Skip to main content
Top
Published in: Journal of Computational Electronics 2/2020

17-02-2020

3-D Monte Carlo device simulator for variability modeling of p-MOSFETs

Authors: Vinicius V. A. Camargo, Alan C. J. Rossetto, Dragica Vasileska, Gilson I. Wirth

Published in: Journal of Computational Electronics | Issue 2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A device simulator for p-MOSFETs, based on the Monte Carlo method for the solution of the Boltzmann transport equation, was developed, and results and implementation challenges are presented and discussed in detail in this paper. By using a Monte Carlo device simulator (MCDS), it is possible to consider effects that affect state-of-the-art devices that cannot be adequately considered using other methods (drift–diffusion, hydrodynamic, etc.). Novel feature of the simulator is that it treats hole–hole and hole–impurity interactions in real space using particle–particle–particle–mesh coupling method, allowing the simulator to account for random dopant fluctuation and charged traps, responsible for random telegraph noise and bias temperature instability, while having a small computational cost enabling statistical simulations. The MCDS shows excellent agreement between experimental data for the hole drift velocity versus electric field and low-field hole mobility versus doping density.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Grasser, T., Tang, T.-W., Kosina, H., Selberherr, S.: A review of hydrodynamic and energy-transport models for semiconductor device simulation. Proc. IEEE 91(2), 251–274 (2003) Grasser, T., Tang, T.-W., Kosina, H., Selberherr, S.: A review of hydrodynamic and energy-transport models for semiconductor device simulation. Proc. IEEE 91(2), 251–274 (2003)
2.
go back to reference Banoo, K., Lundstrom, M.: Electron transport in a model Si transistor. Solid State Electron. 44(9), 1689–1695 (2000) Banoo, K., Lundstrom, M.: Electron transport in a model Si transistor. Solid State Electron. 44(9), 1689–1695 (2000)
3.
go back to reference Natori, K.: Ballistic MOSFET reproduces current–voltage characteristics of an experimental device. IEEE Electron Device Lett. 23(11), 655–657 (2002) Natori, K.: Ballistic MOSFET reproduces current–voltage characteristics of an experimental device. IEEE Electron Device Lett. 23(11), 655–657 (2002)
4.
go back to reference Laux, S., Fischetti, M.: Monte-Carlo simulation of submicrometer Si n-MOSFETs at 77 and 300 K. IEEE Electron Device Lett. 9(9), 467–469 (1988) Laux, S., Fischetti, M.: Monte-Carlo simulation of submicrometer Si n-MOSFETs at 77 and 300 K. IEEE Electron Device Lett. 9(9), 467–469 (1988)
5.
go back to reference Mangla, A., Sallese, J.-M., Sampedro, C., Gamiz, F., Enz, C.: Role of the gate in ballistic nanowire SOI MOSFETs. Solid State Electron. 112, 24–28 (2015) Mangla, A., Sallese, J.-M., Sampedro, C., Gamiz, F., Enz, C.: Role of the gate in ballistic nanowire SOI MOSFETs. Solid State Electron. 112, 24–28 (2015)
6.
go back to reference Alexander, C., Roy, G., Asenov, A.: Random-dopant-induced drain current variation in nano-MOSFETs: a three-dimensional self-consistent monte carlo simulation study using “ab initio” ionized impurity scattering. IEEE Trans. Electron Devices 55(11), 3251–3258 (2008) Alexander, C., Roy, G., Asenov, A.: Random-dopant-induced drain current variation in nano-MOSFETs: a three-dimensional self-consistent monte carlo simulation study using “ab initio” ionized impurity scattering. IEEE Trans. Electron Devices 55(11), 3251–3258 (2008)
7.
go back to reference Kovac, U., Alexander, C., Roy, G., Riddet, C., Cheng, B., Asenov, A.: Hierarchical simulation of statistical variability: from 3-D MC with “ab initio” ionized impurity scattering to statistical compact models. IEEE Trans. Electron Devices 57(10), 2418–2426 (2010) Kovac, U., Alexander, C., Roy, G., Riddet, C., Cheng, B., Asenov, A.: Hierarchical simulation of statistical variability: from 3-D MC with “ab initio” ionized impurity scattering to statistical compact models. IEEE Trans. Electron Devices 57(10), 2418–2426 (2010)
8.
go back to reference Bukhori, M.F., Roy, S., Asenov, A.: Simulation of statistical aspects of charge trapping and related degradation in bulk MOSFETs in the presence of random discrete dopants. IEEE Trans. Electron Devices 57(4), 795–803 (2010) Bukhori, M.F., Roy, S., Asenov, A.: Simulation of statistical aspects of charge trapping and related degradation in bulk MOSFETs in the presence of random discrete dopants. IEEE Trans. Electron Devices 57(4), 795–803 (2010)
10.
go back to reference Querlioz, D., Saint-Martin, J., Huet, K., Bournel, A., Aubry-Fortuna, V., Chassat, C., Galdin-Retailleau, S., Dollfus, P.: On the ability of the particle Monte Carlo technique to include quantum effects in nano-MOSFET simulation. IEEE Trans. Electron Devices 54(9), 2232–2242 (2007) Querlioz, D., Saint-Martin, J., Huet, K., Bournel, A., Aubry-Fortuna, V., Chassat, C., Galdin-Retailleau, S., Dollfus, P.: On the ability of the particle Monte Carlo technique to include quantum effects in nano-MOSFET simulation. IEEE Trans. Electron Devices 54(9), 2232–2242 (2007)
11.
go back to reference Elmessary, M.A., Nagy, D., Aldegunde, M., Lindberg, J., Dettmer, W.G., Peric, D., Garcia-Loureiro, A.J., Kalna, K.: Anisotropic quantum corrections for 3-D finite-element Monte Carlo simulations of nanoscale multigate transistors. IEEE Trans. Electron Devices 63(3), 933–939 (2016) Elmessary, M.A., Nagy, D., Aldegunde, M., Lindberg, J., Dettmer, W.G., Peric, D., Garcia-Loureiro, A.J., Kalna, K.: Anisotropic quantum corrections for 3-D finite-element Monte Carlo simulations of nanoscale multigate transistors. IEEE Trans. Electron Devices 63(3), 933–939 (2016)
12.
go back to reference Jacoboni, C., Reggiani, L.: The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Rev. Mod. Phys. 55(3), 645–705 (1983) Jacoboni, C., Reggiani, L.: The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Rev. Mod. Phys. 55(3), 645–705 (1983)
13.
go back to reference Gross, W., Vasileska, D., Ferry, D.: A novel approach for introducing the electron–electron and electron–impurity interactions in particle-based simulations. IEEE Electron Device Lett. 20(9), 463–465 (1999) Gross, W., Vasileska, D., Ferry, D.: A novel approach for introducing the electron–electron and electron–impurity interactions in particle-based simulations. IEEE Electron Device Lett. 20(9), 463–465 (1999)
14.
go back to reference Granzner, R., Polyakov, V., Schwierz, F., Kittler, M., Luyken, R., Rösner, W., Städele, M.: Simulation of nanoscale MOSFETs using modified drift-diffusion and hydrodynamic models and comparison with Monte Carlo results. Microelectron. Eng. 83(2), 241–246 (2006) Granzner, R., Polyakov, V., Schwierz, F., Kittler, M., Luyken, R., Rösner, W., Städele, M.: Simulation of nanoscale MOSFETs using modified drift-diffusion and hydrodynamic models and comparison with Monte Carlo results. Microelectron. Eng. 83(2), 241–246 (2006)
15.
go back to reference Keyes, R.W.: The effect of randomness in the distribution of impurity atoms on FET thresholds. J. Appl. Phys. 8(3), 251–259 (1975) Keyes, R.W.: The effect of randomness in the distribution of impurity atoms on FET thresholds. J. Appl. Phys. 8(3), 251–259 (1975)
16.
go back to reference Mizuno, T., Okumtura, J., Toriumi, A.: Experimental study of threshold voltage fluctuation due to statistical variation of channel dopant number in MOSFET’s. IEEE Trans. Electron Devices 41(11), 2216–2221 (1994) Mizuno, T., Okumtura, J., Toriumi, A.: Experimental study of threshold voltage fluctuation due to statistical variation of channel dopant number in MOSFET’s. IEEE Trans. Electron Devices 41(11), 2216–2221 (1994)
17.
go back to reference Mizuno, T.: Influence of statistical spatial-nonuniformity of dopant atoms on threshold voltage in a system of many MOSFETs. Jpn. J. Appl. Phys. 35(2S), 842 (1996) Mizuno, T.: Influence of statistical spatial-nonuniformity of dopant atoms on threshold voltage in a system of many MOSFETs. Jpn. J. Appl. Phys. 35(2S), 842 (1996)
18.
go back to reference Horstmann, J.T., Hilleringmann, U., Goser, K.F.: Matching analysis of deposition defined 50-nm MOSFET’s. IEEE Trans. Electron Devices 45(1), 299–306 (1998) Horstmann, J.T., Hilleringmann, U., Goser, K.F.: Matching analysis of deposition defined 50-nm MOSFET’s. IEEE Trans. Electron Devices 45(1), 299–306 (1998)
19.
go back to reference Stolk, P.A., Widdershoven, F.P., Klaassen, D.B.M.: Modeling statistical dopant fluctuations in MOS transistors. IEEE Trans. Electron Devices 45(9), 1960–1971 (1998) Stolk, P.A., Widdershoven, F.P., Klaassen, D.B.M.: Modeling statistical dopant fluctuations in MOS transistors. IEEE Trans. Electron Devices 45(9), 1960–1971 (1998)
20.
go back to reference Nishinohara, K., Shigyo, N., Wada, T.: Effects of microscopic fluctuations in dopant distributions on MOSFET threshold voltage. IEEE Trans. Electron Devices 39(3), 634–639 (1992) Nishinohara, K., Shigyo, N., Wada, T.: Effects of microscopic fluctuations in dopant distributions on MOSFET threshold voltage. IEEE Trans. Electron Devices 39(3), 634–639 (1992)
21.
go back to reference Zhou, J.R., Ferry, D.K.: 3D simulation of deep-submicron devices. How impurity atoms affect conductance. IEEE Comput. Sci. Eng. 2(2), 30–37 (1995) Zhou, J.R., Ferry, D.K.: 3D simulation of deep-submicron devices. How impurity atoms affect conductance. IEEE Comput. Sci. Eng. 2(2), 30–37 (1995)
22.
go back to reference Wong, H.S., Taur, Y.: Three-dimensional“ atomistic” simulation of discrete random dopant distribution effects in sub-0.1-\(\mu\)m MOSFET’s. In: IEEE International Electron Devices Meeting (1993) Wong, H.S., Taur, Y.: Three-dimensional“ atomistic” simulation of discrete random dopant distribution effects in sub-0.1-\(\mu\)m MOSFET’s. In: IEEE International Electron Devices Meeting (1993)
23.
go back to reference Vasileska, D., Gross, W.J., Kafedziski, V., Ferry, D.K.: Convergence properties of the Bi-CGSTAB method for the solution of the 3D Poisson and 3D electron current continuity equations for scaled Si MOSFETs. VLSI Des. 8(1–4), 301–305 (1998) Vasileska, D., Gross, W.J., Kafedziski, V., Ferry, D.K.: Convergence properties of the Bi-CGSTAB method for the solution of the 3D Poisson and 3D electron current continuity equations for scaled Si MOSFETs. VLSI Des. 8(1–4), 301–305 (1998)
24.
go back to reference Tang, X., De, V.K., Meindl, J.D.: Intrinsic MOSFET parameter fluctuations due to random dopant placement. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 5(4), 369–376 (1997) Tang, X., De, V.K., Meindl, J.D.: Intrinsic MOSFET parameter fluctuations due to random dopant placement. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 5(4), 369–376 (1997)
25.
go back to reference Lugli, P., Ferry, D.K.: Degeneracy in the ensemble Monte Carlo method for high-field transport in semiconductors. IEEE Trans. Electron Devices 32(11), 2431–2437 (1985) Lugli, P., Ferry, D.K.: Degeneracy in the ensemble Monte Carlo method for high-field transport in semiconductors. IEEE Trans. Electron Devices 32(11), 2431–2437 (1985)
26.
go back to reference Kriman, A.M., Kann, M.J., Ferry, D.K., Joshi, R.: Role of the exchange interaction in the short-time relaxation of a high-density electron plasma. Phys. Rev. Lett. 65(13), 1619 (1990) Kriman, A.M., Kann, M.J., Ferry, D.K., Joshi, R.: Role of the exchange interaction in the short-time relaxation of a high-density electron plasma. Phys. Rev. Lett. 65(13), 1619 (1990)
27.
go back to reference Gross, W.J., Vasileska, D., Ferry, D.K.: 3D simulations of ultra-small MOSFETs with real-space treatment of the electron–electron and electron–ion interactions. VLSI Des. 10(4), 437–452 (2000) Gross, W.J., Vasileska, D., Ferry, D.K.: 3D simulations of ultra-small MOSFETs with real-space treatment of the electron–electron and electron–ion interactions. VLSI Des. 10(4), 437–452 (2000)
28.
go back to reference Vasileska, D., Gross, W.J., Ferry, D.K.: Monte Carlo particle-based simulations of deep-submicron n-MOSFETs with real-space treatment of electron–electron and electron–impurity interactions. Superlattices Microstruct. 27(2–3), 147–157 (2000) Vasileska, D., Gross, W.J., Ferry, D.K.: Monte Carlo particle-based simulations of deep-submicron n-MOSFETs with real-space treatment of electron–electron and electron–impurity interactions. Superlattices Microstruct. 27(2–3), 147–157 (2000)
29.
go back to reference Asenov, A.: Random dopant induced threshold voltage lowering and fluctuations in sub-0.1-\(\mu\)m MOSFET’s: A 3-D “atomistic” simulation study. IEEE Trans. Electron Devices 45(12), 2505–2513 (1998) Asenov, A.: Random dopant induced threshold voltage lowering and fluctuations in sub-0.1-\(\mu\)m MOSFET’s: A 3-D “atomistic” simulation study. IEEE Trans. Electron Devices 45(12), 2505–2513 (1998)
30.
go back to reference Asenov, A., Saini, S.: Suppression of random dopant-induced threshold voltage fluctuations in sub-0.1-\(\mu\)m MOSFET’s with epitaxial and \(\delta\)-doped channels. IEEE Trans. Electron Devices 46(8), 1718–1724 (1999) Asenov, A., Saini, S.: Suppression of random dopant-induced threshold voltage fluctuations in sub-0.1-\(\mu\)m MOSFET’s with epitaxial and \(\delta\)-doped channels. IEEE Trans. Electron Devices 46(8), 1718–1724 (1999)
31.
go back to reference Dollfus, P., Bournel, A., Galdin, S., Barraud, S., Hesto, P.: Effect of discrete impurities on electron transport in ultrashort MOSFET using 3D MC simulation. IEEE Trans. Electron Devices 51(5), 749–756 (2004) Dollfus, P., Bournel, A., Galdin, S., Barraud, S., Hesto, P.: Effect of discrete impurities on electron transport in ultrashort MOSFET using 3D MC simulation. IEEE Trans. Electron Devices 51(5), 749–756 (2004)
32.
go back to reference Lee, K.T., et al.: Technology scaling on high-K metal-gate FinFET BTI reliability. In: IEEE International Reliability Physics Symposium (IRPS) (2013) Lee, K.T., et al.: Technology scaling on high-K metal-gate FinFET BTI reliability. In: IEEE International Reliability Physics Symposium (IRPS) (2013)
33.
go back to reference Amoroso, S.M., Gerrer, L., Markov, S., Adamu-Lema, F., Asenov, A.: RTN and BTI in nanoscale MOSFETs: a comprehensive statistical simulation study. Solid State Electron. 84, 120–126 (2013) Amoroso, S.M., Gerrer, L., Markov, S., Adamu-Lema, F., Asenov, A.: RTN and BTI in nanoscale MOSFETs: a comprehensive statistical simulation study. Solid State Electron. 84, 120–126 (2013)
34.
go back to reference Markov, S., Amoroso, S.M., Gerrer, L., Adamu-Lema, F., Asenov, A.: Statistical interactions of multiple oxide traps under BTI stress of nanoscale MOSFETs. IEEE Electron Device Lett. 34(5), 686–688 (2013) Markov, S., Amoroso, S.M., Gerrer, L., Adamu-Lema, F., Asenov, A.: Statistical interactions of multiple oxide traps under BTI stress of nanoscale MOSFETs. IEEE Electron Device Lett. 34(5), 686–688 (2013)
35.
go back to reference Gerrer, L., Ding, J., Amoroso, S.M., Adamu-Lema, F., Hussin, R., Reid, D., Asenov, A.: Modelling RTN and BTI in nanoscale MOSFETs from device to circuit: a review. Microelectron. Reliab. 54(4), 682–697 (2014) Gerrer, L., Ding, J., Amoroso, S.M., Adamu-Lema, F., Hussin, R., Reid, D., Asenov, A.: Modelling RTN and BTI in nanoscale MOSFETs from device to circuit: a review. Microelectron. Reliab. 54(4), 682–697 (2014)
36.
go back to reference Couso, C., Martin-Martinez, J., Porti, M., Nafria, M., Aymerich, X.: Efficient methodology to extract interface traps parameters for TCAD simulations. Microelectron. Eng. 178, 66–70 (2017) Couso, C., Martin-Martinez, J., Porti, M., Nafria, M., Aymerich, X.: Efficient methodology to extract interface traps parameters for TCAD simulations. Microelectron. Eng. 178, 66–70 (2017)
37.
go back to reference Rossetto, A.C.J., Camargo, V.V.A., Both, T.H., Vasileska, D., Wirth, G.I.: Statistical analysis of the impact of charge traps in p-Type MOSFETs via particle-based Monte Carlo device simulations. J. Comput. Electron. under review (2019) Rossetto, A.C.J., Camargo, V.V.A., Both, T.H., Vasileska, D., Wirth, G.I.: Statistical analysis of the impact of charge traps in p-Type MOSFETs via particle-based Monte Carlo device simulations. J. Comput. Electron. under review (2019)
38.
go back to reference Vasileska, D., Goodnick, S.M., Klimeck, G.: Computational Electronics: From Semiclassical to Quantum Transport Modeling. Taylor & Francis, London (2010) Vasileska, D., Goodnick, S.M., Klimeck, G.: Computational Electronics: From Semiclassical to Quantum Transport Modeling. Taylor & Francis, London (2010)
39.
go back to reference Gagliani, G., Reggiani, L.: Nonparabolicity and intrinsic carrier concentration in Si and Ge. Nuovo Cimento B 30(2), 207–216 (1975) Gagliani, G., Reggiani, L.: Nonparabolicity and intrinsic carrier concentration in Si and Ge. Nuovo Cimento B 30(2), 207–216 (1975)
40.
go back to reference Dewey, J., Osman, M.A.: Monte Carlo study of hole transport in silicon. J. Appl. Phys. 74(5), 3219–3223 (1993) Dewey, J., Osman, M.A.: Monte Carlo study of hole transport in silicon. J. Appl. Phys. 74(5), 3219–3223 (1993)
41.
go back to reference Ferry, D.K.: Semiconductor Transport. Taylor & Francis Inc, London (2000) Ferry, D.K.: Semiconductor Transport. Taylor & Francis Inc, London (2000)
42.
go back to reference Ferry, D.K.: First-order optical and intervalley scattering in semiconductors. Phys. Rev. B 14(4), 1605–1609 (1976) Ferry, D.K.: First-order optical and intervalley scattering in semiconductors. Phys. Rev. B 14(4), 1605–1609 (1976)
43.
go back to reference Jacoboni, C., Canali, C., Ottaviani, G., Quaranta, A.A.: A review of some charge transport properties of silicon. Solid State Electron. 20(2), 77–89 (1977) Jacoboni, C., Canali, C., Ottaviani, G., Quaranta, A.A.: A review of some charge transport properties of silicon. Solid State Electron. 20(2), 77–89 (1977)
44.
go back to reference Chou, S., Antoniadis, D., Smith, H.: Observation of electron velocity overshoot in sub-100-nm-channel MOSFETs in Silicon. IEEE Electron Device Lett. 6(12), 665–667 (1985) Chou, S., Antoniadis, D., Smith, H.: Observation of electron velocity overshoot in sub-100-nm-channel MOSFETs in Silicon. IEEE Electron Device Lett. 6(12), 665–667 (1985)
45.
go back to reference Sai-Halasz, G., Wordeman, M., Kern, D., Rishton, S., Ganin, E.: High transconductance and velocity overshoot in NMOS devices at the 0.1-\(\mu\)m gate-length level. IEEE Electron Device Lett. 9(9), 464–466 (1988) Sai-Halasz, G., Wordeman, M., Kern, D., Rishton, S., Ganin, E.: High transconductance and velocity overshoot in NMOS devices at the 0.1-\(\mu\)m gate-length level. IEEE Electron Device Lett. 9(9), 464–466 (1988)
46.
go back to reference Takagi, S., Toriumi, A., Iwase, M., Tango, H.: On the universality of inversion layer mobility in Si MOSFETs: part I-effects of substrate impurity concentration. IEEE Trans. Electron Devices 41(12), 2357–2362 (1994) Takagi, S., Toriumi, A., Iwase, M., Tango, H.: On the universality of inversion layer mobility in Si MOSFETs: part I-effects of substrate impurity concentration. IEEE Trans. Electron Devices 41(12), 2357–2362 (1994)
47.
go back to reference Fischetti, M.V., Laux, S.E.: Monte Carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects. Phys. Rev. B 38(14), 9721–9745 (1988) Fischetti, M.V., Laux, S.E.: Monte Carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects. Phys. Rev. B 38(14), 9721–9745 (1988)
48.
go back to reference van den Biesen, J.J.H.: A simple regional analysis of transit times in bipolar transistors. Solid State Electron. 29(5), 529–534 (1986) van den Biesen, J.J.H.: A simple regional analysis of transit times in bipolar transistors. Solid State Electron. 29(5), 529–534 (1986)
49.
go back to reference Laux, S.: On particle–mesh coupling in Monte Carlo semiconductor device simulation. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 15(10), 1266–1277 (1996) Laux, S.: On particle–mesh coupling in Monte Carlo semiconductor device simulation. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 15(10), 1266–1277 (1996)
50.
go back to reference Stone, H.L.: Iterative solution of implicit approximations of multidimensional partial differential equations. SIAM J. Numer. Anal. 5(3), 530–558 (1968)MathSciNetMATH Stone, H.L.: Iterative solution of implicit approximations of multidimensional partial differential equations. SIAM J. Numer. Anal. 5(3), 530–558 (1968)MathSciNetMATH
51.
go back to reference Wordelman, C., Ravaioli, U.: Integration of a particle–particle–particle–mesh algorithm with the ensemble Monte Carlo method for the simulation of ultra-small semiconductor devices. IEEE Trans. Electron Devices 47(2), 410–416 (2000) Wordelman, C., Ravaioli, U.: Integration of a particle–particle–particle–mesh algorithm with the ensemble Monte Carlo method for the simulation of ultra-small semiconductor devices. IEEE Trans. Electron Devices 47(2), 410–416 (2000)
52.
go back to reference Gross, W., Vasileska, D., Ferry, D.: Ultrasmall MOSFETs: the importance of the full Coulomb interaction on device characteristics. IEEE Trans. Electron Devices 47(10), 1831–1837 (2000) Gross, W., Vasileska, D., Ferry, D.: Ultrasmall MOSFETs: the importance of the full Coulomb interaction on device characteristics. IEEE Trans. Electron Devices 47(10), 1831–1837 (2000)
Metadata
Title
3-D Monte Carlo device simulator for variability modeling of p-MOSFETs
Authors
Vinicius V. A. Camargo
Alan C. J. Rossetto
Dragica Vasileska
Gilson I. Wirth
Publication date
17-02-2020
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 2/2020
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-020-01461-1

Other articles of this Issue 2/2020

Journal of Computational Electronics 2/2020 Go to the issue