Skip to main content
Top
Published in: Rare Metals 5/2021

07-01-2021 | Original Article

Enhanced catalytic performance for selective oxidation of propene with O2 over bimetallic Au–Cu/SiO2 catalysts

Authors: Xin Guo, Xue-Quan Sun, Yun Guo, Yang-Long Guo, Yun-Song Wang, Li Wang, Wang-Cheng Zhan

Published in: Rare Metals | Issue 5/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Au–Cu bimetallic nanoparticles with uniform size, shape, and compositions were synthesized by wet chemistry method, and then the Au–Cu/SiO2 catalyst supported on SiO2 was prepared. Meanwhile, their catalytic activity for the selective oxidation of propene to acrolein using O2 as an oxidant was evaluated. The bimetallic catalyst shows a significantly enhanced catalytic performance comparing with Au and Cu monometallic catalysts. Characterization of the materials and kinetic study was conducted to explore the cooperating mechanism of Au and Cu for improving the catalytic activity of the bimetallic catalyst. Cu component can segregate to the alloy surface and the Au–Cu alloy transferred to Au–CuO core/shell structure after annealing during the preparation process. Based on the Mars–van Krevelen mechanism for the selective oxidation of propene over the prepared catalysts, the coexistence of CuO can promote the adsorption and activation of O2. Meanwhile, the electrons transfer from Au to Cu in the catalyst can facilitate the adsorptions of both oxygen on CuO sites and propene on Au sites. The combined effects of the above two aspects result in the high catalytic activity of the Au–Cu/SiO2 catalyst for selective oxidation of propene to acrolein, compared to the Au/SiO2 and CuO/SiO2 catalysts.

Graphical abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
[1]
go back to reference Gong YT, Li MM, Li HRL, Wang Y. Graphitic carbon nitride polymers: promising catalysts or catalyst supports for heterogeneous oxidation and hydrogenation. Green Chem. 2015;17(2):715. Gong YT, Li MM, Li HRL, Wang Y. Graphitic carbon nitride polymers: promising catalysts or catalyst supports for heterogeneous oxidation and hydrogenation. Green Chem. 2015;17(2):715.
[2]
go back to reference Zhang PF, Lu HF, Zhou Y, Zhang L, Wu Z, Yang SZ, Shi HL, Zhu QL, Chen YF, Dai S. Mesoporous MnCeOx solid solutions for low temperature and selective oxidation of hydrocarbons. Nat Commun. 2015;6:8446. Zhang PF, Lu HF, Zhou Y, Zhang L, Wu Z, Yang SZ, Shi HL, Zhu QL, Chen YF, Dai S. Mesoporous MnCeOx solid solutions for low temperature and selective oxidation of hydrocarbons. Nat Commun. 2015;6:8446.
[3]
go back to reference Zhang PF, Deng J, Mao JY, Li HR, Wang Y. Selective aerobic oxidation of alcohols by a mesoporous graphitic carbon nitride/N-hydroxyphthalimide system under visible-light illumination at room temperature. Chin J Catal. 2015;36(9):1580. Zhang PF, Deng J, Mao JY, Li HR, Wang Y. Selective aerobic oxidation of alcohols by a mesoporous graphitic carbon nitride/N-hydroxyphthalimide system under visible-light illumination at room temperature. Chin J Catal. 2015;36(9):1580.
[4]
go back to reference Zheng X, Guo YL, Guo Y, Zhang Q, Liu XH, Wang L, Zhan WC, Lu GZ. Epoxidation of propylene by molecular oxygen over unsupported AgCux bimetallic catalyst. Rare Met. 2015;34(7):477. Zheng X, Guo YL, Guo Y, Zhang Q, Liu XH, Wang L, Zhan WC, Lu GZ. Epoxidation of propylene by molecular oxygen over unsupported AgCux bimetallic catalyst. Rare Met. 2015;34(7):477.
[5]
go back to reference Zhu WM, Zhang QH, Wang Y. Cu(I)-catalyzed epoxidation of propylene by molecular oxygen. J Phys Chem C. 2008;112:7731. Zhu WM, Zhang QH, Wang Y. Cu(I)-catalyzed epoxidation of propylene by molecular oxygen. J Phys Chem C. 2008;112:7731.
[6]
go back to reference He J, Zhai QG, Zhang QH, Deng WP, Wang Y. Active site and reaction mechanism for the epoxidation of propylene by oxygen over CuOx/SiO2 catalysts with and without Cs+ modification. J Catal. 2013;299:53. He J, Zhai QG, Zhang QH, Deng WP, Wang Y. Active site and reaction mechanism for the epoxidation of propylene by oxygen over CuOx/SiO2 catalysts with and without Cs+ modification. J Catal. 2013;299:53.
[7]
go back to reference Hua Q, Cao T, Gu XK, Lu JQ, Jiang ZQ, Pan XR, Luo LF, Li WX, Huang WX. Crystal-plane-controlled selectivity of Cu2O catalysts in propylene oxidation with molecular oxygen. Angew Chem Int Edit. 2014;53(19):4856. Hua Q, Cao T, Gu XK, Lu JQ, Jiang ZQ, Pan XR, Luo LF, Li WX, Huang WX. Crystal-plane-controlled selectivity of Cu2O catalysts in propylene oxidation with molecular oxygen. Angew Chem Int Edit. 2014;53(19):4856.
[8]
go back to reference Reitz JB, Solomon EI. Propylene oxidation on copper oxide surfaces: electronic and geometric contributions to reactivity and selectivity. J Am Chem Soc. 1998;120(44):11467. Reitz JB, Solomon EI. Propylene oxidation on copper oxide surfaces: electronic and geometric contributions to reactivity and selectivity. J Am Chem Soc. 1998;120(44):11467.
[9]
go back to reference Su WG, Wang SG, Ying PL, Feng ZC, Li C. A molecular insight into propylene epoxidation on Cu/SiO2 catalysts using O2 as oxidant. J Catal. 2009;268(1):165. Su WG, Wang SG, Ying PL, Feng ZC, Li C. A molecular insight into propylene epoxidation on Cu/SiO2 catalysts using O2 as oxidant. J Catal. 2009;268(1):165.
[10]
go back to reference Yao SN, Xu LH, Wang J, Jing XL, Odoom-Wubah T, Sun DH, Huang JL, Li QB. Activity and stability of titanosilicate supported Au catalyst for propylene epoxidation with H2 and O2. Molecular Catalysis. 2018;448:144. Yao SN, Xu LH, Wang J, Jing XL, Odoom-Wubah T, Sun DH, Huang JL, Li QB. Activity and stability of titanosilicate supported Au catalyst for propylene epoxidation with H2 and O2. Molecular Catalysis. 2018;448:144.
[11]
go back to reference Feng X, Sheng N, Liu YB, Chen XB, Chen D, Yang CH, Zhou XG. Simultaneously enhanced stability and selectivity for propene epoxidation with H2 and O2 on Au catalysts supported on nano-crystalline mesoporous TS-1. ACS Catal. 2017;7(4):2668. Feng X, Sheng N, Liu YB, Chen XB, Chen D, Yang CH, Zhou XG. Simultaneously enhanced stability and selectivity for propene epoxidation with H2 and O2 on Au catalysts supported on nano-crystalline mesoporous TS-1. ACS Catal. 2017;7(4):2668.
[12]
go back to reference Lee WS, Zhang R, Akatay MC, Baertsch CD, Stach EA, Ribeiro FH, Deglass WN. Differences in catalytic sites for CO oxidation and propylene epoxidation on Au nanoparticles. ACS Catal. 2011;1(10):1327. Lee WS, Zhang R, Akatay MC, Baertsch CD, Stach EA, Ribeiro FH, Deglass WN. Differences in catalytic sites for CO oxidation and propylene epoxidation on Au nanoparticles. ACS Catal. 2011;1(10):1327.
[13]
go back to reference Feng X, Duan XZ, Qian G, Zhou XG, Chen D, Yuan WK. Au nanoparticles deposited on the external surfaces of TS-1: enhanced stability and activity for direct propylene epoxidation with H2 and O2. Appl Catal B-Environ. 2014;150–151:396. Feng X, Duan XZ, Qian G, Zhou XG, Chen D, Yuan WK. Au nanoparticles deposited on the external surfaces of TS-1: enhanced stability and activity for direct propylene epoxidation with H2 and O2. Appl Catal B-Environ. 2014;150–151:396.
[14]
go back to reference Duan SB, Wang RM. Nanomaterials composed of noble metals and transition metal compounds: interface structure control and in-situ characterization at atomic scale. Chin J Rare Met. 2019;43(11):1179. Duan SB, Wang RM. Nanomaterials composed of noble metals and transition metal compounds: interface structure control and in-situ characterization at atomic scale. Chin J Rare Met. 2019;43(11):1179.
[15]
go back to reference Zhang S, Metin O, Su D, Sun SH. Monodisperse AgPd alloy nanoparticles and their superior catalysis for the dehydrogenation of formic acid. Angew Chem Int Ed. 2013;52(13):3681. Zhang S, Metin O, Su D, Sun SH. Monodisperse AgPd alloy nanoparticles and their superior catalysis for the dehydrogenation of formic acid. Angew Chem Int Ed. 2013;52(13):3681.
[16]
go back to reference Wang LP, Shen XQ, Tian L, Yang N, Xie G, Li B. Preparation of PtCo composite nanowires and characterization of electrocatalytic performance for oxygen reduction reaction. Chin J Rare Met. 2019;43(4):367. Wang LP, Shen XQ, Tian L, Yang N, Xie G, Li B. Preparation of PtCo composite nanowires and characterization of electrocatalytic performance for oxygen reduction reaction. Chin J Rare Met. 2019;43(4):367.
[17]
go back to reference Liu XF, Hood ZD, Zheng Q, Jin T, Foo GS, Wu ZL, Tian CC, Guo YL, Dai S, Zhan WC, Zhu HY, Chi MF. Optimizing the structural configuration of FePt–FeOx nanoparticles at the atomic scale by tuning the post-synthetic conditions. Nano Energy. 2019;55:441. Liu XF, Hood ZD, Zheng Q, Jin T, Foo GS, Wu ZL, Tian CC, Guo YL, Dai S, Zhan WC, Zhu HY, Chi MF. Optimizing the structural configuration of FePt–FeOx nanoparticles at the atomic scale by tuning the post-synthetic conditions. Nano Energy. 2019;55:441.
[18]
go back to reference Liu XY, Wang AQ, Zhang T, Su DS, Mou CY. Au–Cu alloy nanoparticles supported on silica gel as catalyst for CO oxidation: effects of Au/Cu ratios. Catal Today. 2011;160(1):103. Liu XY, Wang AQ, Zhang T, Su DS, Mou CY. Au–Cu alloy nanoparticles supported on silica gel as catalyst for CO oxidation: effects of Au/Cu ratios. Catal Today. 2011;160(1):103.
[19]
go back to reference Bauer JC, Mullins D, Li MJ, Wu ZL, Payzant EA, Overbury SH, Dai S. Synthesis of silica supported AuCu nanoparticle catalysts and the effects of pretreatment conditions for the CO oxidation reaction. Phys Chem Chem Phys. 2011;13(7):2571. Bauer JC, Mullins D, Li MJ, Wu ZL, Payzant EA, Overbury SH, Dai S. Synthesis of silica supported AuCu nanoparticle catalysts and the effects of pretreatment conditions for the CO oxidation reaction. Phys Chem Chem Phys. 2011;13(7):2571.
[20]
go back to reference Li LC, Wang CS, Ma XX, Yang ZH, Lu XH. An Au–Cu bimetal catalyst supported on mesoporous TiO2 with stable catalytic performance in CO oxidation. Chin J Catal. 2012;33(11–12):1778. Li LC, Wang CS, Ma XX, Yang ZH, Lu XH. An Au–Cu bimetal catalyst supported on mesoporous TiO2 with stable catalytic performance in CO oxidation. Chin J Catal. 2012;33(11–12):1778.
[21]
go back to reference Jia QQ, Zhao DF, Tang B, Zhao N, Li HD, Sang YH, Bao N, Zhang XM, Xu XH, Liu H. Synergistic catalysis of Au–Cu/TiO2-NB nanopaper in aerobic oxidation of benzyl alcohol. J Mater Chem A. 2014;2(38):16292. Jia QQ, Zhao DF, Tang B, Zhao N, Li HD, Sang YH, Bao N, Zhang XM, Xu XH, Liu H. Synergistic catalysis of Au–Cu/TiO2-NB nanopaper in aerobic oxidation of benzyl alcohol. J Mater Chem A. 2014;2(38):16292.
[22]
go back to reference Sobczak I, Wolski Ł. Au–Cu on Nb2O5 and Nb/MCF supports–surface properties and catalytic activity in glycerol and methanol oxidation. Catal Today. 2015;254:72. Sobczak I, Wolski Ł. Au–Cu on Nb2O5 and Nb/MCF supports–surface properties and catalytic activity in glycerol and methanol oxidation. Catal Today. 2015;254:72.
[23]
go back to reference Belin S, Bracey CL, Briois V, Ellis PR, Hutchings GJ, Hyde TI, Sankar G. CuAu/SiO2 catalysts for the selective oxidation of propene to acrolein: the impact of catalyst preparation variables on material structure and catalytic performance. Catal Sci Technol. 2013;3(11):2944. Belin S, Bracey CL, Briois V, Ellis PR, Hutchings GJ, Hyde TI, Sankar G. CuAu/SiO2 catalysts for the selective oxidation of propene to acrolein: the impact of catalyst preparation variables on material structure and catalytic performance. Catal Sci Technol. 2013;3(11):2944.
[24]
go back to reference Llorca J, Dominguez M, Ledesma C, Chimentao RJ, Medina F, Sueiras J, Angurell I, Seco M, Rossell O. Propene epoxidation over TiO2-supported Au–Cu alloy catalysts prepared from thiol-capped nanoparticles. J Catal. 2008;258(1):187. Llorca J, Dominguez M, Ledesma C, Chimentao RJ, Medina F, Sueiras J, Angurell I, Seco M, Rossell O. Propene epoxidation over TiO2-supported Au–Cu alloy catalysts prepared from thiol-capped nanoparticles. J Catal. 2008;258(1):187.
[25]
go back to reference Chimentão RJ, Medina F, Fierro JLG, Llorca J, Sueiras JE, Cesteros Y, Salagre P. Propene epoxidation by nitrous oxide over Au–Cu/TiO2 alloy catalysts. J Mol Catal A-Chem. 2007;274(1–2):159. Chimentão RJ, Medina F, Fierro JLG, Llorca J, Sueiras JE, Cesteros Y, Salagre P. Propene epoxidation by nitrous oxide over Au–Cu/TiO2 alloy catalysts. J Mol Catal A-Chem. 2007;274(1–2):159.
[26]
go back to reference Sinfelt JH, Barnett AE (1976) Novel gold-copper catalysts for the partial oxidation of olefins. United States Patent 3989674. Sinfelt JH, Barnett AE (1976) Novel gold-copper catalysts for the partial oxidation of olefins. United States Patent 3989674.
[28]
go back to reference Zhan WC, Wang JL, Wang HF, Zhang JS, Liu XF, Zhang PF, Chi MF, Guo YL, Guo Y, Lu GZ, Sun SH, Dai S, Zhu HY. Crystal structural effect of AuCu alloy nanoparticles on catalytic CO oxidation. J Am Chem Soc. 2017;139(26):8846. Zhan WC, Wang JL, Wang HF, Zhang JS, Liu XF, Zhang PF, Chi MF, Guo YL, Guo Y, Lu GZ, Sun SH, Dai S, Zhu HY. Crystal structural effect of AuCu alloy nanoparticles on catalytic CO oxidation. J Am Chem Soc. 2017;139(26):8846.
[29]
go back to reference Liu XW, Geng BY, Du QB, Ma JZ, Liu XM. Temperature-controlled self-assembled synthesis of CuO, Cu2O and Cu nanoparticles through a single-precursor route. Mater Sci Eng, A. 2007;448(1–2):7. Liu XW, Geng BY, Du QB, Ma JZ, Liu XM. Temperature-controlled self-assembled synthesis of CuO, Cu2O and Cu nanoparticles through a single-precursor route. Mater Sci Eng, A. 2007;448(1–2):7.
[30]
go back to reference Liu X, Wang A, Wang X, Mou CY, Zhang T. Au–Cu Alloy nanoparticles confined in SBA-15 as a highly efficient catalyst for CO oxidation. Chem Commun. 2008;27:3187. Liu X, Wang A, Wang X, Mou CY, Zhang T. Au–Cu Alloy nanoparticles confined in SBA-15 as a highly efficient catalyst for CO oxidation. Chem Commun. 2008;27:3187.
[31]
go back to reference Bracey CL, Ellis PR, Hutchings GJ. Application of copper-gold alloys in catalysis: current status and future perspectives. Chem Soc Rev. 2009;38(8):2231. Bracey CL, Ellis PR, Hutchings GJ. Application of copper-gold alloys in catalysis: current status and future perspectives. Chem Soc Rev. 2009;38(8):2231.
[32]
go back to reference Li DG, Wang C, Tripkovic D, Sun SH, Markovic NM, Stamenkovic VR. Surfactant removal for colloidal nanoparticles from solution synthesis: the effect on catalytic performance. ACS Catal. 2012;2(7):1358. Li DG, Wang C, Tripkovic D, Sun SH, Markovic NM, Stamenkovic VR. Surfactant removal for colloidal nanoparticles from solution synthesis: the effect on catalytic performance. ACS Catal. 2012;2(7):1358.
[33]
go back to reference Tao F, Grass ME, Zhang YW, Butcher DR, Renzas JR, Liu Z, Chung JY, Mun BS, Salmeron M, Somorjai GA. Reaction-driven restructuring of Rh–Pd and Pt–Pd core–shell nanoparticles. Science. 2008;322(5903):932. Tao F, Grass ME, Zhang YW, Butcher DR, Renzas JR, Liu Z, Chung JY, Mun BS, Salmeron M, Somorjai GA. Reaction-driven restructuring of Rh–Pd and Pt–Pd core–shell nanoparticles. Science. 2008;322(5903):932.
[34]
go back to reference Tao F, Grass ME, Zhang YW, Butcher DR, Aksoy F, Aloni S, Altoe V, Alayoglu S, Renzas JR, Tsung CK, Zhu ZW, Liu Z, Salmeron M, Somorjai GA. Evolution of structure and chemistry of bimetallic nanoparticle catalysts under reaction conditions. J Am Chem Soc. 2010;132(25):8697. Tao F, Grass ME, Zhang YW, Butcher DR, Aksoy F, Aloni S, Altoe V, Alayoglu S, Renzas JR, Tsung CK, Zhu ZW, Liu Z, Salmeron M, Somorjai GA. Evolution of structure and chemistry of bimetallic nanoparticle catalysts under reaction conditions. J Am Chem Soc. 2010;132(25):8697.
[35]
go back to reference Albonetti S, Pasini T, Lolli A, Blosi M, Piccinini M, Dimitratos N, Lopez-Sanchez JA, Morgan DJ, Carley AF, Hutchings GJ, Cavani F. Selective oxidation of 5-hydroxymethyl-2-furfural over TiO2-supported gold–copper catalysts prepared from preformed nanoparticles: effect of Au/Cu ratio. Catal Today. 2012;195(1):120. Albonetti S, Pasini T, Lolli A, Blosi M, Piccinini M, Dimitratos N, Lopez-Sanchez JA, Morgan DJ, Carley AF, Hutchings GJ, Cavani F. Selective oxidation of 5-hydroxymethyl-2-furfural over TiO2-supported gold–copper catalysts prepared from preformed nanoparticles: effect of Au/Cu ratio. Catal Today. 2012;195(1):120.
[36]
go back to reference Wang S, Wang J, Zhu XJ, Wang JQ, Terasaki O, Wan Y. Size·control growth of thermally stable Au nanoparticles encapsulated within ordered mesoporous carbon framework. Chin J Catal. 2016;37(1):61. Wang S, Wang J, Zhu XJ, Wang JQ, Terasaki O, Wan Y. Size·control growth of thermally stable Au nanoparticles encapsulated within ordered mesoporous carbon framework. Chin J Catal. 2016;37(1):61.
[37]
go back to reference Brener IPR, Haick H, Tannenbaum R. Oxidation of polycrystalline copper thin films at ambient conditions. J Phys Chem C. 2008;112(4):1101. Brener IPR, Haick H, Tannenbaum R. Oxidation of polycrystalline copper thin films at ambient conditions. J Phys Chem C. 2008;112(4):1101.
[38]
go back to reference Bauer JC, Veith GM, Allard LF, Oyola Y, Overbury SH, Dai S. Silica-supported Au–CuOx hybrid nanocrystals as active and selective catalysts for the formation of acetaldehyde from the oxidation of ethanol. ACS Catal. 2012;2(12):2537. Bauer JC, Veith GM, Allard LF, Oyola Y, Overbury SH, Dai S. Silica-supported Au–CuOx hybrid nanocrystals as active and selective catalysts for the formation of acetaldehyde from the oxidation of ethanol. ACS Catal. 2012;2(12):2537.
[39]
go back to reference Destro P, Kokumai TM, Scarpellini A, Pasquale L, Manna L, Colombo M, Zanchet D. The crucial role of the support in the transformations of bimetallic nanoparticles and catalytic performance. ACS Catal. 2018;8(2):1031. Destro P, Kokumai TM, Scarpellini A, Pasquale L, Manna L, Colombo M, Zanchet D. The crucial role of the support in the transformations of bimetallic nanoparticles and catalytic performance. ACS Catal. 2018;8(2):1031.
[40]
go back to reference Sandoval A, Louis C, Zanella R. Improved activity and stability in CO oxidation of bimetallic Au–Cu/TiO2 catalysts prepared by deposition–precipitation with urea. Appl Catal B-Environ. 2013;140–141:363. Sandoval A, Louis C, Zanella R. Improved activity and stability in CO oxidation of bimetallic Au–Cu/TiO2 catalysts prepared by deposition–precipitation with urea. Appl Catal B-Environ. 2013;140–141:363.
[41]
go back to reference Zhan WC, He Q, Liu XF, Guo YL, Wang YQ, Wang L, Guo Y, Borisevich AY, Zhang JS, Lu GZ, Dai S. A sacrificial coating strategy toward enhancement of metal-support interaction for ultrastable Au nanocatalysts. J Am Chem Soc. 2016;138(49):16130. Zhan WC, He Q, Liu XF, Guo YL, Wang YQ, Wang L, Guo Y, Borisevich AY, Zhang JS, Lu GZ, Dai S. A sacrificial coating strategy toward enhancement of metal-support interaction for ultrastable Au nanocatalysts. J Am Chem Soc. 2016;138(49):16130.
[42]
go back to reference Zhan WC, Shu Y, Sheng YJ, Zhu HY, Guo YL, Wang L, Guo Y, Zhang JS, Lu GZ, Dai S. Surfactant-assisted stabilization of Au colloids on solids for heterogeneous catalysis. Angew Chem Int Ed. 2017;56(16):4494. Zhan WC, Shu Y, Sheng YJ, Zhu HY, Guo YL, Wang L, Guo Y, Zhang JS, Lu GZ, Dai S. Surfactant-assisted stabilization of Au colloids on solids for heterogeneous catalysis. Angew Chem Int Ed. 2017;56(16):4494.
[43]
go back to reference Yang XW, Li Q, Lu EJ, Wang ZQ, Gong XQ, Yu ZY, Guo Y, Wang L, Guo YL, Zhan WC, Zhang JS, Dai S. Taming the stability of Pd active phases through a compartmentalizing strategy toward nanostructured catalyst supports. Nat Commun. 2019;10(1):1. Yang XW, Li Q, Lu EJ, Wang ZQ, Gong XQ, Yu ZY, Guo Y, Wang L, Guo YL, Zhan WC, Zhang JS, Dai S. Taming the stability of Pd active phases through a compartmentalizing strategy toward nanostructured catalyst supports. Nat Commun. 2019;10(1):1.
[44]
go back to reference Wang L, Wang L, Meng X, Xiao FS. New strategies for the preparation of sinter-resistant metal-nanoparticle-based catalysts. Adv Mater. 2019;31(50):1901905. Wang L, Wang L, Meng X, Xiao FS. New strategies for the preparation of sinter-resistant metal-nanoparticle-based catalysts. Adv Mater. 2019;31(50):1901905.
[45]
go back to reference Shen K, Lin JP, Xia Q, Dai L, Zhou GJ, Guo YL, Lu GZ, Zhan WC. Tuning performance of Pd/Sn0.9Ce0.1O2 catalyst for methane combustion by optimizing calcination temperature of support. Rare Met. 2019;38(2):107. Shen K, Lin JP, Xia Q, Dai L, Zhou GJ, Guo YL, Lu GZ, Zhan WC. Tuning performance of Pd/Sn0.9Ce0.1O2 catalyst for methane combustion by optimizing calcination temperature of support. Rare Met. 2019;38(2):107.
[46]
go back to reference Yu JG, Wang B. Effect of calcination temperature on morphology and photoelectrochemical properties of anodized titanium dioxide nanotube arrays. Appl Catal B-Environ. 2010;94(3–4):295. Yu JG, Wang B. Effect of calcination temperature on morphology and photoelectrochemical properties of anodized titanium dioxide nanotube arrays. Appl Catal B-Environ. 2010;94(3–4):295.
[47]
go back to reference Yu YB, Jiao ZJ, Xue H, Yan Z, Bo QX, Yi WB. Influence of calcination and pretreatment conditions on the activity of Co3O4 for CO oxidation. Chin J Catal. 2013;34(2):283. Yu YB, Jiao ZJ, Xue H, Yan Z, Bo QX, Yi WB. Influence of calcination and pretreatment conditions on the activity of Co3O4 for CO oxidation. Chin J Catal. 2013;34(2):283.
[48]
go back to reference Wang AQ, Liu XY, Mou CY, Zhang T. Understanding the synergistic effects of gold bimetallic catalysts. J Catal. 2013;308:258. Wang AQ, Liu XY, Mou CY, Zhang T. Understanding the synergistic effects of gold bimetallic catalysts. J Catal. 2013;308:258.
[49]
go back to reference Scirè S, Liotta LF. Supported gold catalysts for the total oxidation of volatile organic compounds. Appl Catal B-Environ. 2012;125:222. Scirè S, Liotta LF. Supported gold catalysts for the total oxidation of volatile organic compounds. Appl Catal B-Environ. 2012;125:222.
[50]
go back to reference Schubert MM, Hackenberg S, van Veen AC, Muhler M, Plzak V, Behm RJ. CO Oxidation over supported gold catalysts-“inert” and “active” support materials and their role for the oxygen supply during reaction. J Catal. 2001;197(1):113. Schubert MM, Hackenberg S, van Veen AC, Muhler M, Plzak V, Behm RJ. CO Oxidation over supported gold catalysts-“inert” and “active” support materials and their role for the oxygen supply during reaction. J Catal. 2001;197(1):113.
[51]
go back to reference Grisel RJH, Nieuwenhuys BE. A comparative study of the oxidation of CO and CH4 over Au/MOx/Al2O3 catalysts. Catal Today. 2001;64(1–2):69. Grisel RJH, Nieuwenhuys BE. A comparative study of the oxidation of CO and CH4 over Au/MOx/Al2O3 catalysts. Catal Today. 2001;64(1–2):69.
[52]
go back to reference Liao XM, Liu YM, Chu W, Sall S, Petit C, Pitchon V, Caps V. Promoting effect of AuCu alloying on Au-Cu/CeO2-catalyzed CO oxidation: a combined kinetic and in situ DRIFTS study. J Catal. 2020;382:329. Liao XM, Liu YM, Chu W, Sall S, Petit C, Pitchon V, Caps V. Promoting effect of AuCu alloying on Au-Cu/CeO2-catalyzed CO oxidation: a combined kinetic and in situ DRIFTS study. J Catal. 2020;382:329.
[53]
go back to reference Panayotov D, McEntee M, Burrows S, Driscoll D, Tang WJ, Neurock M, Morris J. Infrared studies of propene and propene oxide adsorption on nanoparticulate Au/TiO2. Surf Sci. 2016;652:172. Panayotov D, McEntee M, Burrows S, Driscoll D, Tang WJ, Neurock M, Morris J. Infrared studies of propene and propene oxide adsorption on nanoparticulate Au/TiO2. Surf Sci. 2016;652:172.
[54]
go back to reference Driscoll DM, Tang WJ, Burrows SP, Panayotov DA, Neurock M, McEntee M, Morris JR. Binding sites, geometry, and energetics of propene at nanoparticulate Au/TiO2. J Phys Chem C. 2017;121(3):1683. Driscoll DM, Tang WJ, Burrows SP, Panayotov DA, Neurock M, McEntee M, Morris JR. Binding sites, geometry, and energetics of propene at nanoparticulate Au/TiO2. J Phys Chem C. 2017;121(3):1683.
[55]
go back to reference Oran U, Uner D. Mechanisms of CO oxidation reaction and effect of chlorine ions on the CO oxidation reaction over Pt/CeO2 and Pt/CeO2/γ-Al2O3 catalysts. Appl Catal B-Environ. 2004;54(3):183. Oran U, Uner D. Mechanisms of CO oxidation reaction and effect of chlorine ions on the CO oxidation reaction over Pt/CeO2 and Pt/CeO2/γ-Al2O3 catalysts. Appl Catal B-Environ. 2004;54(3):183.
[56]
go back to reference Gottfried JM, Schmidt KJ, Schroeder SLM, Christmann K. Spontaneous and electron-induced adsorption of oxygen on Au(110)-(1X2). Surf Sci. 2002;511(1–3):65. Gottfried JM, Schmidt KJ, Schroeder SLM, Christmann K. Spontaneous and electron-induced adsorption of oxygen on Au(110)-(1X2). Surf Sci. 2002;511(1–3):65.
[57]
go back to reference Feng X, Yang J, Duan XZ, Cao YQ, Chen BX, Chen WY, Dong L, Qian G, Chen D, Yang CH, Zhou XG. Enhanced catalytic performance for propene epoxidation with H2 and O2 over bimetallic Au–Ag/uncalcined titanium silicate-1 catalysts. ACS Catal. 2018;8(9):7799. Feng X, Yang J, Duan XZ, Cao YQ, Chen BX, Chen WY, Dong L, Qian G, Chen D, Yang CH, Zhou XG. Enhanced catalytic performance for propene epoxidation with H2 and O2 over bimetallic Au–Ag/uncalcined titanium silicate-1 catalysts. ACS Catal. 2018;8(9):7799.
Metadata
Title
Enhanced catalytic performance for selective oxidation of propene with O2 over bimetallic Au–Cu/SiO2 catalysts
Authors
Xin Guo
Xue-Quan Sun
Yun Guo
Yang-Long Guo
Yun-Song Wang
Li Wang
Wang-Cheng Zhan
Publication date
07-01-2021
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 5/2021
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01632-w

Other articles of this Issue 5/2021

Rare Metals 5/2021 Go to the issue

Premium Partners