Skip to main content
Top
Published in: Rare Metals 5/2021

01-03-2021 | Original Article

High-pressure microwave-assisted synthesis of WSx/Ni9S8/NF hetero-catalyst for efficient oxygen evolution reaction

Authors: Xue Ma, Xin-Yu Zhang, Min Yang, Jing-Yi Xie, Ren-Qing Lv, Yong-Ming Chai, Bin Dong

Published in: Rare Metals | Issue 5/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Designing the specific crystal phase with better intrinsic activity and more active sites is a very promising strategy for earth-abundant electrocatalysts for oxygen evolution reaction (OER). Herein, a facile two-step method including the high-pressure microwave and the hydrothermal sulfurization is adopted to prepare the WSx/Ni9S8 hetero-catalyst on nickel foam (WSx/Ni9S8/NF). Firstly, WO3 polyhedrons homogeneously cover the surface of NF through the high-pressure microwave hydrothermal process. Secondly, WSx/Ni9S8 nanoparticles on the surface of NF can be synthesized after a hydrothermal sulfurization, which has been confirmed by scanning electron microscopy (SEM) elemental mapping and high-resolution transmission electron microscopy (HRTEM). The amorphous WSx and Ni9S8 phase may provide the dual active sites for OER. The electrochemical measurements show that WSx/Ni9S8/NF has superior OER activity with a low overpotential of 320 mV at the current density of 100 mA·cm−2, better than those of other samples. The enhanced OER performance may be due to the synergistic catalysis from Ni9S8 phase and high valence of W. Owing to the stable structure of Ni9S8, the long-term stability of WSx/Ni9S8/NF for at least 10 h can be obtained. This work may provide a new approach for the doped nickel sulfides crystal phase through high-pressure microwave hydrothermal assistance for OER.

Graphic abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
[1]
go back to reference Li A, Zhu W, Li C, Wang T, Gong J. Rational design of yolk-shell nanostructures for photocatalysis. Chem Soc Rev. 2019;48(7):1874. Li A, Zhu W, Li C, Wang T, Gong J. Rational design of yolk-shell nanostructures for photocatalysis. Chem Soc Rev. 2019;48(7):1874.
[2]
go back to reference Zhao S, Wang DW, Amal R, Dai L. Carbon-based metal-free catalysts for key reactions involved in energy conversion and storage. Adv Mater. 2019;31(9):1801526. Zhao S, Wang DW, Amal R, Dai L. Carbon-based metal-free catalysts for key reactions involved in energy conversion and storage. Adv Mater. 2019;31(9):1801526.
[3]
go back to reference He JR, Chen YF, Li PJ, Fu F, Wang ZG, Zhang WL. Self-assembled CoS2 nanoparticles wrapped by CoS2-quantum-dotsanchored graphene nanosheets as superior-capability anode for lithium-ion batteries. Electrochim Acta. 2015;182(10):424. He JR, Chen YF, Li PJ, Fu F, Wang ZG, Zhang WL. Self-assembled CoS2 nanoparticles wrapped by CoS2-quantum-dotsanchored graphene nanosheets as superior-capability anode for lithium-ion batteries. Electrochim Acta. 2015;182(10):424.
[4]
go back to reference Gao H, Yue HH, Qi F, Yu B, Zhang WL, Chen YF. Few-layered ReS2 nanosheets grown on graphene as electrocatalyst for hydrogen evolution reaction. Rare Met. 2018;37(12):1014. Gao H, Yue HH, Qi F, Yu B, Zhang WL, Chen YF. Few-layered ReS2 nanosheets grown on graphene as electrocatalyst for hydrogen evolution reaction. Rare Met. 2018;37(12):1014.
[5]
go back to reference Fu G, Yan X, Chen Y, Xu L, Sun D, Lee JM, Tang Y. Boosting bifunctional oxygen electrocatalysis with 3D graphene aerogel-supported Ni/MnO particles. Adv Mater. 2018;30(5):1704609. Fu G, Yan X, Chen Y, Xu L, Sun D, Lee JM, Tang Y. Boosting bifunctional oxygen electrocatalysis with 3D graphene aerogel-supported Ni/MnO particles. Adv Mater. 2018;30(5):1704609.
[6]
go back to reference He JR, Hartmann G, Lee M, Hwang GS, Chen YF, Manthiram A. Freestanding 1T MoS2/graphene heterostructures as a highly efficient electrocatalyst for lithium polysulfides in Li–S batteries. Energy Environ Sci. 2019;12(1):344. He JR, Hartmann G, Lee M, Hwang GS, Chen YF, Manthiram A. Freestanding 1T MoS2/graphene heterostructures as a highly efficient electrocatalyst for lithium polysulfides in Li–S batteries. Energy Environ Sci. 2019;12(1):344.
[7]
go back to reference He JR, Manthiram A. Long-life, high-rate lithium-sulfur cells with a carbon-free vn host as an efficient polysulfide adsorbent and lithium dendrite inhibitor. Adv Energy Mater. 2020;10(3):1903241. He JR, Manthiram A. Long-life, high-rate lithium-sulfur cells with a carbon-free vn host as an efficient polysulfide adsorbent and lithium dendrite inhibitor. Adv Energy Mater. 2020;10(3):1903241.
[8]
go back to reference Nai JW, Lou XW. Hollow structures based on prussian blue and its analogs for electrochemical energy storage and conversion. Adv Mater. 2019;31(38):1706825. Nai JW, Lou XW. Hollow structures based on prussian blue and its analogs for electrochemical energy storage and conversion. Adv Mater. 2019;31(38):1706825.
[9]
go back to reference Hu Q, Li G, Liu X, Zhu B, Chai X, Zhang Q, Liu J, He C. Superhydrophilic phytic acid-doped conductive hydrogels as metal-free and binder-free electrocatalysts for efficient water oxidation. Angew Chem Int Ed. 2019;58(13):4318. Hu Q, Li G, Liu X, Zhu B, Chai X, Zhang Q, Liu J, He C. Superhydrophilic phytic acid-doped conductive hydrogels as metal-free and binder-free electrocatalysts for efficient water oxidation. Angew Chem Int Ed. 2019;58(13):4318.
[10]
go back to reference Qi F, Li PJ, Chen YF, Zheng BJ, Liu JB, Zhou JH, He JR, Hao X, Zhang WL. Three-dimensional structure of WS2/graphene/Ni as a binder-free electrocatalytic electrode for highly effective and stable hydrogen evolution reaction. Inter J Hydrog Energy. 2017;42(12):7811. Qi F, Li PJ, Chen YF, Zheng BJ, Liu JB, Zhou JH, He JR, Hao X, Zhang WL. Three-dimensional structure of WS2/graphene/Ni as a binder-free electrocatalytic electrode for highly effective and stable hydrogen evolution reaction. Inter J Hydrog Energy. 2017;42(12):7811.
[11]
go back to reference He JR, Chen YF, Manthiram A. Metal sulfide-decorated carbon sponge as a highly efficient electrocatalyst and absorbant for polysulfide in high-loading Li2S batteries. Adv Energy Mater. 2019;9(20):1900584. He JR, Chen YF, Manthiram A. Metal sulfide-decorated carbon sponge as a highly efficient electrocatalyst and absorbant for polysulfide in high-loading Li2S batteries. Adv Energy Mater. 2019;9(20):1900584.
[12]
go back to reference Wang M, Dong CL, Huang YC, Shen SH. Operando spectral and electrochemical investigation into the heterophase stimulated active species transformation in transition-metal sulfides for efficient electrocatalytic oxygen evolution. ACS Catal. 2020;10(3):1855. Wang M, Dong CL, Huang YC, Shen SH. Operando spectral and electrochemical investigation into the heterophase stimulated active species transformation in transition-metal sulfides for efficient electrocatalytic oxygen evolution. ACS Catal. 2020;10(3):1855.
[13]
go back to reference Shang X, Yan KL, Rao Y, Dong B, Chi JQ, Liu YR, Li X, Chai YM, Liu CG. In-situ cathodic activation of V-incorporated NixSy nanowires for enhanced hydrogen evolution. Nanoscale. 2017;9(34):12353. Shang X, Yan KL, Rao Y, Dong B, Chi JQ, Liu YR, Li X, Chai YM, Liu CG. In-situ cathodic activation of V-incorporated NixSy nanowires for enhanced hydrogen evolution. Nanoscale. 2017;9(34):12353.
[15]
go back to reference He JR, Bhargav A, Manthiram A. Three-dimensional Fe3O4/N-graphene sponge as an efficient organosulfide host for high-performance lithium-organosulfur batteries. Energy Storage Mater. 2019;23:88. He JR, Bhargav A, Manthiram A. Three-dimensional Fe3O4/N-graphene sponge as an efficient organosulfide host for high-performance lithium-organosulfur batteries. Energy Storage Mater. 2019;23:88.
[16]
go back to reference Wang M, Dong CL, Huang YC, Shen SH. Bifunctional cobalt phosphide nanoparticles with convertible surface structure for efficient electrocatalytic water splitting in alkaline solution. J Catal. 2019;371:262. Wang M, Dong CL, Huang YC, Shen SH. Bifunctional cobalt phosphide nanoparticles with convertible surface structure for efficient electrocatalytic water splitting in alkaline solution. J Catal. 2019;371:262.
[17]
go back to reference Wang M, Dong CL, Huang YC, Shen SH. Electronic structure evolution in tricomponent metal phosphides with reduced activation energy for efficient electrocatalytic oxygen evolution. Small. 2018;14(35):1801756. Wang M, Dong CL, Huang YC, Shen SH. Electronic structure evolution in tricomponent metal phosphides with reduced activation energy for efficient electrocatalytic oxygen evolution. Small. 2018;14(35):1801756.
[18]
go back to reference Cai Z, Zhou D, Wang M, Bak SM, Wu Y, Wu Z, Tian Y, Xiong X, Li Y, Liu W, Siahrostami S, Kuang Y, Yang XQ, Duan H, Feng Z, Wang H, Sun X. Introducing Fe2+ into nickel-iron layered double hydroxide: local structure modulated water oxidation activity. Angew Chem Int Ed. 2018;57(30):9392. Cai Z, Zhou D, Wang M, Bak SM, Wu Y, Wu Z, Tian Y, Xiong X, Li Y, Liu W, Siahrostami S, Kuang Y, Yang XQ, Duan H, Feng Z, Wang H, Sun X. Introducing Fe2+ into nickel-iron layered double hydroxide: local structure modulated water oxidation activity. Angew Chem Int Ed. 2018;57(30):9392.
[19]
go back to reference Zhao Y, Zhang X, Jia X, Waterhouse GIN, Shi R, Zhang X, Zhan F, Tao Y, Wu LZ, Tung CH, O’Hare D, Zhang T. Sub-3 nm ultrafine monolayer layered double hydroxide nanosheets for electrochemical water oxidation. Adv Energy Mater. 2018;8(18):1703585. Zhao Y, Zhang X, Jia X, Waterhouse GIN, Shi R, Zhang X, Zhan F, Tao Y, Wu LZ, Tung CH, O’Hare D, Zhang T. Sub-3 nm ultrafine monolayer layered double hydroxide nanosheets for electrochemical water oxidation. Adv Energy Mater. 2018;8(18):1703585.
[20]
go back to reference Chen D, Qiao M, Liu YR, Hao L, Liu D, Dong CL, Li Y, Wang S. Preferential cation vacancies in perovskite hydroxide for the oxygen evolution reaction. Angew Chem Int Ed. 2018;57(28):8691. Chen D, Qiao M, Liu YR, Hao L, Liu D, Dong CL, Li Y, Wang S. Preferential cation vacancies in perovskite hydroxide for the oxygen evolution reaction. Angew Chem Int Ed. 2018;57(28):8691.
[21]
go back to reference Wei C, Sun S, Mandler D, Wang X, Qiao SZ, Xu ZJ. Approaches for measuring the surface areas of metal oxide electrocatalysts for determining their intrinsic electrocatalytic activity. Chem Soc Rev. 2019;48(9):2518. Wei C, Sun S, Mandler D, Wang X, Qiao SZ, Xu ZJ. Approaches for measuring the surface areas of metal oxide electrocatalysts for determining their intrinsic electrocatalytic activity. Chem Soc Rev. 2019;48(9):2518.
[22]
go back to reference Wu TZ, Sun S, Song J, Xi S, Du Y, Chen B, Sasangka WA, Liao H, Gan CL, Scherer GG, Zeng L, Wang H, Li H, Grimaud A, Xu ZJ. Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation. Nat Catal. 2019;2(8):763. Wu TZ, Sun S, Song J, Xi S, Du Y, Chen B, Sasangka WA, Liao H, Gan CL, Scherer GG, Zeng L, Wang H, Li H, Grimaud A, Xu ZJ. Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation. Nat Catal. 2019;2(8):763.
[23]
go back to reference Li A, Ooka H, Bonnet N, Hayashi T, Sun Y, Jiang Q, Li C, Han H, Nakamura R. Stable potential windows for long-term electrocatalysis by manganese oxides under acidic conditions. Angew Chem Int Ed. 2019;58(15):5054. Li A, Ooka H, Bonnet N, Hayashi T, Sun Y, Jiang Q, Li C, Han H, Nakamura R. Stable potential windows for long-term electrocatalysis by manganese oxides under acidic conditions. Angew Chem Int Ed. 2019;58(15):5054.
[24]
go back to reference Wu H, Lu X, Zheng G, Ho GW. Topotactic engineering of ultrathin two dimensional non-layered nickel selenides for full water splitting. Adv Energy Mater. 2018;8(14):1702704. Wu H, Lu X, Zheng G, Ho GW. Topotactic engineering of ultrathin two dimensional non-layered nickel selenides for full water splitting. Adv Energy Mater. 2018;8(14):1702704.
[25]
go back to reference Yao YC, Hu SL, Chen WX, Huang ZQ, Wei WC, Yao T, Liu RR, Zang KT, Wang XQ, Wu G, Yuan WJ, Yuan TW, Zhu BQ, Liu W, Li ZJ, He DS, Xue ZG, Wang Y, Zheng XS, Dong JC, Chang CR, Chen YX, Hong X, Luo J, Wei SQ, Li WX, Strasser P, Wu YE, Li YD. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat Catal. 2019;2(3):304. Yao YC, Hu SL, Chen WX, Huang ZQ, Wei WC, Yao T, Liu RR, Zang KT, Wang XQ, Wu G, Yuan WJ, Yuan TW, Zhu BQ, Liu W, Li ZJ, He DS, Xue ZG, Wang Y, Zheng XS, Dong JC, Chang CR, Chen YX, Hong X, Luo J, Wei SQ, Li WX, Strasser P, Wu YE, Li YD. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat Catal. 2019;2(3):304.
[26]
go back to reference Zhou D, Wang S, Jia Y, Xiong X, Yang H, Liu S, Tang J, Zhang J, Liu D, Zheng L, Kuang Y, Sun X, Liu B. NiFe hydroxide lattice tensile strain: enhancement of adsorption of oxygenated intermediates for efficient water oxidation catalysis. Angew Chem Int Ed. 2019;58(3):736. Zhou D, Wang S, Jia Y, Xiong X, Yang H, Liu S, Tang J, Zhang J, Liu D, Zheng L, Kuang Y, Sun X, Liu B. NiFe hydroxide lattice tensile strain: enhancement of adsorption of oxygenated intermediates for efficient water oxidation catalysis. Angew Chem Int Ed. 2019;58(3):736.
[27]
go back to reference Jiang S, Liu YK, Xie WF, Shao MF. Electrosynthesis of hierarchical NiLa-layered double hydroxide electrode for efficient oxygen evolution reaction. J Energy Chem. 2019;33(6):125. Jiang S, Liu YK, Xie WF, Shao MF. Electrosynthesis of hierarchical NiLa-layered double hydroxide electrode for efficient oxygen evolution reaction. J Energy Chem. 2019;33(6):125.
[28]
go back to reference Guo BY, Zhang XY, Ma X, Chen TS, Wen ML, Yang XL, Qin JF, Chai YM, Nan J, Dong B. RuO2/Co3O4 nanocubes based on Ru ions impregnation into prussian blue precursor for oxygen evolution. Inter J Hydrog Energy. 2020;45(16):9575. Guo BY, Zhang XY, Ma X, Chen TS, Wen ML, Yang XL, Qin JF, Chai YM, Nan J, Dong B. RuO2/Co3O4 nanocubes based on Ru ions impregnation into prussian blue precursor for oxygen evolution. Inter J Hydrog Energy. 2020;45(16):9575.
[29]
go back to reference Zhang XP, Dong C, Diao ZD, Lu YR, Shen SH. Identifying the crystal and electronic structure evolution in tri-component transition metal oxide nanosheets for efficient electrocatalytic oxygen evolution. EcoMat. 2019;1(1):12005. Zhang XP, Dong C, Diao ZD, Lu YR, Shen SH. Identifying the crystal and electronic structure evolution in tri-component transition metal oxide nanosheets for efficient electrocatalytic oxygen evolution. EcoMat. 2019;1(1):12005.
[30]
go back to reference Sun S, Sun Y, Zhou Y, Xi S, Ren X, Huang B, Liao H, Wang LP, Du Y, Xu ZJ. Shifting oxygen charge towards octahedral metal: a way to promote water oxidation on cobalt spinel oxides. Angew Chem Int Ed. 2019;58(18):6042. Sun S, Sun Y, Zhou Y, Xi S, Ren X, Huang B, Liao H, Wang LP, Du Y, Xu ZJ. Shifting oxygen charge towards octahedral metal: a way to promote water oxidation on cobalt spinel oxides. Angew Chem Int Ed. 2019;58(18):6042.
[31]
go back to reference Wu D, Wei Y, Ren X, Ji X, Liu Y, Guo X, Liu Z, Asiri AM, Wei Q, Sun X. Co(OH)2 Nanoparticle-encapsulating conductive nanowires array: room-temperature electrochemical preparation for high-performance water oxidation electrocatalysis. Adv Mater. 2018;30(9):1705366. Wu D, Wei Y, Ren X, Ji X, Liu Y, Guo X, Liu Z, Asiri AM, Wei Q, Sun X. Co(OH)2 Nanoparticle-encapsulating conductive nanowires array: room-temperature electrochemical preparation for high-performance water oxidation electrocatalysis. Adv Mater. 2018;30(9):1705366.
[32]
go back to reference Sun H, Yan Z, Liu F, Xu W, Cheng F, Chen J. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv Mater. 2020;32(3):1806326. Sun H, Yan Z, Liu F, Xu W, Cheng F, Chen J. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv Mater. 2020;32(3):1806326.
[33]
go back to reference Li BQ, Zhao CX, Chen S, Liu JN, Chen X, Song L, Zhang Q. Framework-porphyrin-derived single-atom bifunctional oxygen electrocatalysts and their applications in Zn-Air batteries. Adv Mater. 2019;31(19):1900592. Li BQ, Zhao CX, Chen S, Liu JN, Chen X, Song L, Zhang Q. Framework-porphyrin-derived single-atom bifunctional oxygen electrocatalysts and their applications in Zn-Air batteries. Adv Mater. 2019;31(19):1900592.
[34]
go back to reference Wang Y, Chen S, Zhang J. Hierarchical assembly of prussian blue derivatives for superior oxygen evolution reaction. Adv Funct Mater. 2019;29(45):1904955. Wang Y, Chen S, Zhang J. Hierarchical assembly of prussian blue derivatives for superior oxygen evolution reaction. Adv Funct Mater. 2019;29(45):1904955.
[35]
go back to reference Cao Y, Meng Y, Huang S, He S, Li X, Tong S, Wu M. Nitrogen-,oxygen- and sulfur-doped carbon-encapsulated Ni3S2 and NiS core–shell architectures: bifunctional electrocatalysts for hydrogen evolution and oxygen reduction reactions. ACS Sust Chem Eng. 2018;6(11):15582. Cao Y, Meng Y, Huang S, He S, Li X, Tong S, Wu M. Nitrogen-,oxygen- and sulfur-doped carbon-encapsulated Ni3S2 and NiS core–shell architectures: bifunctional electrocatalysts for hydrogen evolution and oxygen reduction reactions. ACS Sust Chem Eng. 2018;6(11):15582.
[36]
go back to reference Yin J, Li Y, Lv F, Lu M, Sun K, Wang W, Wang L, Cheng F, Li Y, Xi P, Guo S. Oxygen vacancies dominated NiS2/CoS2 interface porous nanowires for portable Zn-air batteries driven water splitting devices. Adv Mater. 2017;29(47):1704681. Yin J, Li Y, Lv F, Lu M, Sun K, Wang W, Wang L, Cheng F, Li Y, Xi P, Guo S. Oxygen vacancies dominated NiS2/CoS2 interface porous nanowires for portable Zn-air batteries driven water splitting devices. Adv Mater. 2017;29(47):1704681.
[37]
go back to reference Yan KL, Qin JF, Liu ZZ, Dong B, Chi JQ, Gao WK, Lin JH, Chai YM, Liu CG. Organic-inorganic hybrids-directed ternary NiFeMoS anemone-like nanorods with scaly surface supported on nickel foam for efficient overall water splitting. Chem Eng J. 2018;334(15):922. Yan KL, Qin JF, Liu ZZ, Dong B, Chi JQ, Gao WK, Lin JH, Chai YM, Liu CG. Organic-inorganic hybrids-directed ternary NiFeMoS anemone-like nanorods with scaly surface supported on nickel foam for efficient overall water splitting. Chem Eng J. 2018;334(15):922.
[38]
go back to reference Xu WW, Xie WW, Wang Y. Co3O4-x-carbon@Fe2-yCoyO3 heterostructural hollow polyhedrons for the oxygen evolution reaction. ACS Appl Mater Interfaces. 2017;9(34):28642. Xu WW, Xie WW, Wang Y. Co3O4-x-carbon@Fe2-yCoyO3 heterostructural hollow polyhedrons for the oxygen evolution reaction. ACS Appl Mater Interfaces. 2017;9(34):28642.
[39]
go back to reference Jing F, Lv QY, Xiao J, Wang QJ, Wang S. Highly active and dual-function self-supported multiphase NiS-NiS2-Ni3S2/NF electrodes for overall water splitting. J Mater Chem A. 2018;6(29):14207. Jing F, Lv QY, Xiao J, Wang QJ, Wang S. Highly active and dual-function self-supported multiphase NiS-NiS2-Ni3S2/NF electrodes for overall water splitting. J Mater Chem A. 2018;6(29):14207.
[40]
go back to reference Shang X, Li X, Hu WH, Dong B, Liu YR, Han GQ, Chai YM, Liu YQ, Liu CG. In situ growth of NixSy controlled by surface treatment of nickel foam as efficient electrocatalyst for oxygen evolution reaction. Appl Surf Sci. 2016;378(15):15. Shang X, Li X, Hu WH, Dong B, Liu YR, Han GQ, Chai YM, Liu YQ, Liu CG. In situ growth of NixSy controlled by surface treatment of nickel foam as efficient electrocatalyst for oxygen evolution reaction. Appl Surf Sci. 2016;378(15):15.
[41]
go back to reference Khalil A, Liu Q, Muhammad Z, Habib M, Khan R, He Q, Fang Q, Masood HT, Rehman Z, Xiang T, Wu CQ, Song L. Synthesis of Ni9S8/MoS2 heterocatalyst for enhanced hydrogen evolution reaction. Langmuir. 2017;33(21):5148. Khalil A, Liu Q, Muhammad Z, Habib M, Khan R, He Q, Fang Q, Masood HT, Rehman Z, Xiang T, Wu CQ, Song L. Synthesis of Ni9S8/MoS2 heterocatalyst for enhanced hydrogen evolution reaction. Langmuir. 2017;33(21):5148.
[42]
go back to reference Yang H, Wang C, Zhang Y, Wang Q. Chemical valence-dependent eletrocataytic activity for oxygen evolution reaction: a case of nickel sulfides hybridized with N and S co-doped carbon nanoparticles. Small. 2018;14(8):1703273. Yang H, Wang C, Zhang Y, Wang Q. Chemical valence-dependent eletrocataytic activity for oxygen evolution reaction: a case of nickel sulfides hybridized with N and S co-doped carbon nanoparticles. Small. 2018;14(8):1703273.
[43]
go back to reference Lu SS, Zhang LM, Dong YW, Zhang JQ, Yan XT, Sun DF, Shang X, Chi JQ, Chai YM, Dong B. Tungsten-doped Ni-Co phosphides with multiple catalytic sites as efficient electrocatalysts for overall water splitting. J Mater Chem A. 2019;7(28):16859. Lu SS, Zhang LM, Dong YW, Zhang JQ, Yan XT, Sun DF, Shang X, Chi JQ, Chai YM, Dong B. Tungsten-doped Ni-Co phosphides with multiple catalytic sites as efficient electrocatalysts for overall water splitting. J Mater Chem A. 2019;7(28):16859.
Metadata
Title
High-pressure microwave-assisted synthesis of WSx/Ni9S8/NF hetero-catalyst for efficient oxygen evolution reaction
Authors
Xue Ma
Xin-Yu Zhang
Min Yang
Jing-Yi Xie
Ren-Qing Lv
Yong-Ming Chai
Bin Dong
Publication date
01-03-2021
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 5/2021
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01704-x

Other articles of this Issue 5/2021

Rare Metals 5/2021 Go to the issue

Premium Partners