skip to main content
research-article

A practical algorithm for rendering interreflections with all-frequency BRDFs

Published:07 February 2014Publication History
Skip Abstract Section

Abstract

Algorithms for rendering interreflection (or indirect illumination) effects often make assumptions about the frequency range of the materials' reflectance properties. For example, methods based on Virtual Point Lights (VPLs) perform well for diffuse and semi-glossy materials but not so for highly glossy or specular materials; the situation is reversed for methods based on ray tracing. In this article, we present a practical algorithm for rendering interreflection effects with all-frequency BRDFs. Our method builds upon a spherical Gaussian representation of the BRDF, based on which a novel mathematical development of the interreflection equation is made. This allows us to efficiently compute one-bounce interreflection from a triangle to a shading point, by using an analytic formula combined with a piecewise linear approximation. We show through evaluation that this method is accurate for a wide range of BRDFs. We further introduce a hierarchical integration method to handle complex scenes (i.e., many triangles) with bounded errors. Finally, we have implemented the present algorithm on the GPU, achieving rendering performance ranging from near interactive to a few seconds per frame for various scenes with different complexity.

Skip Supplemental Material Section

Supplemental Material

a10-sidebyside.mp4

mp4

21.4 MB

References

  1. Aner Ben-Artzi, Kevin Egan, Fredo Durand, and Ravi Ramamoorthi. 2008. A precomputed polynomial representation for interactive BRDF editing with global illumination. ACM Trans. Graph. 27, 2, 13:1--13:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Min Chen and James Arvo. 2000. Theory and application of specular path perturbation. ACM Trans. Graph. 19, 4, 246--278. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Ewen Cheslack-Postava, Rui Wang, Oskar Akerlund, and Fabio Pellacini. 2008. Fast, realistic lighting and material design using nonlinear cut approximation. ACM Trans. Graph. 27, 5, 128:1--128:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Cyril Crassin, Fabrice Neyret, Miguel Sainz, Simon Green, and El-Mar Eisemann. 2011. Interactive indirect illumination using voxel cone tracing. Comput. Graph. Forum 30, 7, 1921--1930.Google ScholarGoogle ScholarCross RefCross Ref
  5. Carsten Dachsbacher and Marc Stamminger. 2005. Reflective shadow maps. In Proceedings of the Symposium on Interactive 3D Graphics and Games (I3D'05). 203--231. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Carsten Dachsbacher and Marc Stamminger. 2006. Splatting indirect illumination. In Proceedings of the Symposium on Interactive 3D Graphics and Games (I3D'06). 93--100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Tomas Davidovic, Jaroslav Krivanek, Milos Hasan, Philipp Slusallek, and Kavita Bala. 2010. Combining global and local virtual lights for detailed glossy illumination. ACM Trans. Graph. 29, 6, 143:1--143:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Charles De Rousiers, Adrien Bousseau, Kartic Subr, Nicolas Holzschuch, and Ravi Ramamoorthi. 2012. Real-time rendering of rough refraction. IEEE Trans. Vis. Comput. Graph. 18, 10, 1591--1602. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. William Donnelly and Andrew Lauritzen. 2006. Variance shadow maps. In Proceedings of the Symposium on Interactive 3D Graphics and Games (I3D'06). 161--165. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Bartosz Fabianowski and John Dingliana. 2009. Interactive global photon mapping. Comput. Graph. Forum 28, 4, 1151--1159. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Vclav Gassenbauer, Jaroslav Kivnek, and Kadi Bouatouch. 2009. Spatial directional radiance caching. Comput. Graph. Forum 28, 4, 1189--1198. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Iliyan Georgiev, Jaroslav Krivanek, Tomas Davidovic, and Philipp Slusallek. 2012. Light transport simulation with vertex connection and merging. ACM Trans. Graph. 31, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Toshiya Hachisuka and Henrik Wann Jensen. 2010. Parallel progressive photon mapping on gpus. In Siggraph Asia Sketches. 54:1--54:1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Toshiya Hachisuka, Jacopo Pantaleoni, and Henrik Wann Jensen. 2012. A path space extension for robust light transport simulation. ACM Trans. Graph. 31, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Charles Han, Bo Sun, Ravi Ramamoorthi, and Eitan Grinspun. 2007. Frequency domain normal map filtering. ACM Trans. Graph. 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Pat Hanrahan, David Salzman, and Larry Aupperle. 1991. A rapid hierarchical radiosity algorithm. In Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'91). 197--206. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Milos Hasan, Jaroslav Krivanek, Bruce Walter, and Kavita Bala. 2009. Virtual spherical lights for many-light rendering of glossy scenes. ACM Trans. Graph. 28, 5, 143:1--143:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Milos Hasan, Fabio Pellacini, and Kavita Bala. 2007. Matrix row-column sampling for the many-light problem. ACM Trans. Graph. 26, 3, 26:1--26:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Matthias Hollander, Tobias Ritschel, Elmar Eisemann, and Tamy Boubekeur. 2011. ManyLoDs: Parallel many-view level-of-detail selection for real-time global illumination. Comput. Graph. Forum 30, 4, 1233--1240. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Kei Iwasaki, Yoshinori Dobashi, and Tomoyuki Nishita. 2012a. Interactive bi-scale editing of highly glossy materials. ACM Trans. Graph. 31, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Kei Iwasaki, Yoshinori Dobashi, Fujiichi Yoshimoto, and Tomoyuki Nishita. 2007. Precomputed radiance transfer for dynamic scenes taking into account light interreflection. In Proceedings of the 18th Eurographics Conference on Rendering Techniques (EGSR'07). 35--44. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Kei Iwasaki, Wataru Furuya, Yoshinori Dobashi, and Tomoyuki Nishita. 2012b. Real-time rendering of dynamic scenes under all-frequency lighting using integral spherical gaussian. Comput. Graph. Forum 31, 727--734. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Wenzel Jakob and Steve Marschner. 2012. Manifold exploration: A markov chain monte carlo technique for rendering scenes with difficult specular transport. ACM Trans. Graph. 31, 4, 58:1--58:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Henrik Wann Jensen. 2001. Realistic Image Synthesis Using Photon Mapping. A. K. Peters, Ltd. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. James T. Kajiya. 1986. The rendering equation. In Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'86). 143--150. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Leif Kobbelt. 2000. Root 3-subdivision. In Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'00). 103--112. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Alexander Keller. 1997. Instant radiosity. In Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'97). 49--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Jaroslav Krivanek, Pascal Gautron, Sumanta Pattanaik, and Kadi Bouatouch. 2005. Radiance caching for efficient global illumination computation. IEEE Trans. Vis. Comput. Graph. 11, 5, 550--561. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Jurgen Laurijssen, Rui Wang, Philip Dutre, and Benedict J. Brown. 2010. Fast estimation and rendering of indirect highlights. Comput. Graph. Forum 29, 4, 1305--1313. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Bradford J. Loos, Lakulish Antani, Kenny Mitchell, Derek Nowrouzezahrai, Wojciech Jarosz, and Peter-Pike Sloan. 2011. Modular radiance transfer. ACM Trans. Graph. 30, 6, 178:1--178:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Morgan Mcguire and David Luebke. 2009. Hardware-accelerated global illumination by image space photon mapping. In Proceedings of the Conference on High Performance Graphics. 77--89. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Don Mitchell and Pat Hanrahan. 1992. Illumination from curved reflectors. In Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'92).283--291. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Ren Ng, Ravi Ramamoorthi, and Pat Hanrahan. 2003. All-frequency shadows using non-linear wavelet lighting approximation. ACM Trans. Graph. 22, 3, 376--381. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Eyal Ofek and Ari Rappoport. 1998. Interactive reflections on curved objects. In Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'98). 333--342. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Adriaan Van Oosterom and Jan Strackee. 1983. The solid angle of a plane triangle. IEEE Trans. Bio-Med. Engin. 30, 2, 125--126.Google ScholarGoogle ScholarCross RefCross Ref
  36. Jiawei Ou and Fabio Pellacini. 2011. LightSlice: Matrix slice sampling for the many-lights problem. ACM Trans. Graph. 30, 6, 179:1--179:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Minghao Pan, Rui Wang, Xinguo Liu, Qunsheng Peng, and Hujun Bao. 2007. Precomputed radiance transfer field for rendering interreflections in dynamic scenes. Comput. Graph. Forum 26, 3, 485--493.Google ScholarGoogle ScholarCross RefCross Ref
  38. Steven G. Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared Hoberock, David Luebke, David Mcallister, Morgan Mcguire, Keith Morley, Austin Robison, and Martin Stich. 2010. OptiX: A general purpose ray tracing engine. ACM Trans. Graph. 29, 4, 66:1--66:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Timothy J. Purcell, Craig Donner, Mike Cammarano, Henrik Wann Jensen, and Pat Hanrahan. 2003. Photon mapping on programmable graphics hardware. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware (HWWS'03). 41--50. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Peiran Ren, Jiaping Wang, Minmin Gong, Stephen Lin, Xin Tong, and Baining Guo. 2013. Global illumination with radiance regression functions. ACM Trans. Graph. 32, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Tobias Ritschel, Thomas Engelhardt, Thorsten Grosch, Hans-Peter Seidel, Jan Kautz, and Carsten Dachsbacher. 2009. Micro-rendering for scalable, parallel final gathering. ACM Trans. Graph. 28, 5, 132:1--132:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Tobias Ritschel, Thorsten Grosch, Carsten Dachsbacher, and Jan Kautz. 2012. State of the art in interactive global illumination. Comput. Graph. Forum 31, 1, 160--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Tobias Ritschel, Thorsten Grosch, Min H. Kim, Hans-Peter Seidel, Carsten Dachsbacher, and Jan Kautz. 2008. Imperfect shadow maps for efficient computation of indirect illumination. ACM Trans. Graph. 27, 5, 129:1--129:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. David Roger and Nicolas Holzschuch. 2006. Accurate specular reflections in real-time. Comput. Graph. Forum 25, 3, 293--302.Google ScholarGoogle ScholarCross RefCross Ref
  45. Musawir A. Shah, Jaakko Konttinen, and Sumanta Pattanaik. 2007. Caustics mapping: An image-space technique for real-time caustics. IEEE Trans. Vis. Comp.Graph. 13, 2, 272--280. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Peter-Pike Sloan, Jan Kautz, and John Snyder. 2002. Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. ACM Trans. Graph. 21, 3, 527--536. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Xin Sun, Kun Zhou, Yanyun Chen, Stephen Lin, Jiaoying Shi, and Baining Guo. 2007. Interactive relighting with dynamic brdfs. ACM Trans. Graph. 26, 3, 27:1--27:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Yu-Ting Tsai and Zen-Chung Shih. 2006. All-frequency precomputed radiance transfer using spherical radial basis functions and clustered tensor approximation. ACM Trans. Graph. 25, 3, 967--976. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Bruce Walter, Adam Arbree, Kavita Bala, and Donald P. Greenberg. 2006. Multidimensional lightcuts. ACM Trans. Graph. 25, 3, 1081--1088. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Bruce Walter, Sebastian Fernandez, Adam Arbree, Kavita Bala, Michael Donikian, and Donald P. Greenberg. 2005. Lightcuts: A scalable approach to illumination. ACM Trans. Graph. 24, 3, 1098--1107. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Bruce Walter, Pramook Khungurn, and Kavita Bala. 2012. Bidirectional lightcuts. ACM Trans. Graph. 31, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Bruce Walter, Shuang Zhao, Nicolas Holzschuch, and Kavita Bala. 2009. Single scattering in refractive media with triangle mesh boundaries. ACM Trans. Graph. 28, 3, 92:1--92:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Jiaping Wang, Peiran Ren, Minmin Gong, John Snyder, and Baining Guo. 2009a. All-frequency rendering of dynamic, spatially-varying reflectance. ACM Trans. Graph. 28, 5, 133:1--133:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Rui Wang, Minghao Pan, Weifeng Chen, Zhong Ren, Kun Zhou, Wei Hua, and Hujun Bao. 2013. Analytic double product integrals for all-frequency relighting. IEEE Trans. Vis. Comput. Graph. 19, 7, 1133--1142. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Rui Wang, Kun Zhou, Minghao Pan, and Hujun Bao. 2009b. An efficient gpu-based approach for interactive global illumination. ACM Trans. Graph. 28, 3, 91:1--91:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Chris Wyman and Scott Davis. 2006. Interactive image-space techniques for approximating caustics. In Proceedings of the Symposium on Interactive 3D Graphics and Games (I3D'06). 153--160. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Kun Xu, Yun-Tao Jia, Hongbo Fu, Shi-Min Hu, and Chiew-Lan Tai. 2008. Spherical piecewise constant basis functions for all-frequency precomputed radiance transfer. IEEE Trans. Vis. Comput. Graph. 14, 2, 454--467. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Kun Xu, Li-Qian Ma, Bo Ren, Rui Wang, and Shi-Min Hu. 2011. Interactive hair rendering and appearance editing under environment lighting. ACM Trans. Graph. 30, 6, 173:1--173:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Kun Xu, Wei-Lun Sun, Zhao Dong, Dan-Yong Zhao, Run-Dong Wu, and Shi-Min Hu. 2013. Anisotropic Spherical Gaussians. ACM Trans. Graph. 32, 6, 209:1--209:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Ling-Qi Yan, Yahan Zhou, Kun Xu, and Rui Wang. 2012. Accurate translucent material rendering under spherical gaussian lights. Comput. Graph. Forum 31, 7, 2267--2276. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Yubo Zhang, Zhao Dong, and Kwan-Liu Ma. 2013. Real-time volume rendering in dynamic lighting environments using precomputed photon mapping. IEEE Trans. Vis. Comput. Graph. 19, 8, 1317--1330. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A practical algorithm for rendering interreflections with all-frequency BRDFs

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 33, Issue 1
          January 2014
          179 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2577382
          Issue’s Table of Contents

          Copyright © 2014 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 7 February 2014
          • Revised: 1 September 2013
          • Accepted: 1 September 2013
          • Received: 1 October 2012
          Published in tog Volume 33, Issue 1

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader