Skip to main content
Erschienen in: Rare Metals 9/2021

16.12.2019

A comparison of core–shell Si/C and embedded structure Si/C composites as negative materials for lithium-ion batteries

verfasst von: Shuai-Jin Wu, Zhao-Hui Wu, Sheng Fang, Xiao-Peng Qi, Bing Yu, Juan-Yu Yang

Erschienen in: Rare Metals | Ausgabe 9/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Silicon materials have attracted wide attention as negative materials due to exceptional gravimetric capacity and abundance. The strategy of using nano-silicon materials as structural units to construct nano/micro-structured silicon-based negative materials for lithium-ion batteries has come into sight in recent years. In order to provide guidance for the material structure design of micro-sized silicon-based negative materials in practical application, in this work, two commercialized nano/micro-structured silicon-based negative materials with a specific capacity of about 650 mAh·g−1 were investigated and compared in the aspects of material microstructure, electrochemical performance of half cells, and electrode morphological evolution during cycling. The cycling performance (with capacity retention ratio of about 17% higher after 100 cycles) and electrode structure maintenance of the embedded structure Si/C material are superior to those of core–shell Si/C material. This research can provide guidance on design and application of nano/micro-structured silicon-based negative materials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Huggins RA, Boukamp BA. All-solid electrodes with mixed conductor matrix. J Electrochem Soc. 1984;128(4):725. Huggins RA, Boukamp BA. All-solid electrodes with mixed conductor matrix. J Electrochem Soc. 1984;128(4):725.
[2]
Zurück zum Zitat Winter M, Besenhard JO, Spahr ME, Novak P. ChemInform abstract: insertion electrode materials for rechargeable lithium batteries. Cheminform. 1998;29(37):725. Winter M, Besenhard JO, Spahr ME, Novak P. ChemInform abstract: insertion electrode materials for rechargeable lithium batteries. Cheminform. 1998;29(37):725.
[3]
Zurück zum Zitat Nam KT, Kim DW, Yoo PJ, Chiang CY, Meethong N, Hammond PT, Chiang YM, Belcher AM. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science. 2006;312(5775):885.CrossRef Nam KT, Kim DW, Yoo PJ, Chiang CY, Meethong N, Hammond PT, Chiang YM, Belcher AM. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science. 2006;312(5775):885.CrossRef
[4]
Zurück zum Zitat Li J, Yang JY, Wang JT, Lu SG. A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries. Rare Met. 2019;38(3):199.CrossRef Li J, Yang JY, Wang JT, Lu SG. A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries. Rare Met. 2019;38(3):199.CrossRef
[5]
Zurück zum Zitat Wu ZH, Yang JY, Yu B, Shi BM, Zhao CR, Yu ZL. Self-healing alginate–carboxymethyl chitosan porous scaffold as an effective binder for silicon anodes in lithium-ion batteries. Rare Met. 2019;38(9):832.CrossRef Wu ZH, Yang JY, Yu B, Shi BM, Zhao CR, Yu ZL. Self-healing alginate–carboxymethyl chitosan porous scaffold as an effective binder for silicon anodes in lithium-ion batteries. Rare Met. 2019;38(9):832.CrossRef
[6]
Zurück zum Zitat Su L, Jing Y, Zhou Z. Li ion battery materials with core–shell nanostructures. Nanoscale. 2011;3(10):3967.CrossRef Su L, Jing Y, Zhou Z. Li ion battery materials with core–shell nanostructures. Nanoscale. 2011;3(10):3967.CrossRef
[7]
Zurück zum Zitat Lin D, Lu Z, Hsu PC, Lee HR, Liu N, Zhao J, Wang HT, Liu C, Cui Y. High tap density secondary silicon particle anodes by scalable mechanical pressing for lithium-ion batteries. Energy Environ Sci. 2015;8(8):2371.CrossRef Lin D, Lu Z, Hsu PC, Lee HR, Liu N, Zhao J, Wang HT, Liu C, Cui Y. High tap density secondary silicon particle anodes by scalable mechanical pressing for lithium-ion batteries. Energy Environ Sci. 2015;8(8):2371.CrossRef
[8]
Zurück zum Zitat Li J, Yang JY, Wang JT, Lu SG. A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries. Rare Met. 2017;38(3):199.CrossRef Li J, Yang JY, Wang JT, Lu SG. A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries. Rare Met. 2017;38(3):199.CrossRef
[9]
Zurück zum Zitat Hou YL, Wang RM, Zhang JT. Editorial for rare metals, special issue on nanomaterials and rechargeable battery applications. Rare Met. 2017;36(5):305.CrossRef Hou YL, Wang RM, Zhang JT. Editorial for rare metals, special issue on nanomaterials and rechargeable battery applications. Rare Met. 2017;36(5):305.CrossRef
[10]
Zurück zum Zitat Ren W, Zhang Z, Wang Y, Tan Q, Zhong Z, Su F. Preparation of porous silicon/carbon microspheres as high performance anode materials for lithium ion batteries. J Mater Chem A. 2015;3(11):5859.CrossRef Ren W, Zhang Z, Wang Y, Tan Q, Zhong Z, Su F. Preparation of porous silicon/carbon microspheres as high performance anode materials for lithium ion batteries. J Mater Chem A. 2015;3(11):5859.CrossRef
[11]
Zurück zum Zitat Yi R, Dai F, Gordin ML, Chen S, Wang D. Lithium-ion batteries: micro-sized Si–C composite with interconnected nanoscale building blocks as high-performance anodes for practical application in lithium-ion batteries. Adv Energy Mater. 2013;3(3):273.CrossRef Yi R, Dai F, Gordin ML, Chen S, Wang D. Lithium-ion batteries: micro-sized Si–C composite with interconnected nanoscale building blocks as high-performance anodes for practical application in lithium-ion batteries. Adv Energy Mater. 2013;3(3):273.CrossRef
[12]
Zurück zum Zitat Liu N, Lu Z, Zhao J, Mcdowell MT, Lee HW, Zhao W, Cui Y. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat Nanotechnol. 2014;9(3):187.CrossRef Liu N, Lu Z, Zhao J, Mcdowell MT, Lee HW, Zhao W, Cui Y. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat Nanotechnol. 2014;9(3):187.CrossRef
[13]
Zurück zum Zitat Yi R, Dai F, Gordin ML, Sohn H, Wang D. Influence of silicon nanoscale building blocks size and carbon coating on the performance of micro-sized Si–C composite Li-ion anodes. Adv Energy Mater. 2013;3(11):1507.CrossRef Yi R, Dai F, Gordin ML, Sohn H, Wang D. Influence of silicon nanoscale building blocks size and carbon coating on the performance of micro-sized Si–C composite Li-ion anodes. Adv Energy Mater. 2013;3(11):1507.CrossRef
[14]
Zurück zum Zitat Kim SY, Lee J, Kim BH, Kim YJ, Yang KS, Park MS. Facile synthesis of carbon-coated silicon/graphite spherical composites for high-performance lithium-ion batteries. ACS Appl Mater Interfaces. 2016;8(19):12109.CrossRef Kim SY, Lee J, Kim BH, Kim YJ, Yang KS, Park MS. Facile synthesis of carbon-coated silicon/graphite spherical composites for high-performance lithium-ion batteries. ACS Appl Mater Interfaces. 2016;8(19):12109.CrossRef
[15]
Zurück zum Zitat Magasinski A, Dixon P, Hertzberg B, Kvit A, Ayala J, Yushin G. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat Mater. 2010;9(4):353.CrossRef Magasinski A, Dixon P, Hertzberg B, Kvit A, Ayala J, Yushin G. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat Mater. 2010;9(4):353.CrossRef
[16]
Zurück zum Zitat Xu Q, Li JY, Sun JK, Yin YX, Wan LJ, Guo YG. Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes. Adv Energy Mater. 2016;7(3):69882. Xu Q, Li JY, Sun JK, Yin YX, Wan LJ, Guo YG. Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes. Adv Energy Mater. 2016;7(3):69882.
[17]
Zurück zum Zitat Wu S, Yu B, Wu Z, Fang S, Shi B, Yang J. Effect of particle size distribution on the electrochemical performance of micro-sized silicon-based negative materials. Rsc Adv. 2018;8(16):8544.CrossRef Wu S, Yu B, Wu Z, Fang S, Shi B, Yang J. Effect of particle size distribution on the electrochemical performance of micro-sized silicon-based negative materials. Rsc Adv. 2018;8(16):8544.CrossRef
[18]
Zurück zum Zitat Wu S, Yang J, Yu B, Fang S, Wu Z, Shi B. Nano/micro structured silicon-based negative materials. Prog Chem. 2018;30(2/3):272. Wu S, Yang J, Yu B, Fang S, Wu Z, Shi B. Nano/micro structured silicon-based negative materials. Prog Chem. 2018;30(2/3):272.
[19]
Zurück zum Zitat Pan Q, Zuo P, Mu T, Du C, Cheng X, Ma Y, Gao Y, Yin G. Improved electrochemical performance of micro-sized SiO-based composite anode by prelithiation of stabilized lithium metal powder. J Power Sources. 2017;347:170.CrossRef Pan Q, Zuo P, Mu T, Du C, Cheng X, Ma Y, Gao Y, Yin G. Improved electrochemical performance of micro-sized SiO-based composite anode by prelithiation of stabilized lithium metal powder. J Power Sources. 2017;347:170.CrossRef
[20]
Zurück zum Zitat Jaumann T, Gerwig M, Balach J, Oswalda S, Brendlerb E, Hauserd R, Kiebackd B, Eckerte J, Giebelera L, Krokeb E. Dichlorosilane-derived nano-silicon inside hollow carbon spheres as high-performance anode in Li-ion batteries. J Mater Chem A. 2017;5(19):9262.CrossRef Jaumann T, Gerwig M, Balach J, Oswalda S, Brendlerb E, Hauserd R, Kiebackd B, Eckerte J, Giebelera L, Krokeb E. Dichlorosilane-derived nano-silicon inside hollow carbon spheres as high-performance anode in Li-ion batteries. J Mater Chem A. 2017;5(19):9262.CrossRef
[21]
Zurück zum Zitat Xu Q, Li JY, Yin YX, Kong YM, Guo YG, Wan LJ. Nano/micro-structured Si/C anodes with high initial coulombic efficiency in Li-ion batteries. Chem Asian J. 2016;11(8):1205.CrossRef Xu Q, Li JY, Yin YX, Kong YM, Guo YG, Wan LJ. Nano/micro-structured Si/C anodes with high initial coulombic efficiency in Li-ion batteries. Chem Asian J. 2016;11(8):1205.CrossRef
[22]
Zurück zum Zitat Ren W, Zhang Z, Wang Y, Kan G, Tan Q, Zhong Z, Su F. Preparation of porous carbon microspheres anode materials from fine needle coke powders for lithium-ion batteries. Rsc Adv. 2015;5(15):11115.CrossRef Ren W, Zhang Z, Wang Y, Kan G, Tan Q, Zhong Z, Su F. Preparation of porous carbon microspheres anode materials from fine needle coke powders for lithium-ion batteries. Rsc Adv. 2015;5(15):11115.CrossRef
[23]
Zurück zum Zitat Ko M, Chae S, Ma J, Kim N, Lee HW, Cui Y, Cho J. Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries. Nano Energy. 2016;1(9):16113. Ko M, Chae S, Ma J, Kim N, Lee HW, Cui Y, Cho J. Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries. Nano Energy. 2016;1(9):16113.
[24]
Zurück zum Zitat Li FS, Wu YS, Chou J, Wu NL. A dimensionally stable and fast-discharging graphite-silicon composite Li-ion battery anode enabled by electrostatically self-assembled multifunctional polymer-blend coating. Chem Commun. 2015;51(40):8429.CrossRef Li FS, Wu YS, Chou J, Wu NL. A dimensionally stable and fast-discharging graphite-silicon composite Li-ion battery anode enabled by electrostatically self-assembled multifunctional polymer-blend coating. Chem Commun. 2015;51(40):8429.CrossRef
[25]
Zurück zum Zitat Yoon YS, Jee SH, Lee SH, Nam SC. Nano Si-coated graphite composite anode synthesized by semi-mass production ball milling for lithium secondary batteries. Surf Coat Technol. 2011;206(2–3):553.CrossRef Yoon YS, Jee SH, Lee SH, Nam SC. Nano Si-coated graphite composite anode synthesized by semi-mass production ball milling for lithium secondary batteries. Surf Coat Technol. 2011;206(2–3):553.CrossRef
[26]
Zurück zum Zitat Kim JS, Nguyen C, Kim HJ, Song SW. Siloxane-capped amorphous nano-SiOx/graphite with improved dispersion ability and battery anode performance. RSC Adv. 2014;4(25):12878.CrossRef Kim JS, Nguyen C, Kim HJ, Song SW. Siloxane-capped amorphous nano-SiOx/graphite with improved dispersion ability and battery anode performance. RSC Adv. 2014;4(25):12878.CrossRef
[27]
Zurück zum Zitat Chae S, Kim N, Ma J, Cho J, Ko M. One-to-one comparison of graphite-blended negative electrodes using silicon nanolayer-embedded graphite versus commercial benchmarking materials for high-energy lithium-ion batteries. Adv Energy Mater. 2017;7(15):1700071.CrossRef Chae S, Kim N, Ma J, Cho J, Ko M. One-to-one comparison of graphite-blended negative electrodes using silicon nanolayer-embedded graphite versus commercial benchmarking materials for high-energy lithium-ion batteries. Adv Energy Mater. 2017;7(15):1700071.CrossRef
[28]
Zurück zum Zitat Lee SW, Lee HW, Ryu I, Nix WD, Gao H, Cui Y. Kinetics and fracture resistance of lithiated silicon nanostructure pairs controlled by their mechanical interaction. Nat Commun. 2015;6:7533.CrossRef Lee SW, Lee HW, Ryu I, Nix WD, Gao H, Cui Y. Kinetics and fracture resistance of lithiated silicon nanostructure pairs controlled by their mechanical interaction. Nat Commun. 2015;6:7533.CrossRef
[29]
Zurück zum Zitat Mcdowell MT, Lee SW, Wang C, Cui Y. The effect of metallic coatings and crystallinity on the volume expansion of silicon during electrochemical lithiation/delithiation. Nano Energy. 2012;1(3):401.CrossRef Mcdowell MT, Lee SW, Wang C, Cui Y. The effect of metallic coatings and crystallinity on the volume expansion of silicon during electrochemical lithiation/delithiation. Nano Energy. 2012;1(3):401.CrossRef
[30]
Zurück zum Zitat Sandu G, Brassart L, Gohy JF, Melinte S, Vlad A. Surface coating mediated swelling and fracture of silicon nanowires during lithiation. ACS Nano. 2014;8(9):9427.CrossRef Sandu G, Brassart L, Gohy JF, Melinte S, Vlad A. Surface coating mediated swelling and fracture of silicon nanowires during lithiation. ACS Nano. 2014;8(9):9427.CrossRef
Metadaten
Titel
A comparison of core–shell Si/C and embedded structure Si/C composites as negative materials for lithium-ion batteries
verfasst von
Shuai-Jin Wu
Zhao-Hui Wu
Sheng Fang
Xiao-Peng Qi
Bing Yu
Juan-Yu Yang
Publikationsdatum
16.12.2019
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 9/2021
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-019-01354-8

Weitere Artikel der Ausgabe 9/2021

Rare Metals 9/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.