Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

28-10-2021 | Regular Paper | Issue 11/2021

Knowledge and Information Systems 11/2021

3-3FS: ensemble method for semi-supervised multi-label feature selection

Journal:
Knowledge and Information Systems > Issue 11/2021
Authors:
Abdelouahid Alalga, Khalid Benabdeslem, Dou El Kefel Mansouri
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Feature selection has received considerable attention over the past decade. However, it is continuously challenged by new emerging issues. Semi-supervised multi-label learning is one of these promising novel approaches. In this work, we refer to it as an approach that combines data consisting of a huge amount of unlabeled instances with a small number of multi-labeled instances. Semi-supervised multi-label feature selection, like conventional feature selection algorithms, has a rather poor record as regards stability (i.e. robustness with respect to changes in data). To address this weakness and improve the robustness of the feature selection process in high-dimensional data, this document develops an ensemble methodology based on a 3-way resampling of data: (1) Bagging, (2) a random subspace method (RSM) and (3) an additional random sub-labeling strategy (RSL). The proposed framework contributes to enhancing the stability of feature selection algorithms and to improving their performance. Our research findings illustrate that bagging and RSM help improve the stability of the feature selection process and increase learning accuracy, while RSL addresses label correlation, which is a major concern with multi-label data. The paper presents the key findings of a series of experiments, which we conducted on selected benchmark data sets in the classification task. Results are promising, highlighting that the proposed method either outperforms state-of-the-art algorithms or produces at least comparable results.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 11/2021

Knowledge and Information Systems 11/2021 Go to the issue

Premium Partner

    Image Credits