Skip to main content
Erschienen in: International Journal on Interactive Design and Manufacturing (IJIDeM) 2/2023

20.02.2023 | Original Paper

3D thermal simulation of powder bed fusion additive manufacturing of stainless steel

verfasst von: Amit Kumar Singh Chauhan, Mukul Shukla, Abhishek Kumar

Erschienen in: International Journal on Interactive Design and Manufacturing (IJIDeM) | Ausgabe 2/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Laser Additive Manufacturing (AM) is gaining considerable attention nowadays for medical and aerospace applications because of the controlled density of fabricated parts. The density of AMed parts mainly depends on the process parameters such as the laser power, scan speed, number of layers, layer thickness etc. These process parameters go on to affect the microstructure of the 3D printed part. In this study, an effort has been made to investigate the three-dimensional temperature distribution in the Powder Bed Fusion (PBF) AM of stainless steel (SS316 alloy) using Simufact Additive (Ver. 4.1) - a commercial finite element based simulation tool. The effect of temperature dependent properties of SS316 and the PBF process parameters (laser power, scan speed and recoater time) on the temperature distribution was studied interactively. The simulated results were found in accordance to that reported in the literature. This study is likely to be helpful in understanding the thermal behavior of PBF AMed steels which affects the microstructure and consequently the properties of the final component. This work is aimed at supporting the decision-making process towards high fidelity AM, with minimum number of trial runs and at a comparatively lower cost. A new modelling and solution approach using an interactive and user-friendly commercial software is presented which allows the modelling of the complex behavior of the metal AM process and its parametric study.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Gibson, I., Rosen, D.W.: Stucker B.: Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing. Springer, US (2009) Gibson, I., Rosen, D.W.: Stucker B.: Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing. Springer, US (2009)
2.
Zurück zum Zitat Everton, S.K., Hirsch, M., Stravroulakis, P., Leach, R.K., Clare, A.T.: Review of in situ process monitoring and in situ metrology for metal additive manufacturing. Mater. Des. 95, 431–445 (2016)CrossRef Everton, S.K., Hirsch, M., Stravroulakis, P., Leach, R.K., Clare, A.T.: Review of in situ process monitoring and in situ metrology for metal additive manufacturing. Mater. Des. 95, 431–445 (2016)CrossRef
3.
Zurück zum Zitat Griffith, M.L., Schlienger, M.E., Harwell, L.D., Oliver, M.S., Baldwin, M.D., Ensz, M.T., Essien, M., Brooks, J., Robino, C.V., Smugeresky, J.E., Hofmeister, W.H., Wert, M.J.: Nelson, D. V.: understanding thermal behavior in the LENS process. J. Mater. Des. 20(2/3), 107–113 (1999)CrossRef Griffith, M.L., Schlienger, M.E., Harwell, L.D., Oliver, M.S., Baldwin, M.D., Ensz, M.T., Essien, M., Brooks, J., Robino, C.V., Smugeresky, J.E., Hofmeister, W.H., Wert, M.J.: Nelson, D. V.: understanding thermal behavior in the LENS process. J. Mater. Des. 20(2/3), 107–113 (1999)CrossRef
4.
Zurück zum Zitat Zhechaoa, F., Hongwei, F.: Study on selective laser melting and heat treatment of Ti-6Al-4V alloy. Results Phys. 10, 660–664 (2018)CrossRef Zhechaoa, F., Hongwei, F.: Study on selective laser melting and heat treatment of Ti-6Al-4V alloy. Results Phys. 10, 660–664 (2018)CrossRef
5.
Zurück zum Zitat Fischer, X., Coutellier, D.: Research in Interactive Design-Vol, vol. 2. Verlag France, Springer, (2006) Fischer, X., Coutellier, D.: Research in Interactive Design-Vol, vol. 2. Verlag France, Springer, (2006)
6.
Zurück zum Zitat Riedlbauer, D., Drexler, M., Drummer, D., Steinmann, P., Mergheim, J.: Modelling, simulation and experimental validation of heat transfer in selective laser melting of the polymeric material PA12. Comput. Mater. Sci. 93, 239–248 (2014)CrossRef Riedlbauer, D., Drexler, M., Drummer, D., Steinmann, P., Mergheim, J.: Modelling, simulation and experimental validation of heat transfer in selective laser melting of the polymeric material PA12. Comput. Mater. Sci. 93, 239–248 (2014)CrossRef
7.
Zurück zum Zitat Liu, F.R., Zhang, Q., Zhou, W.P., Zhao, J.J., Chen, J.M.: Micro scale 3D FEM simulation on thermal evolution within the porous structure in selective laser sintering. J. Mater. Process. Technol. 212, 2058–2065 (2012)CrossRef Liu, F.R., Zhang, Q., Zhou, W.P., Zhao, J.J., Chen, J.M.: Micro scale 3D FEM simulation on thermal evolution within the porous structure in selective laser sintering. J. Mater. Process. Technol. 212, 2058–2065 (2012)CrossRef
8.
Zurück zum Zitat Kolossov, S., Boillat, E., Glardon, R., Fischer, P., Locher, M.: 3D FE simulation for temperature evolution in the selective laser sintering process. Int. J. Mach. Tools Manuf. 44, 117–123 (2004)CrossRef Kolossov, S., Boillat, E., Glardon, R., Fischer, P., Locher, M.: 3D FE simulation for temperature evolution in the selective laser sintering process. Int. J. Mach. Tools Manuf. 44, 117–123 (2004)CrossRef
9.
Zurück zum Zitat Montalvo Navarrete, J.I., Hidalgo-Salazar, M.A., Escobar Nunez, E., et al.: Thermal and mechanical behavior of biocomposites using additive manufacturing. Int. J. Interact. Des. Manuf. 12, 449–458 (2018)CrossRef Montalvo Navarrete, J.I., Hidalgo-Salazar, M.A., Escobar Nunez, E., et al.: Thermal and mechanical behavior of biocomposites using additive manufacturing. Int. J. Interact. Des. Manuf. 12, 449–458 (2018)CrossRef
10.
Zurück zum Zitat Wang, L., Felicelli, S., Gooroochurn, Y., Wang, P.T., Horstemeyer, M.F.: Optimization of LENS process for steady molten pool size. Mater. Sci. Eng. A. 474(1/2), 148–156 (2008) Wang, L., Felicelli, S., Gooroochurn, Y., Wang, P.T., Horstemeyer, M.F.: Optimization of LENS process for steady molten pool size. Mater. Sci. Eng. A. 474(1/2), 148–156 (2008)
11.
Zurück zum Zitat Amine, T., Newkirk, J.W., Liou, F.: Investigation of effect of process parameters on multilayer builds by direct metal deposition. Appl. Therm. Eng. 73, 500–511 (2014)CrossRef Amine, T., Newkirk, J.W., Liou, F.: Investigation of effect of process parameters on multilayer builds by direct metal deposition. Appl. Therm. Eng. 73, 500–511 (2014)CrossRef
12.
Zurück zum Zitat Matsumoto, M., Shiomi, M., Osakada, K., Abe, F.: Finite element analysis of single layer forming on metallic powder bed in rapid prototyping by selective laser processing. Int. J. Mach. Tools Manuf. 42, 61–67 (2002)CrossRef Matsumoto, M., Shiomi, M., Osakada, K., Abe, F.: Finite element analysis of single layer forming on metallic powder bed in rapid prototyping by selective laser processing. Int. J. Mach. Tools Manuf. 42, 61–67 (2002)CrossRef
13.
Zurück zum Zitat Wang, L., Felicelli, S.D., Wang, J.E.: Experimental and numerical study of the LENS rapid fabrication process. J. Manuf. Sci. Eng. 131, 1–8 (2009)CrossRef Wang, L., Felicelli, S.D., Wang, J.E.: Experimental and numerical study of the LENS rapid fabrication process. J. Manuf. Sci. Eng. 131, 1–8 (2009)CrossRef
14.
Zurück zum Zitat Li, C., Wang, Y., Zhan, H., Han, T., Han, B., Zhao, W.: Three-dimensional finite element analysis of temperatures and stresses in wide-band laser surface melting processing. Mater. Des. 31, 3366–3373 (2010)CrossRef Li, C., Wang, Y., Zhan, H., Han, T., Han, B., Zhao, W.: Three-dimensional finite element analysis of temperatures and stresses in wide-band laser surface melting processing. Mater. Des. 31, 3366–3373 (2010)CrossRef
15.
Zurück zum Zitat Bayat, M., Mohanty, S., Hattel, J.H.: Multiphysics modelling of lack-of-fusion voids formation and evolution in IN718 made by multi-track/multi-layer L-PBF. Int. J. Heat. Mass. Tran. 139, 95–114 (2019)CrossRef Bayat, M., Mohanty, S., Hattel, J.H.: Multiphysics modelling of lack-of-fusion voids formation and evolution in IN718 made by multi-track/multi-layer L-PBF. Int. J. Heat. Mass. Tran. 139, 95–114 (2019)CrossRef
16.
Zurück zum Zitat Ning, J., Sievers, D.E., Garmestani, H., Liang, S.Y.: Analytical modeling of In-Process temperature in Powder Bed Additive Manufacturing considering laser power absorption, latent heat, scanning strategy, and powder packing. Materials. 12(5), 808 (2019)CrossRef Ning, J., Sievers, D.E., Garmestani, H., Liang, S.Y.: Analytical modeling of In-Process temperature in Powder Bed Additive Manufacturing considering laser power absorption, latent heat, scanning strategy, and powder packing. Materials. 12(5), 808 (2019)CrossRef
17.
Zurück zum Zitat Foteinopoulos, P., Papacharalampopoulos, A., Stavropoulos, P.: On thermal modeling of Additive Manufacturing processes. Cirp J. Manf Sci. Tec. 20, 66–83 (2018)CrossRef Foteinopoulos, P., Papacharalampopoulos, A., Stavropoulos, P.: On thermal modeling of Additive Manufacturing processes. Cirp J. Manf Sci. Tec. 20, 66–83 (2018)CrossRef
18.
Zurück zum Zitat Hejripour, F., Binesh, F., Hebel, M.: Aidun D. K.: thermal modeling and characterization of wire arc additive manufactured duplex stainless steel. J. Mater. Process. Technol. 272, 58–71 (2019)CrossRef Hejripour, F., Binesh, F., Hebel, M.: Aidun D. K.: thermal modeling and characterization of wire arc additive manufactured duplex stainless steel. J. Mater. Process. Technol. 272, 58–71 (2019)CrossRef
19.
Zurück zum Zitat Chergui, A., Villeneuve, F., Béraud, N., et al.: Thermal simulation of wire arc additive manufacturing: a new material deposition and heat input modelling. Int. J. Interact. Des. Manuf. 16, 227–237 (2022)CrossRef Chergui, A., Villeneuve, F., Béraud, N., et al.: Thermal simulation of wire arc additive manufacturing: a new material deposition and heat input modelling. Int. J. Interact. Des. Manuf. 16, 227–237 (2022)CrossRef
20.
Zurück zum Zitat Khanafer, K., Al-Masri, A., Aithal, S., et al.: Multiphysics modeling and simulation of laser additive manufacturing process. Int. J. Interact. Des. Manuf. 13, 537–544 (2019)CrossRef Khanafer, K., Al-Masri, A., Aithal, S., et al.: Multiphysics modeling and simulation of laser additive manufacturing process. Int. J. Interact. Des. Manuf. 13, 537–544 (2019)CrossRef
22.
Zurück zum Zitat Neela, V., De, A.: Three-dimensional heat transfer analysis of LENS process using finite element method. Int. J. Adv. Manuf. Technol. 45, 935–943 (2009)CrossRef Neela, V., De, A.: Three-dimensional heat transfer analysis of LENS process using finite element method. Int. J. Adv. Manuf. Technol. 45, 935–943 (2009)CrossRef
23.
Zurück zum Zitat Sih, S.S., Barlow, J.W.: The prediction of the emissivity and thermal conductivity of powder beds. Part. Sci. Technol. 22, 291–304 (2004)CrossRef Sih, S.S., Barlow, J.W.: The prediction of the emissivity and thermal conductivity of powder beds. Part. Sci. Technol. 22, 291–304 (2004)CrossRef
24.
Zurück zum Zitat Zhang, Y., Yu, G., He, X., Ning, W., Zheng, C.: Numerical and experimental investigation of multilayer SS410 thin wall built by laser direct metal deposition. J. Mater. Process. Tech. 212, 106–112 (2012)CrossRef Zhang, Y., Yu, G., He, X., Ning, W., Zheng, C.: Numerical and experimental investigation of multilayer SS410 thin wall built by laser direct metal deposition. J. Mater. Process. Tech. 212, 106–112 (2012)CrossRef
25.
Zurück zum Zitat Charles, C., Järvstråt, N.: Development of a Microstructure Model for Metal Deposition of Titanium Alloy Ti-6Al-4V, in Proceedings of the 11th World Conference on Titanium (Ti Kyoto, Japan, 3–7 June (2007). (2007) Charles, C., Järvstråt, N.: Development of a Microstructure Model for Metal Deposition of Titanium Alloy Ti-6Al-4V, in Proceedings of the 11th World Conference on Titanium (Ti Kyoto, Japan, 3–7 June (2007). (2007)
Metadaten
Titel
3D thermal simulation of powder bed fusion additive manufacturing of stainless steel
verfasst von
Amit Kumar Singh Chauhan
Mukul Shukla
Abhishek Kumar
Publikationsdatum
20.02.2023
Verlag
Springer Paris
Erschienen in
International Journal on Interactive Design and Manufacturing (IJIDeM) / Ausgabe 2/2023
Print ISSN: 1955-2513
Elektronische ISSN: 1955-2505
DOI
https://doi.org/10.1007/s12008-023-01234-7

Weitere Artikel der Ausgabe 2/2023

International Journal on Interactive Design and Manufacturing (IJIDeM) 2/2023 Zur Ausgabe

Premium Partner