Skip to main content
Top
Published in: International Journal on Interactive Design and Manufacturing (IJIDeM) 2/2023

20-02-2023 | Original Paper

3D thermal simulation of powder bed fusion additive manufacturing of stainless steel

Authors: Amit Kumar Singh Chauhan, Mukul Shukla, Abhishek Kumar

Published in: International Journal on Interactive Design and Manufacturing (IJIDeM) | Issue 2/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Laser Additive Manufacturing (AM) is gaining considerable attention nowadays for medical and aerospace applications because of the controlled density of fabricated parts. The density of AMed parts mainly depends on the process parameters such as the laser power, scan speed, number of layers, layer thickness etc. These process parameters go on to affect the microstructure of the 3D printed part. In this study, an effort has been made to investigate the three-dimensional temperature distribution in the Powder Bed Fusion (PBF) AM of stainless steel (SS316 alloy) using Simufact Additive (Ver. 4.1) - a commercial finite element based simulation tool. The effect of temperature dependent properties of SS316 and the PBF process parameters (laser power, scan speed and recoater time) on the temperature distribution was studied interactively. The simulated results were found in accordance to that reported in the literature. This study is likely to be helpful in understanding the thermal behavior of PBF AMed steels which affects the microstructure and consequently the properties of the final component. This work is aimed at supporting the decision-making process towards high fidelity AM, with minimum number of trial runs and at a comparatively lower cost. A new modelling and solution approach using an interactive and user-friendly commercial software is presented which allows the modelling of the complex behavior of the metal AM process and its parametric study.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Gibson, I., Rosen, D.W.: Stucker B.: Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing. Springer, US (2009) Gibson, I., Rosen, D.W.: Stucker B.: Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing. Springer, US (2009)
2.
go back to reference Everton, S.K., Hirsch, M., Stravroulakis, P., Leach, R.K., Clare, A.T.: Review of in situ process monitoring and in situ metrology for metal additive manufacturing. Mater. Des. 95, 431–445 (2016)CrossRef Everton, S.K., Hirsch, M., Stravroulakis, P., Leach, R.K., Clare, A.T.: Review of in situ process monitoring and in situ metrology for metal additive manufacturing. Mater. Des. 95, 431–445 (2016)CrossRef
3.
go back to reference Griffith, M.L., Schlienger, M.E., Harwell, L.D., Oliver, M.S., Baldwin, M.D., Ensz, M.T., Essien, M., Brooks, J., Robino, C.V., Smugeresky, J.E., Hofmeister, W.H., Wert, M.J.: Nelson, D. V.: understanding thermal behavior in the LENS process. J. Mater. Des. 20(2/3), 107–113 (1999)CrossRef Griffith, M.L., Schlienger, M.E., Harwell, L.D., Oliver, M.S., Baldwin, M.D., Ensz, M.T., Essien, M., Brooks, J., Robino, C.V., Smugeresky, J.E., Hofmeister, W.H., Wert, M.J.: Nelson, D. V.: understanding thermal behavior in the LENS process. J. Mater. Des. 20(2/3), 107–113 (1999)CrossRef
4.
go back to reference Zhechaoa, F., Hongwei, F.: Study on selective laser melting and heat treatment of Ti-6Al-4V alloy. Results Phys. 10, 660–664 (2018)CrossRef Zhechaoa, F., Hongwei, F.: Study on selective laser melting and heat treatment of Ti-6Al-4V alloy. Results Phys. 10, 660–664 (2018)CrossRef
5.
go back to reference Fischer, X., Coutellier, D.: Research in Interactive Design-Vol, vol. 2. Verlag France, Springer, (2006) Fischer, X., Coutellier, D.: Research in Interactive Design-Vol, vol. 2. Verlag France, Springer, (2006)
6.
go back to reference Riedlbauer, D., Drexler, M., Drummer, D., Steinmann, P., Mergheim, J.: Modelling, simulation and experimental validation of heat transfer in selective laser melting of the polymeric material PA12. Comput. Mater. Sci. 93, 239–248 (2014)CrossRef Riedlbauer, D., Drexler, M., Drummer, D., Steinmann, P., Mergheim, J.: Modelling, simulation and experimental validation of heat transfer in selective laser melting of the polymeric material PA12. Comput. Mater. Sci. 93, 239–248 (2014)CrossRef
7.
go back to reference Liu, F.R., Zhang, Q., Zhou, W.P., Zhao, J.J., Chen, J.M.: Micro scale 3D FEM simulation on thermal evolution within the porous structure in selective laser sintering. J. Mater. Process. Technol. 212, 2058–2065 (2012)CrossRef Liu, F.R., Zhang, Q., Zhou, W.P., Zhao, J.J., Chen, J.M.: Micro scale 3D FEM simulation on thermal evolution within the porous structure in selective laser sintering. J. Mater. Process. Technol. 212, 2058–2065 (2012)CrossRef
8.
go back to reference Kolossov, S., Boillat, E., Glardon, R., Fischer, P., Locher, M.: 3D FE simulation for temperature evolution in the selective laser sintering process. Int. J. Mach. Tools Manuf. 44, 117–123 (2004)CrossRef Kolossov, S., Boillat, E., Glardon, R., Fischer, P., Locher, M.: 3D FE simulation for temperature evolution in the selective laser sintering process. Int. J. Mach. Tools Manuf. 44, 117–123 (2004)CrossRef
9.
go back to reference Montalvo Navarrete, J.I., Hidalgo-Salazar, M.A., Escobar Nunez, E., et al.: Thermal and mechanical behavior of biocomposites using additive manufacturing. Int. J. Interact. Des. Manuf. 12, 449–458 (2018)CrossRef Montalvo Navarrete, J.I., Hidalgo-Salazar, M.A., Escobar Nunez, E., et al.: Thermal and mechanical behavior of biocomposites using additive manufacturing. Int. J. Interact. Des. Manuf. 12, 449–458 (2018)CrossRef
10.
go back to reference Wang, L., Felicelli, S., Gooroochurn, Y., Wang, P.T., Horstemeyer, M.F.: Optimization of LENS process for steady molten pool size. Mater. Sci. Eng. A. 474(1/2), 148–156 (2008) Wang, L., Felicelli, S., Gooroochurn, Y., Wang, P.T., Horstemeyer, M.F.: Optimization of LENS process for steady molten pool size. Mater. Sci. Eng. A. 474(1/2), 148–156 (2008)
11.
go back to reference Amine, T., Newkirk, J.W., Liou, F.: Investigation of effect of process parameters on multilayer builds by direct metal deposition. Appl. Therm. Eng. 73, 500–511 (2014)CrossRef Amine, T., Newkirk, J.W., Liou, F.: Investigation of effect of process parameters on multilayer builds by direct metal deposition. Appl. Therm. Eng. 73, 500–511 (2014)CrossRef
12.
go back to reference Matsumoto, M., Shiomi, M., Osakada, K., Abe, F.: Finite element analysis of single layer forming on metallic powder bed in rapid prototyping by selective laser processing. Int. J. Mach. Tools Manuf. 42, 61–67 (2002)CrossRef Matsumoto, M., Shiomi, M., Osakada, K., Abe, F.: Finite element analysis of single layer forming on metallic powder bed in rapid prototyping by selective laser processing. Int. J. Mach. Tools Manuf. 42, 61–67 (2002)CrossRef
13.
go back to reference Wang, L., Felicelli, S.D., Wang, J.E.: Experimental and numerical study of the LENS rapid fabrication process. J. Manuf. Sci. Eng. 131, 1–8 (2009)CrossRef Wang, L., Felicelli, S.D., Wang, J.E.: Experimental and numerical study of the LENS rapid fabrication process. J. Manuf. Sci. Eng. 131, 1–8 (2009)CrossRef
14.
go back to reference Li, C., Wang, Y., Zhan, H., Han, T., Han, B., Zhao, W.: Three-dimensional finite element analysis of temperatures and stresses in wide-band laser surface melting processing. Mater. Des. 31, 3366–3373 (2010)CrossRef Li, C., Wang, Y., Zhan, H., Han, T., Han, B., Zhao, W.: Three-dimensional finite element analysis of temperatures and stresses in wide-band laser surface melting processing. Mater. Des. 31, 3366–3373 (2010)CrossRef
15.
go back to reference Bayat, M., Mohanty, S., Hattel, J.H.: Multiphysics modelling of lack-of-fusion voids formation and evolution in IN718 made by multi-track/multi-layer L-PBF. Int. J. Heat. Mass. Tran. 139, 95–114 (2019)CrossRef Bayat, M., Mohanty, S., Hattel, J.H.: Multiphysics modelling of lack-of-fusion voids formation and evolution in IN718 made by multi-track/multi-layer L-PBF. Int. J. Heat. Mass. Tran. 139, 95–114 (2019)CrossRef
16.
go back to reference Ning, J., Sievers, D.E., Garmestani, H., Liang, S.Y.: Analytical modeling of In-Process temperature in Powder Bed Additive Manufacturing considering laser power absorption, latent heat, scanning strategy, and powder packing. Materials. 12(5), 808 (2019)CrossRef Ning, J., Sievers, D.E., Garmestani, H., Liang, S.Y.: Analytical modeling of In-Process temperature in Powder Bed Additive Manufacturing considering laser power absorption, latent heat, scanning strategy, and powder packing. Materials. 12(5), 808 (2019)CrossRef
17.
go back to reference Foteinopoulos, P., Papacharalampopoulos, A., Stavropoulos, P.: On thermal modeling of Additive Manufacturing processes. Cirp J. Manf Sci. Tec. 20, 66–83 (2018)CrossRef Foteinopoulos, P., Papacharalampopoulos, A., Stavropoulos, P.: On thermal modeling of Additive Manufacturing processes. Cirp J. Manf Sci. Tec. 20, 66–83 (2018)CrossRef
18.
go back to reference Hejripour, F., Binesh, F., Hebel, M.: Aidun D. K.: thermal modeling and characterization of wire arc additive manufactured duplex stainless steel. J. Mater. Process. Technol. 272, 58–71 (2019)CrossRef Hejripour, F., Binesh, F., Hebel, M.: Aidun D. K.: thermal modeling and characterization of wire arc additive manufactured duplex stainless steel. J. Mater. Process. Technol. 272, 58–71 (2019)CrossRef
19.
go back to reference Chergui, A., Villeneuve, F., Béraud, N., et al.: Thermal simulation of wire arc additive manufacturing: a new material deposition and heat input modelling. Int. J. Interact. Des. Manuf. 16, 227–237 (2022)CrossRef Chergui, A., Villeneuve, F., Béraud, N., et al.: Thermal simulation of wire arc additive manufacturing: a new material deposition and heat input modelling. Int. J. Interact. Des. Manuf. 16, 227–237 (2022)CrossRef
20.
go back to reference Khanafer, K., Al-Masri, A., Aithal, S., et al.: Multiphysics modeling and simulation of laser additive manufacturing process. Int. J. Interact. Des. Manuf. 13, 537–544 (2019)CrossRef Khanafer, K., Al-Masri, A., Aithal, S., et al.: Multiphysics modeling and simulation of laser additive manufacturing process. Int. J. Interact. Des. Manuf. 13, 537–544 (2019)CrossRef
22.
go back to reference Neela, V., De, A.: Three-dimensional heat transfer analysis of LENS process using finite element method. Int. J. Adv. Manuf. Technol. 45, 935–943 (2009)CrossRef Neela, V., De, A.: Three-dimensional heat transfer analysis of LENS process using finite element method. Int. J. Adv. Manuf. Technol. 45, 935–943 (2009)CrossRef
23.
go back to reference Sih, S.S., Barlow, J.W.: The prediction of the emissivity and thermal conductivity of powder beds. Part. Sci. Technol. 22, 291–304 (2004)CrossRef Sih, S.S., Barlow, J.W.: The prediction of the emissivity and thermal conductivity of powder beds. Part. Sci. Technol. 22, 291–304 (2004)CrossRef
24.
go back to reference Zhang, Y., Yu, G., He, X., Ning, W., Zheng, C.: Numerical and experimental investigation of multilayer SS410 thin wall built by laser direct metal deposition. J. Mater. Process. Tech. 212, 106–112 (2012)CrossRef Zhang, Y., Yu, G., He, X., Ning, W., Zheng, C.: Numerical and experimental investigation of multilayer SS410 thin wall built by laser direct metal deposition. J. Mater. Process. Tech. 212, 106–112 (2012)CrossRef
25.
go back to reference Charles, C., Järvstråt, N.: Development of a Microstructure Model for Metal Deposition of Titanium Alloy Ti-6Al-4V, in Proceedings of the 11th World Conference on Titanium (Ti Kyoto, Japan, 3–7 June (2007). (2007) Charles, C., Järvstråt, N.: Development of a Microstructure Model for Metal Deposition of Titanium Alloy Ti-6Al-4V, in Proceedings of the 11th World Conference on Titanium (Ti Kyoto, Japan, 3–7 June (2007). (2007)
Metadata
Title
3D thermal simulation of powder bed fusion additive manufacturing of stainless steel
Authors
Amit Kumar Singh Chauhan
Mukul Shukla
Abhishek Kumar
Publication date
20-02-2023
Publisher
Springer Paris
Published in
International Journal on Interactive Design and Manufacturing (IJIDeM) / Issue 2/2023
Print ISSN: 1955-2513
Electronic ISSN: 1955-2505
DOI
https://doi.org/10.1007/s12008-023-01234-7

Other articles of this Issue 2/2023

International Journal on Interactive Design and Manufacturing (IJIDeM) 2/2023 Go to the issue

Premium Partner