res Express. 2019;6(8):086551. CrossRef Deng XD, Chen SS, Hu Q, Xie SH, Zou JZ, Sial MAZG, Zeng XR. Excellent room-temperature mechanical properties in the high glass- forming Zr–Cu–Ni–Al–Nb alloy system. Mater Res Express. 2019;6(8):086551. CrossRef
[31]
go back to reference Cao GH, Liu K, Liu GP, Zong HT, Bala H, Zhang BQ. Improving the glass-forming ability and the plasticity of Zr–Cu–Al bulk metallic glass by addition of Nb. J Non-Cryst Solids. 2019;513:105. CrossRef Cao GH, Liu K, Liu GP, Zong HT, Bala H, Zhang BQ. Improving the glass-forming ability and the plasticity of Zr–Cu–Al bulk metallic glass by addition of Nb. J Non-Cryst Solids. 2019;513:105. CrossRef
[32]
go back to reference Sun BA, Tan J, Pauly S, Kühn U, Eckert J. Stable fracture of a malleable Zr-based bulk metallic glass. J Appl Phys. 2012;112(10):103533. CrossRef Sun BA, Tan J, Pauly S, Kühn U, Eckert J. Stable fracture of a malleable Zr-based bulk metallic glass. J Appl Phys. 2012;112(10):103533. CrossRef
[33]
go back to reference Qiao JC, Wang Q, Pelletier JM, Kato H, Casalini R, Crespo D, Pineda E, Yao Y, Yang Y. Structural heterogeneities and mechanical behavior of amorphous alloys. Prog Mater Sci. 2019;104:250. CrossRef Qiao JC, Wang Q, Pelletier JM, Kato H, Casalini R, Crespo D, Pineda E, Yao Y, Yang Y. Structural heterogeneities and mechanical behavior of amorphous alloys. Prog Mater Sci. 2019;104:250. CrossRef
[34]
go back to reference Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater Trans. 2005;46(12):2817. CrossRef Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater Trans. 2005;46(12):2817. CrossRef
[35]
go back to reference Wu YM, Zhang CZ, Qiu PY, Li ZC, Li HP, Wang CM. Effect of Ti substitution on the hardness and electrochemical property of laser clad Zr–Al–Co (Ti) amorphous-nanocrystalline coating. Mater Res Express. 2018;6(2):026506. CrossRef Wu YM, Zhang CZ, Qiu PY, Li ZC, Li HP, Wang CM. Effect of Ti substitution on the hardness and electrochemical property of laser clad Zr–Al–Co (Ti) amorphous-nanocrystalline coating. Mater Res Express. 2018;6(2):026506. CrossRef
[36]
go back to reference Zhang CZ, Qiu NN, Kong LL, Yang XD, Li HP. Thermodynamic and structural basis for electrochemical response of Cu–Zr based metallic glass. J Alloy Compd. 2015;645:487. CrossRef Zhang CZ, Qiu NN, Kong LL, Yang XD, Li HP. Thermodynamic and structural basis for electrochemical response of Cu–Zr based metallic glass. J Alloy Compd. 2015;645:487. CrossRef
Metadata
Title
Zr–Ti–Al–Fe–Cu bulk metallic glasses for biomedical device application
Authors
Kai-Ming Han
Hui Jiang
Ying-Min Wang
Jian-Bing Qiang
Publication date
07-01-2021
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 5/2021
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01644-6

Other articles of this Issue 5/2021

Rare Metals 5/2021 Go to the issue

Premium Partners