Skip to main content
Top
Published in: Rare Metals 5/2021

09-06-2020

High-performance SiO/C as anode materials for lithium-ion batteries using commercial SiO and glucose as raw materials

Authors: Zi-Long Wu, Shan-Bao Ji, Lie-Kai Liu, Tian Xie, Long Tan, Hao Tang, Run-Guang Sun

Published in: Rare Metals | Issue 5/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Silicon monoxide (SiO) is considered as a promising anode material for lithium-ion batteries (LIBs) due to its higher capacity and longer cycle life than those of graphite and silicon, respectively. In this study, glucose was developed as a suitable and inexpensive carbon source to synthesize SiO/C composite with a high performance. In addition, the effects of the calcination temperature and the amount of carbon source on the electrochemical performance of the SiO/C composite were investigated. The addition of 5 wt% glucose and a calcination temperature of 800 °C demonstrated the optimum conditions for SiO/C synthesis. The resultant SiO/C showed an initial charge capacity of 1259 mAh·g−1 and a high initial coulombic efficiency of 71.9%. A charge capacity of 850 mAh·g−1 after 100 cycles at 200 mA·g−1 was achieved, demonstrating the best value of the SiO/C-based materials. The composition changes of SiO under the calcination temperature played a significant role in the electrochemical performance. Overall, the obtained SiO/C material with a high capacity and good stability is suitable for LIB applications as an anode material.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference Arico AS, Bruce P, Scrosati B. Nanostructured materials for advanced energy conversion and storage devices. Nat Mater. 2005;4(5):366.CrossRef Arico AS, Bruce P, Scrosati B. Nanostructured materials for advanced energy conversion and storage devices. Nat Mater. 2005;4(5):366.CrossRef
[2]
go back to reference Armand M, Tarascon J. Building better batteries. Nature. 2008;451(7179):652.CrossRef Armand M, Tarascon J. Building better batteries. Nature. 2008;451(7179):652.CrossRef
[3]
go back to reference An Y, Chen S, Zou M, Geng LB, Sun XZ, Zhang X, Wang K, Ma YW. Improving anode performances of lithium-ion capacitors employing carbon–Si composites. Rare Met. 2019;38(12):1113.CrossRef An Y, Chen S, Zou M, Geng LB, Sun XZ, Zhang X, Wang K, Ma YW. Improving anode performances of lithium-ion capacitors employing carbon–Si composites. Rare Met. 2019;38(12):1113.CrossRef
[4]
go back to reference Li J, Yang JY, Wang JT, Lu SG. A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries. Rare Met. 2019;38(3):199.CrossRef Li J, Yang JY, Wang JT, Lu SG. A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries. Rare Met. 2019;38(3):199.CrossRef
[5]
go back to reference Sato K, Noguchi M, Demachi A, Oki N, Endo M. A mechanism of lithium storage in disordered carbons. Science. 1994;264(22):556.CrossRef Sato K, Noguchi M, Demachi A, Oki N, Endo M. A mechanism of lithium storage in disordered carbons. Science. 1994;264(22):556.CrossRef
[7]
go back to reference Deshpande R, Chen YT, Verbrugge MW. Modeling diffusion-induced stress in nanowire electrode structures. J Power Sources. 2010;195(15):5081.CrossRef Deshpande R, Chen YT, Verbrugge MW. Modeling diffusion-induced stress in nanowire electrode structures. J Power Sources. 2010;195(15):5081.CrossRef
[8]
go back to reference Obrovac MN, Christensen L. Structural changes in silicon anodes during lithium insertion/extraction. Solid State Lett. 2004;7(5):A93.CrossRef Obrovac MN, Christensen L. Structural changes in silicon anodes during lithium insertion/extraction. Solid State Lett. 2004;7(5):A93.CrossRef
[9]
go back to reference Obrovac MN, Christensen L Le, Dahn JR. Alloy design for lithium-ion battery anodes. J Electrochem Soc. 2007;154(9):A849.CrossRef Obrovac MN, Christensen L Le, Dahn JR. Alloy design for lithium-ion battery anodes. J Electrochem Soc. 2007;154(9):A849.CrossRef
[10]
go back to reference Aurbach D. Review of selected electrode-solution interactions which determine the performance of Li and Li-Ion batteries. J Power Sources. 2000;89(2):206.CrossRef Aurbach D. Review of selected electrode-solution interactions which determine the performance of Li and Li-Ion batteries. J Power Sources. 2000;89(2):206.CrossRef
[11]
go back to reference Chan CK, Ruffo R, Hong SS, Cui Y. Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes. J Power Sources. 2009;189(2):1132.CrossRef Chan CK, Ruffo R, Hong SS, Cui Y. Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes. J Power Sources. 2009;189(2):1132.CrossRef
[12]
go back to reference Wu ZH, Yang JY, Yu B, Shi BM, Zhao CR, Yu ZL. Self-healing alginate carboxymethyl chitosan porous scaffold as an effective binder for silicon anodes in lithium-ion batteries. Rare Met. 2019;38(9):832.CrossRef Wu ZH, Yang JY, Yu B, Shi BM, Zhao CR, Yu ZL. Self-healing alginate carboxymethyl chitosan porous scaffold as an effective binder for silicon anodes in lithium-ion batteries. Rare Met. 2019;38(9):832.CrossRef
[13]
go back to reference Zhang T, Gao J, Zhang HP, Yang LC. Preparation and electrochemical properties of core-shell Si/SiO nanocomposite as anode material for lithium ion batteries. Electrochem Commun. 2007;9(5):886.CrossRef Zhang T, Gao J, Zhang HP, Yang LC. Preparation and electrochemical properties of core-shell Si/SiO nanocomposite as anode material for lithium ion batteries. Electrochem Commun. 2007;9(5):886.CrossRef
[14]
go back to reference Jeong G, Kim JH, Kim YU, Kim YJ. Multifunctional TiO2 coating for a SiO anode in Li-ion batteries. J Mater Chem. 2012;22(16):7999.CrossRef Jeong G, Kim JH, Kim YU, Kim YJ. Multifunctional TiO2 coating for a SiO anode in Li-ion batteries. J Mater Chem. 2012;22(16):7999.CrossRef
[15]
go back to reference Schulmeister K, Mader W. TEM investigation on the structure of amorphous silicon monoxide. J Non-Cryst Solids. 2003;320(1–3):143.CrossRef Schulmeister K, Mader W. TEM investigation on the structure of amorphous silicon monoxide. J Non-Cryst Solids. 2003;320(1–3):143.CrossRef
[16]
go back to reference Miyachi M, Yamamoto H, Kawai H, Ohta T, Shirakata M. Analysis of SiO anodes for lithium-ion batteries. J Electrochem Soc. 2005;152(10):A2089.CrossRef Miyachi M, Yamamoto H, Kawai H, Ohta T, Shirakata M. Analysis of SiO anodes for lithium-ion batteries. J Electrochem Soc. 2005;152(10):A2089.CrossRef
[17]
go back to reference Hwa B, Kim JH, Sohn HJ. A new approach to synthesis of porous SiOx anode for Li-ion batteries via chemical etching of Si crystallites. Electrochim Acta. 2014;117(20):426. Hwa B, Kim JH, Sohn HJ. A new approach to synthesis of porous SiOx anode for Li-ion batteries via chemical etching of Si crystallites. Electrochim Acta. 2014;117(20):426.
[18]
go back to reference Yamamura H, Nakanishi S. Reduction effect of irreversible capacity on SiO anode material heat-reacted with Fe2O3. J Power Sources. 2013;232(15):264.CrossRef Yamamura H, Nakanishi S. Reduction effect of irreversible capacity on SiO anode material heat-reacted with Fe2O3. J Power Sources. 2013;232(15):264.CrossRef
[19]
go back to reference Kim JH, Park CM, Kim H. Electrochemical behavior of SiO anode for Li secondary batteries. J Electroanal Chem. 2011;661(1):245.CrossRef Kim JH, Park CM, Kim H. Electrochemical behavior of SiO anode for Li secondary batteries. J Electroanal Chem. 2011;661(1):245.CrossRef
[20]
go back to reference Si Q, Hanai K, Ichikawa T, Phillippa MB, Hirano A, Imanishi N, Yamamoto O, Takeda Y. Improvement of cyclic behavior of a ball-milled SiO and carbon nanofiber composite anode for lithium-ion batteries. J Power Sources. 2011;196(22):9774.CrossRef Si Q, Hanai K, Ichikawa T, Phillippa MB, Hirano A, Imanishi N, Yamamoto O, Takeda Y. Improvement of cyclic behavior of a ball-milled SiO and carbon nanofiber composite anode for lithium-ion batteries. J Power Sources. 2011;196(22):9774.CrossRef
[21]
go back to reference Kim JH, Sohn HJ, Kim H, Jeong G, Choi W. Enhanced cycle performance of SiO-C composite anode for lithium-ion batteries. J Power Sources. 2007;170(2):456.CrossRef Kim JH, Sohn HJ, Kim H, Jeong G, Choi W. Enhanced cycle performance of SiO-C composite anode for lithium-ion batteries. J Power Sources. 2007;170(2):456.CrossRef
[22]
go back to reference Hwa Y, Park CM, Sohn HJ. Modified SiO as a high performance anode for Li-ion batteries. J Power Sources. 2013;222:129.CrossRef Hwa Y, Park CM, Sohn HJ. Modified SiO as a high performance anode for Li-ion batteries. J Power Sources. 2013;222:129.CrossRef
[23]
go back to reference Guo C, Wang D, Wang Q, Wang B, Liu T. A SiO/graphene nanocomposite as a high stability anode material for lithium-ion batteries. Int J Electrochem Sci. 2012;7(9):8745. Guo C, Wang D, Wang Q, Wang B, Liu T. A SiO/graphene nanocomposite as a high stability anode material for lithium-ion batteries. Int J Electrochem Sci. 2012;7(9):8745.
[24]
go back to reference Nguyen DT, Nguyen CC, Kim JS, Kim JY, Song SW. Facile synthesis and high anode performance of carbon fiber-interwoven amorphous nano-SiOx/graphene for rechargeable lithium batteries. ACS Appl Mater Inter. 2013;5(21):11234.CrossRef Nguyen DT, Nguyen CC, Kim JS, Kim JY, Song SW. Facile synthesis and high anode performance of carbon fiber-interwoven amorphous nano-SiOx/graphene for rechargeable lithium batteries. ACS Appl Mater Inter. 2013;5(21):11234.CrossRef
[25]
go back to reference Yuan X, Xin H, Qin X, Li X. Self-assembly of SiO/reduced graphene oxide composite as high-performance anode materials for Li-ion batteries. Electrochim Acta. 2015;155:251.CrossRef Yuan X, Xin H, Qin X, Li X. Self-assembly of SiO/reduced graphene oxide composite as high-performance anode materials for Li-ion batteries. Electrochim Acta. 2015;155:251.CrossRef
[26]
go back to reference Chen Z, Qin Y, Amine K. Sun YK Role of Surface coating on cathode materials for lithium-ion batteries. Mater Chem. 2010;20(36):7606.CrossRef Chen Z, Qin Y, Amine K. Sun YK Role of Surface coating on cathode materials for lithium-ion batteries. Mater Chem. 2010;20(36):7606.CrossRef
[27]
go back to reference Liu WR, Yen YC, Wu HC, Martin W. Nano-porous SiO/carbon composite anode for lithium-ion batteries. J Appl Electrochem. 2009;39(9):1643.CrossRef Liu WR, Yen YC, Wu HC, Martin W. Nano-porous SiO/carbon composite anode for lithium-ion batteries. J Appl Electrochem. 2009;39(9):1643.CrossRef
[28]
go back to reference Lu ZW, Xing LZ, Liu J. Microstructure and electrochemical performance of Si–SiO2–C composites as the negative material for Li-ion batteries. J Power Sources. 2010;195(13):4304.CrossRef Lu ZW, Xing LZ, Liu J. Microstructure and electrochemical performance of Si–SiO2–C composites as the negative material for Li-ion batteries. J Power Sources. 2010;195(13):4304.CrossRef
[29]
go back to reference Wu WJ, Shi J, Liang YH, Liu F, Peng Y, Yang HB. A low-cost and advanced SiOx–C composite with hierarchical structure as an anode material for lithium-ion batteries. Phys Chem Chem Phys. 2015;17(20):13451.CrossRef Wu WJ, Shi J, Liang YH, Liu F, Peng Y, Yang HB. A low-cost and advanced SiOx–C composite with hierarchical structure as an anode material for lithium-ion batteries. Phys Chem Chem Phys. 2015;17(20):13451.CrossRef
[30]
go back to reference Wang J, Zhao HL, He JC, Wang CM, Wang J. Nano-sized SiOx/C composite anode for lithium ion batteries. J Power Sources. 2011;196(10):4811.CrossRef Wang J, Zhao HL, He JC, Wang CM, Wang J. Nano-sized SiOx/C composite anode for lithium ion batteries. J Power Sources. 2011;196(10):4811.CrossRef
[31]
go back to reference Guo H, Mao R, Yang XJ, Chen J. Hollow nanotubular SiOx templated by cellulose fibers for lithium ion batteries. Electrochim Acta. 2012;74:271.CrossRef Guo H, Mao R, Yang XJ, Chen J. Hollow nanotubular SiOx templated by cellulose fibers for lithium ion batteries. Electrochim Acta. 2012;74:271.CrossRef
[32]
go back to reference Lv PP, Zhao HL, Gao CH, Zhang TH, Liu X. Highly efficient and scalable synthesis of SiOx/C composite with core-shell nanostructure as high-performance anode material for lithium ion batteries. Electrochim Acta. 2015;152:345.CrossRef Lv PP, Zhao HL, Gao CH, Zhang TH, Liu X. Highly efficient and scalable synthesis of SiOx/C composite with core-shell nanostructure as high-performance anode material for lithium ion batteries. Electrochim Acta. 2015;152:345.CrossRef
[33]
go back to reference Lv PP, Zhao HL, Gao CH, Zhang TH, Liu X. SiOx–C dual-phase glass for lithium ion battery anode with high capacity and stable cycling performance. J Power Sources. 2015;274:542.CrossRef Lv PP, Zhao HL, Gao CH, Zhang TH, Liu X. SiOx–C dual-phase glass for lithium ion battery anode with high capacity and stable cycling performance. J Power Sources. 2015;274:542.CrossRef
[34]
go back to reference Yang J, Takeda Y, Imanishi N, Capiglia C, Xie JY, Yamamoto O. SiOx based anodes for secondary lithium batteries. Solid State Ionics. 2002;152:125.CrossRef Yang J, Takeda Y, Imanishi N, Capiglia C, Xie JY, Yamamoto O. SiOx based anodes for secondary lithium batteries. Solid State Ionics. 2002;152:125.CrossRef
[35]
go back to reference Wang J, Yang J, Tang Y, Liu J, Zhang Y, Liang G. Size-dependent surface phase change of lithium iron phosphate during carbon coating. Nat Commun. 2014;5:4415.CrossRef Wang J, Yang J, Tang Y, Liu J, Zhang Y, Liang G. Size-dependent surface phase change of lithium iron phosphate during carbon coating. Nat Commun. 2014;5:4415.CrossRef
[36]
go back to reference Morita T, Takami N. Nano Si cluster-SiOx-C composite material as high-capacity anode material for rechargeable lithium batteries. J Electrochem Soc. 2006;153(2):A425.CrossRef Morita T, Takami N. Nano Si cluster-SiOx-C composite material as high-capacity anode material for rechargeable lithium batteries. J Electrochem Soc. 2006;153(2):A425.CrossRef
[37]
go back to reference Wang N, Tang Y, Zhang Y, Lee C. Si nanowires grown from silicon oxide. Chem Phys Lett. 1999;299(2):237.CrossRef Wang N, Tang Y, Zhang Y, Lee C. Si nanowires grown from silicon oxide. Chem Phys Lett. 1999;299(2):237.CrossRef
[38]
go back to reference Wang J, Zhou M, Tan G, Chen S, Wu F, Lu J, Amine K. Encapsulating micronano Si/SiOx into conjugated nitrogen-doped carbon as binder-free monolithic anodes for advanced lithium ion batteries. Nanoscale. 2015;7(17):8023.CrossRef Wang J, Zhou M, Tan G, Chen S, Wu F, Lu J, Amine K. Encapsulating micronano Si/SiOx into conjugated nitrogen-doped carbon as binder-free monolithic anodes for advanced lithium ion batteries. Nanoscale. 2015;7(17):8023.CrossRef
[39]
go back to reference Xia M, Zhou Z, Su YF, Li YR, Wu YF, Zhang HB. Scalable synthesis SiO@C anode by fluidization thermal chemical vapor deposition in fluidized bed reactor for high-energy lithium-ion battery. Appl Surf Sci. 2019;467:298.CrossRef Xia M, Zhou Z, Su YF, Li YR, Wu YF, Zhang HB. Scalable synthesis SiO@C anode by fluidization thermal chemical vapor deposition in fluidized bed reactor for high-energy lithium-ion battery. Appl Surf Sci. 2019;467:298.CrossRef
[40]
go back to reference Gnanaraj JS, Levi M, Levi E, Salitra G, Aurbach D, Fischer JE. Comparison between the electrochemical behavior of disordered carbons and graphite electrodes in connection with their structure. J Electrochem Soc. 2001;148(6):A525.CrossRef Gnanaraj JS, Levi M, Levi E, Salitra G, Aurbach D, Fischer JE. Comparison between the electrochemical behavior of disordered carbons and graphite electrodes in connection with their structure. J Electrochem Soc. 2001;148(6):A525.CrossRef
Metadata
Title
High-performance SiO/C as anode materials for lithium-ion batteries using commercial SiO and glucose as raw materials
Authors
Zi-Long Wu
Shan-Bao Ji
Lie-Kai Liu
Tian Xie
Long Tan
Hao Tang
Run-Guang Sun
Publication date
09-06-2020
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 5/2021
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01445-x

Other articles of this Issue 5/2021

Rare Metals 5/2021 Go to the issue

Premium Partners