Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 7/2015

01-07-2015 | Review

A 2015 perspective on the nature of the steady-state and transient electron transport within the wurtzite phases of gallium nitride, aluminum nitride, indium nitride, and zinc oxide: a critical and retrospective review

Authors: Poppy Siddiqua, Walid A. Hadi, Michael S. Shur, Stephen K. O’Leary

Published in: Journal of Materials Science: Materials in Electronics | Issue 7/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Wide energy gap semiconductors are broadly recognized as promising materials for novel electronic and optoelectronic device applications. As informed device design requires a firm grasp of the material properties of the underlying electronic materials, the electron transport that occurs within the wide energy gap semiconductors has been the focus of considerable study over the years. In an effort to provide some perspective on this rapidly evolving and burgeoning field of research, we review analyzes of the electron transport within some wide energy gap semiconductors of current interest in this paper. In order to narrow the scope of this review, we will primarily focus on the electron transport that occurs within the wurtzite phases of gallium nitride, aluminum nitride, indium nitride, and zinc oxide in this review, these materials being of great current interest to the wide energy gap semiconductor community; indium nitride, while not a wide energy gap semiconductor in of itself, is included as it is often alloyed with other wide energy gap semiconductors, the resultant alloys being wide energy gap semiconductors themselves. The electron transport that occurs within zinc-blende gallium arsenide is also considered, albeit primarily for bench-marking purposes. Most of our discussion will focus on results obtained from our ensemble semi-classical three-valley Monte Carlo simulations of the electron transport within these materials, our results conforming with state-of-the-art wide energy gap semiconductor orthodoxy. A brief tutorial on the Monte Carlo electron transport simulation approach, this approach being used to generate the results presented herein, is also provided. Steady-state and transient electron transport results are presented. The evolution of the field, and a survey of the current literature, are also featured. We conclude our review by presenting some recent developments on the electron transport within these materials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Yoder [1] defines a wide energy gap semiconductor as being that possessing an energy gap equal to 2.2 eV or wider.
 
2
In principle, SiC can crystallize in the form of an infinite number of polytypes. Thus far, over 250 polytypes of SiC have actually been experimentally observed [39].
 
3
The more common polytypes of SiC possess wide and indirect energy gaps that range between 2.2 and 3 eV [51, 64, 65]. SiC is also found to exhibit a high breakdown field [66, 67], an elevated thermal conductivity [68, 69], and favorable electron transport characteristics [70]. This constellation of material properties associated with the various polytypes of SiC, and the recognition of the device opportunities thus engendered, was, in large measure, responsible for igniting interest into this material in the first place.
 
4
InN, while not a wide energy gap semiconductor in of itself, its room temperature energy gap only being around 0.7 eV [71], is often alloyed with the other III–V nitride semiconductors, and thus, is often considered an honorary member of the wide energy gap semiconductor family [7275].
 
5
Initial interest in the III–V nitride semiconductors focused on GaN, the wurtzite phase of this material exhibiting a wide and direct energy gap of around 3.39 eV [31]. Wurtzite GaN also exhibits a high breakdown field [103, 104], elevated thermal conductivity [105, 106], and superb electron transport characteristics [107110]. These attributes make GaN ideally suited for both electronic and optoelectronic device applications [111126].
 
6
ZnO, while currently finding applications as a material for low-field thin-film transistor electron device structures [132] and as a potential material for transparent conducting electrodes [133], also possesses a direct energy gap [134, 135] with a magnitude that is very similar to that exhibited by GaN [136]. Thus, it might be expected that, with some further improvements in its material quality, ZnO may also be employed for some of the device roles currently implemented or envisaged for GaN.
 
7
The wurtzite phases of GaN, AlN, InN, and ZnO are the most common forms of these materials, other crystalline forms also being available.
 
8
All of the materials considered in this analysis possess direct energy gaps.
 
9
Structurally, these reviews are quite similar, different materials and conditions being considered.
 
10
This requires that the electron ensemble has settled on a new equilibrium state. By an equilibrium state, however, we are not necessarily referring to thermal equilibrium, thermal equilibrium only being achieved in the absence of an applied electric field.
 
11
By electron drift velocity, we are referring to the average electron velocity, determined by statistically averaging over the entire electron ensemble.
 
12
The results depicted in this review that are plotted as a function of the applied electric field strength are determined through an averaging process, over time and the electron ensemble, corresponding to each applied electric field strength selection. That is, for each selection of the applied electric field strength, a data point is determined, this data point corresponding to a time average over the ensemble of electrons for which the applied electric field strength has been held constant. The number of electrons in each simulation is such that the statistical fluctuations that occur, inherent to all Monte Carlo simulations, are sufficiently small that seemingly continuous plots arise, i.e., the Monte Carlo simulation points are sequentially connected in order to produce these plots. A similar approach is employed for the determination of the transient electron transport results, wherein a sequence of Monte Carlo simulation results are sequentially connected in order to produce these plots. The continuous nature of these plots arises as a consequence of the number of electrons employed in the simulation, i.e., sufficient in order to make the error sufficiently small. More on this matter is discussed in footnote 21.
 
13
The Monte Carlo approach to simulating the electron transport within semiconductors has been employed by many authors. A Monte Carlo electron transport simulation resource, with source code included, may be found at https://​nanohub.​org/​resources/​moca. Further information about the Monte Carlo approach, beyond the electron transport context, may also be found at http://​www.​codeproject.​com/​Articles/​767997/​Parallelised-Monte-Carlo-Algorithms-sharp and http://​www.​codeproject.​com/​Articles/​32654/​Monte-Carlo-Simulation?​q=​Monte+Carlo+code​.
 
14
Albrecht et al. [135] generalize this relationship to include a second-order non-parabolicity coefficient that reduces to the traditional Kane model in the limit that this second-order non-parabolicity coefficient is set to zero. No dramatic impact on the results is observed.
 
15
The longitudinal and transverse sound velocities are equal to
$$\begin{aligned} \sqrt{\frac{C_{l}}{\rho }} \text{ and } \sqrt{\frac{C_{t}}{\rho }}, \end{aligned}$$
respectively, where \(C_{l}\) and \(C_{t}\) denote the respective elastic constants and \(\rho \) represents the mass density.
 
16
Piezoelectric scattering is treated using the well established zinc-blende scattering rates, and thus, a suitably transformed piezoelectric constant, \(\hbox {e}_{14}\), must be selected. This may be achieved through the transformation suggested by Bykhovski et al. [222, 223]. The \(\hbox {e}_{14}\) value selected for wurtzite GaN is that suggested by Chin et al. [147]. The \(\hbox {e}_{14}\) values selected for wurtzite InN and wurtzite ZnO are that corresponding to wurtzite GaN. AlN has a lager \(\hbox {e}_{14}\) value, as it has more pronounced piezoelectric properties; see O’Leary et al. [160] for a justification.
 
17
All inter-valley deformation potentials are set to \(10^{9}\) eV/cm, following the approach of Gelmont et al. [146].
 
18
We follow the approach of Bhapkar and Shur [151], and set the inter-valley phonon energies equal to the optical phonon energy, a relationship which holds approximately for the case of GaAs [224].
 
19
Each conduction band structure is modeled as possessing three distinct “valleys,” each of the valley minima corresponding to a minima in the corresponding actual conduction band structure. These valleys are specified according to their locations in the band structures, the degeneracy of each valley, the effective mass of the electrons at each valley minimum, and the non-parabolicity coefficient corresponding to each valley.
 
20
For the case of direct-gap semiconductors, the \(E_{o}\) energy gap corresponds with the regular energy gap, \(E_{g}\). For the case of indirect-gap semiconductors, the \(E_{o}\) energy gap exceeds \(E_{g}\). Adachi [15] refers to the \(E_{o}\) energy gap as the lowest direct-gap energy gap.
 
21
The number of electrons employed in each simulation is determined through a consideration of the magnitude of the root-mean square error associated with the Monte Carlo simulation results. If the number of electrons is too small, then the root-mean square error, and the statistical fluctuations that arise as a consequence, become so large that the results obtained become difficult to discern from the background noise. Unfortunately, the use of large numbers of electrons dramatically increases the running time. In fact, in some cases, the computations demanded exceeded the capability of the hardware employed. For our purposes, the selection of the number of electrons to employ corresponds to a trade-off between the error, as determined by the root-mean square, and the running time. We find that for the steady-state electron transport simulations, the simulations are performed over longer periods of time, and thus, a smaller number of electrons are required for the error to be sufficiently low; for our specific case, three-thousand electrons is observed to work well for the steady-state electron transport simulations. In contrast, as the transient electron simulations occur over a shorter period of time, a larger number of electrons are required in order for the error to be sufficiently low; for our specific case, ten-thousand electrons is observed to work well for the transient electron transport simulations. Further details, related to this issue, are presented in the analysis of Jensen et al. [221].
 
22
Intense interest into the material properties of the III–V nitride semiconductors, GaN, AlN, and InN, and into their corresponding device applications, began in earnest in the early 1990s [76].
 
23
Interest in the material properties of ZnO began in earnest in the early-2000s [84].
 
24
Interest in the material properties of ZnO was ignited later than that associated with GaN, primarily on account of material quality considerations, i.e., high-quality GaN was prepared earlier, and a lack of familiarity with means of effectively handling II–VI compound semiconductors, many GaN processing techniques being borrowed directly from the GaAs case.
 
25
While every effort was made to provide a reasonable sampling of the electron transport literature corresponding to each material, some key references may have been neglected. We apologize to authors for these potential oversights.
 
26
The results presented by O’Leary et al. [155] were built upon preliminary results presented previously, also by O’Leary et al. [232].
 
27
In 1986, Tansley and Foley [279] measured the spectral dependence of the optical absorption coefficient associated with wurtzite InN and determined that the 300 K energy gap associated with this material is around 1.89 eV. This value became the defacto standard for the field until 2002, when Wu et al. [71] demonstrated, using higher quality forms of wurtzite InN, that the 300 K energy gap associated with this material is actually around 0.7 eV. Other experimental measurements confirmed the narrower energy gap value suggested by Wu et al. [71, 280, 281]. This revised value for the wurtzite InN energy gap is now widely accepted by the semiconductor materials community.
 
Literature
1.
go back to reference M.N. Yoder, IEEE Trans. Electron Devices 43, 1633 (1996) M.N. Yoder, IEEE Trans. Electron Devices 43, 1633 (1996)
2.
go back to reference D. Jones, A.H. Lettington, Solid State Commun. 11, 701 (1972) D. Jones, A.H. Lettington, Solid State Commun. 11, 701 (1972)
3.
go back to reference P. Das, D.K. Ferry, Solid-State Electron. 19, 851 (1976) P. Das, D.K. Ferry, Solid-State Electron. 19, 851 (1976)
4.
go back to reference B.J. Baliga, IEEE Electron Device Lett. 10, 455 (1989) B.J. Baliga, IEEE Electron Device Lett. 10, 455 (1989)
5.
go back to reference M. Bhatnagar, B.J. Baliga, IEEE Trans. Electron Devices 40, 645 (1993) M. Bhatnagar, B.J. Baliga, IEEE Trans. Electron Devices 40, 645 (1993)
6.
go back to reference T.P. Chow, R. Tyagi, IEEE Trans. Electron Devices 41, 1481 (1994) T.P. Chow, R. Tyagi, IEEE Trans. Electron Devices 41, 1481 (1994)
7.
go back to reference J.W. Milligan, S. Sheppard, W. Pribble, Y.-F. Wu, St. G. Müller, J.W. Palmour, in Proc. 2007 IEEE Radar Conf., p. 960 (2007) J.W. Milligan, S. Sheppard, W. Pribble, Y.-F. Wu, St. G. Müller, J.W. Palmour, in Proc. 2007 IEEE Radar Conf., p. 960 (2007)
8.
go back to reference A. BenMoussa, A. Soltani, U. Schühle, K. Haenen, Y.M. Chong, W.J. Zhang, R. Dahal, J.Y. Lin, H.X. Jiang, H.A. Barkad, B. BenMoussa, D. Bolsee, C. Hermans, U. Kroth, C. Laubis, V. Mortet, J.C. de Jaeger, B. Giordanengo, M. Richter, F. Scholze, J.F. Hochedez, Diam. Rel. Mater. 18, 860 (2009) A. BenMoussa, A. Soltani, U. Schühle, K. Haenen, Y.M. Chong, W.J. Zhang, R. Dahal, J.Y. Lin, H.X. Jiang, H.A. Barkad, B. BenMoussa, D. Bolsee, C. Hermans, U. Kroth, C. Laubis, V. Mortet, J.C. de Jaeger, B. Giordanengo, M. Richter, F. Scholze, J.F. Hochedez, Diam. Rel. Mater. 18, 860 (2009)
9.
go back to reference D.K. Schroder, Int. J. High Speed Electron. Syst. 21, 1250009 (2012) D.K. Schroder, Int. J. High Speed Electron. Syst. 21, 1250009 (2012)
10.
11.
go back to reference M. Wraback, H. Shen, J.C. Carrano, T. Li, J.C. Campbell, M.J. Schurman, I.T. Ferguson, Appl. Phys. Lett. 76, 1155 (2000) M. Wraback, H. Shen, J.C. Carrano, T. Li, J.C. Campbell, M.J. Schurman, I.T. Ferguson, Appl. Phys. Lett. 76, 1155 (2000)
12.
go back to reference M. Wraback, H. Shen, J.C. Carrano, C.J. Collins, J.C. Campbell, R.D. Dupuis, M.J. Schurman, I.T. Ferguson, Appl. Phys. Lett. 79, 1303 (2001) M. Wraback, H. Shen, J.C. Carrano, C.J. Collins, J.C. Campbell, R.D. Dupuis, M.J. Schurman, I.T. Ferguson, Appl. Phys. Lett. 79, 1303 (2001)
13.
go back to reference M. Wraback, H. Shen, S. Rudin, Proc. SPIE 4646, 117 (2002) M. Wraback, H. Shen, S. Rudin, Proc. SPIE 4646, 117 (2002)
14.
go back to reference M.E. Levinshtein, S.L. Rumyantsev, M.S. Shur (eds.), Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe (Wiley, New York, 2001) M.E. Levinshtein, S.L. Rumyantsev, M.S. Shur (eds.), Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe (Wiley, New York, 2001)
15.
go back to reference S. Adachi, Properties of Group-IV, III-V and II-VI Semiconductors (Wiley, Chichester, 2005) S. Adachi, Properties of Group-IV, III-V and II-VI Semiconductors (Wiley, Chichester, 2005)
16.
go back to reference E.O. Johnson, in Proc. IEEE Int. Conv. Record, vol.13, p. 27 (1965) E.O. Johnson, in Proc. IEEE Int. Conv. Record, vol.13, p. 27 (1965)
17.
18.
19.
go back to reference J.L. Hudgins, G.S. Simin, E. Santi, M.A. Khan, IEEE Trans. Power Electron. 18, 907 (2003) J.L. Hudgins, G.S. Simin, E. Santi, M.A. Khan, IEEE Trans. Power Electron. 18, 907 (2003)
20.
go back to reference L.-M. Wang, in Proc. IEEE 25th Int. Conf. Microelectron. 2006, p. 615 (2006) L.-M. Wang, in Proc. IEEE 25th Int. Conf. Microelectron. 2006, p. 615 (2006)
21.
go back to reference D. Shaddock, L. Meyer, J. Tucker, S. Dasgupta, R. Fillion, P. Bronecke, L. Yorinks, P. Kraft, in Proc. \(19^{th}\) IEEE Semi.-Therm. Symposium, p. 42 (2003) D. Shaddock, L. Meyer, J. Tucker, S. Dasgupta, R. Fillion, P. Bronecke, L. Yorinks, P. Kraft, in Proc. \(19^{th}\) IEEE Semi.-Therm. Symposium, p. 42 (2003)
22.
go back to reference H. Jain, S. Rajawat, P. Agrawal, in Proc. IEEE Int. Conf. Micro. 2008, p. 878 (2008) H. Jain, S. Rajawat, P. Agrawal, in Proc. IEEE Int. Conf. Micro. 2008, p. 878 (2008)
23.
go back to reference R.J. Trew, J.-B. Yan, P.M. Mock, Proc. IEEE 79, 598 (1991) R.J. Trew, J.-B. Yan, P.M. Mock, Proc. IEEE 79, 598 (1991)
24.
go back to reference J.M. McGarrity, F.B. McLean, W.M. DeLancey, J. Palmour, C. Carter, J. Edmond, R.E. Oakley, IEEE Trans. Nucl. Sci. 39, 1974 (1992) J.M. McGarrity, F.B. McLean, W.M. DeLancey, J. Palmour, C. Carter, J. Edmond, R.E. Oakley, IEEE Trans. Nucl. Sci. 39, 1974 (1992)
25.
go back to reference P.L. Dreike, D.M. Fleetwood, D.B. King, D.C. Sprauer, T.E. Zipperian, IEEE Trans. Comp. Pack. Manufactur. Technol. Part A 17, 594 (1994) P.L. Dreike, D.M. Fleetwood, D.B. King, D.C. Sprauer, T.E. Zipperian, IEEE Trans. Comp. Pack. Manufactur. Technol. Part A 17, 594 (1994)
26.
go back to reference J.B. Casady, R.W. Johnson, Solid-State Electron. 39, 1409 (1996) J.B. Casady, R.W. Johnson, Solid-State Electron. 39, 1409 (1996)
27.
go back to reference J.C. Zolper, in Proc. IEDM 1999, p. 389 (1999) J.C. Zolper, in Proc. IEDM 1999, p. 389 (1999)
28.
go back to reference J. Millán, IET Circuits Devices Syst. 1, 372 (2007) J. Millán, IET Circuits Devices Syst. 1, 372 (2007)
29.
go back to reference V.V. Buniatyan, V.M. Aroutiounian, J. Phys D: Appl. Phys. 40, 6355 (2007) V.V. Buniatyan, V.M. Aroutiounian, J. Phys D: Appl. Phys. 40, 6355 (2007)
30.
go back to reference J. Millán, P. Godignon, X. Perpiñà, A. Pérez-Tomás, J. Rebollo, IEEE Trans. Power Electron. 29, 2155 (2014) J. Millán, P. Godignon, X. Perpiñà, A. Pérez-Tomás, J. Rebollo, IEEE Trans. Power Electron. 29, 2155 (2014)
31.
go back to reference H.P. Maruska, J.J. Tietjen, Appl. Phys. Lett. 15, 327 (1969) H.P. Maruska, J.J. Tietjen, Appl. Phys. Lett. 15, 327 (1969)
32.
go back to reference R.N. Bhargava, IEEE Trans. Electron Devices 22, 691 (1975) R.N. Bhargava, IEEE Trans. Electron Devices 22, 691 (1975)
33.
go back to reference A.V. Nurmikko, R.L. Gunshor, IEEE J. Quant. Electron. 30, 619 (1994) A.V. Nurmikko, R.L. Gunshor, IEEE J. Quant. Electron. 30, 619 (1994)
34.
go back to reference T. Matsuoka, A. Ohki, T. Ohno, Y. Kawaguchi, J. Cryst. Growth 138, 727 (1994) T. Matsuoka, A. Ohki, T. Ohno, Y. Kawaguchi, J. Cryst. Growth 138, 727 (1994)
35.
go back to reference M.A. Khan, M.S. Shur, Proc. SPIE 3006, 154 (1997) M.A. Khan, M.S. Shur, Proc. SPIE 3006, 154 (1997)
36.
37.
38.
go back to reference J. Han, H. Amano, L. Schowalter, Semicond. Sci. Technol. 29, 080301 (2014) J. Han, H. Amano, L. Schowalter, Semicond. Sci. Technol. 29, 080301 (2014)
39.
go back to reference A.L. Ortiz, F. Sánchez-Bajo, F.L. Cumbrera, F. Guiberteau, J. Appl. Cryst. 46, 242 (2013) A.L. Ortiz, F. Sánchez-Bajo, F.L. Cumbrera, F. Guiberteau, J. Appl. Cryst. 46, 242 (2013)
40.
go back to reference Y. Kondo, T. Takahashi, K. Ishii, Y. Hayashi, E. Sakuma, S. Misawa, H. Daimon, M. Yamanaka, S. Yoshida, IEEE Electron Device Lett. 7, 404 (1986) Y. Kondo, T. Takahashi, K. Ishii, Y. Hayashi, E. Sakuma, S. Misawa, H. Daimon, M. Yamanaka, S. Yoshida, IEEE Electron Device Lett. 7, 404 (1986)
41.
go back to reference J.W. Palmour, H.S. Kong, R.F. Davis, Appl. Phys. Lett. 51, 2028 (1987) J.W. Palmour, H.S. Kong, R.F. Davis, Appl. Phys. Lett. 51, 2028 (1987)
42.
go back to reference T. Nakamura, K. Nanbu, T. Ishikawa, K. Kondo, J. Appl. Phys. 64, 2164 (1988) T. Nakamura, K. Nanbu, T. Ishikawa, K. Kondo, J. Appl. Phys. 64, 2164 (1988)
43.
go back to reference G. Kelner, M.S. Shur, S. Binari, K.J. Sleger, H.-S. Kong, Trans. Electron Devices 36, 1045 (1989) G. Kelner, M.S. Shur, S. Binari, K.J. Sleger, H.-S. Kong, Trans. Electron Devices 36, 1045 (1989)
44.
go back to reference R.F. Davis, G. Kelner, M. Shur, J.W. Palmour, J.A. Edmond, Proc. IEEE 79, 677 (1991) R.F. Davis, G. Kelner, M. Shur, J.W. Palmour, J.A. Edmond, Proc. IEEE 79, 677 (1991)
45.
go back to reference J.-W. Hong, N.-F. Shin, T.-S. Jen, S.-L. Ning, C.-Y. Chang, IEEE Electron Device Lett. 13, 375 (1992) J.-W. Hong, N.-F. Shin, T.-S. Jen, S.-L. Ning, C.-Y. Chang, IEEE Electron Device Lett. 13, 375 (1992)
46.
go back to reference M. Bhatnagar, P.K. McLarty, B.J. Baliga, IEEE Electron Device Lett. 13, 501 (1992) M. Bhatnagar, P.K. McLarty, B.J. Baliga, IEEE Electron Device Lett. 13, 501 (1992)
47.
go back to reference M. Ghezzo, D.M. Brown, E. Downey, J. Kretchmer, W. Hennessy, D.L. Polla, H. Bakhru, IEEE Electron Device Lett. 13, 639 (1992) M. Ghezzo, D.M. Brown, E. Downey, J. Kretchmer, W. Hennessy, D.L. Polla, H. Bakhru, IEEE Electron Device Lett. 13, 639 (1992)
48.
go back to reference D.M. Brown, E.T. Downey, M. Ghezzo, J.W. Kretchmer, R.J. Saia, Y.S. Liu, J.A. Edmond, G. Gati, J.M. Pimbley, W.E. Schneider, IEEE Trans. Electron Devices 40, 325 (1993) D.M. Brown, E.T. Downey, M. Ghezzo, J.W. Kretchmer, R.J. Saia, Y.S. Liu, J.A. Edmond, G. Gati, J.M. Pimbley, W.E. Schneider, IEEE Trans. Electron Devices 40, 325 (1993)
49.
go back to reference P.G. Neudeck, D.J. Larkin, J.E. Starr, J.A. Powell, C.S. Salupo, L.G. Matus, IEEE Electron Device Lett. 14, 136 (1993) P.G. Neudeck, D.J. Larkin, J.E. Starr, J.A. Powell, C.S. Salupo, L.G. Matus, IEEE Electron Device Lett. 14, 136 (1993)
50.
go back to reference G.-B. Gao, J. Sterner, H. Morkoç, IEEE Trans. Electron Devices 41, 1092 (1994) G.-B. Gao, J. Sterner, H. Morkoç, IEEE Trans. Electron Devices 41, 1092 (1994)
51.
go back to reference H. Morkoç, S. Strite, G.B. Gao, M.E. Lin, B. Sverdlov, M. Burns, J. Appl. Phys. 76, 1363 (1994) H. Morkoç, S. Strite, G.B. Gao, M.E. Lin, B. Sverdlov, M. Burns, J. Appl. Phys. 76, 1363 (1994)
52.
go back to reference D.M. Brown, E. Downey, M. Ghezzo, J. Kretchmer, V. Krishnamurthy, W. Hennessy, G. Michon, Solid-State Electron. 39, 1531 (1996) D.M. Brown, E. Downey, M. Ghezzo, J. Kretchmer, V. Krishnamurthy, W. Hennessy, G. Michon, Solid-State Electron. 39, 1531 (1996)
53.
go back to reference M. Mehregany, C.A. Zorman, N. Rajan, C.H. Wu, Proc. IEEE 86, 1594 (1998) M. Mehregany, C.A. Zorman, N. Rajan, C.H. Wu, Proc. IEEE 86, 1594 (1998)
54.
go back to reference J.C. Zolper, Solid-State Electron. 42, 2153 (1998) J.C. Zolper, Solid-State Electron. 42, 2153 (1998)
55.
go back to reference T.P. Chow, V. Khemka, J. Fedison, N. Ramungul, K. Matocha, Y. Tang, R.J. Gutmann, Solid-State Electron. 44, 277 (2000) T.P. Chow, V. Khemka, J. Fedison, N. Ramungul, K. Matocha, Y. Tang, R.J. Gutmann, Solid-State Electron. 44, 277 (2000)
56.
go back to reference A. Elasser, T.P. Chow, Proc. IEEE 90, 969 (2002) A. Elasser, T.P. Chow, Proc. IEEE 90, 969 (2002)
57.
go back to reference F. Ren, J.C. Zolper (eds.), Wide Energy Bandgap Electronic Devices (World Scientific, River Edge, 2003) F. Ren, J.C. Zolper (eds.), Wide Energy Bandgap Electronic Devices (World Scientific, River Edge, 2003)
58.
go back to reference J.H. Zhao, Mater. Res. Soc. Bull. 30(4), 293 (2005) J.H. Zhao, Mater. Res. Soc. Bull. 30(4), 293 (2005)
59.
go back to reference Q. Zhang, R. Callanan, M.K. Das, S.-H. Ryu, A.K. Agarwal, J.W. Palmour, IEEE Trans. Power Electron. 25, 2889 (2010) Q. Zhang, R. Callanan, M.K. Das, S.-H. Ryu, A.K. Agarwal, J.W. Palmour, IEEE Trans. Power Electron. 25, 2889 (2010)
60.
go back to reference K. Schirmer, B. Rowden, H.A. Mantooth, S.S. Ang, J.C. Balda, ECS Trans. 41, 183 (2011) K. Schirmer, B. Rowden, H.A. Mantooth, S.S. Ang, J.C. Balda, ECS Trans. 41, 183 (2011)
61.
go back to reference R.S. Pengelly, S.M. Wood, J.W. Milligan, S.T. Sheppard, W.L. Pribble, IEEE Trans. Microw. Theory Tech. 60, 1764 (2012) R.S. Pengelly, S.M. Wood, J.W. Milligan, S.T. Sheppard, W.L. Pribble, IEEE Trans. Microw. Theory Tech. 60, 1764 (2012)
62.
go back to reference L. Lanni, R. Ghandi, B.G. Malm, C.-M. Zetterling, M. Östling, Trans. Electron Devices 59, 1076 (2012) L. Lanni, R. Ghandi, B.G. Malm, C.-M. Zetterling, M. Östling, Trans. Electron Devices 59, 1076 (2012)
63.
go back to reference H.A. Mantooth, M.D. Glover, P. Shepherd, IEEE J. Emerg. Sel. Top. Power Electron. 2, 374 (2014) H.A. Mantooth, M.D. Glover, P. Shepherd, IEEE J. Emerg. Sel. Top. Power Electron. 2, 374 (2014)
64.
65.
go back to reference V. Grivickas, J. Linnros, P. Grivickas, A. Galeckas, Mater. Sci. Eng. B 61–62, 197 (1999) V. Grivickas, J. Linnros, P. Grivickas, A. Galeckas, Mater. Sci. Eng. B 61–62, 197 (1999)
66.
go back to reference S. Nakamura, H. Kumagai, T. Kimoto, H. Matsunami, Appl. Phys. Lett. 80, 3355 (2002) S. Nakamura, H. Kumagai, T. Kimoto, H. Matsunami, Appl. Phys. Lett. 80, 3355 (2002)
67.
go back to reference W. Bartsch, R. Schoerner, K.O. Dohnke, Mater. Sci. Forum 645–648, 909 (2010) W. Bartsch, R. Schoerner, K.O. Dohnke, Mater. Sci. Forum 645–648, 909 (2010)
68.
go back to reference E.A. Burgemeister, W. von Muench, E. Pettenpaul, J. Appl. Phys. 50, 5790 (1979) E.A. Burgemeister, W. von Muench, E. Pettenpaul, J. Appl. Phys. 50, 5790 (1979)
69.
go back to reference D.L. Barrett, R.G. Seidensticker, W. Gaida, R.H. Hopkins, W.J. Choyke, J. Cryst. Growth 109, 17 (1991) D.L. Barrett, R.G. Seidensticker, W. Gaida, R.H. Hopkins, W.J. Choyke, J. Cryst. Growth 109, 17 (1991)
70.
go back to reference R. Mickevičius, J.H. Zhao, J. Appl. Phys. 83, 3161 (1998) R. Mickevičius, J.H. Zhao, J. Appl. Phys. 83, 3161 (1998)
71.
go back to reference J. Wu, W. Walukiewicz, K.M. Yu, J.W. Ager III, E.E. Haller, H. Lu, W.J. Schaff, Y. Saito, Y. Nanishi, Appl. Phys. Lett. 80, 3967 (2002) J. Wu, W. Walukiewicz, K.M. Yu, J.W. Ager III, E.E. Haller, H. Lu, W.J. Schaff, Y. Saito, Y. Nanishi, Appl. Phys. Lett. 80, 3967 (2002)
72.
go back to reference S.X. Li, J. Wu, E.E. Haller, W. Walukiewicz, W. Shan, H. Lu, W.J. Schaff, Appl. Phys. Lett. 83, 4963 (2003) S.X. Li, J. Wu, E.E. Haller, W. Walukiewicz, W. Shan, H. Lu, W.J. Schaff, Appl. Phys. Lett. 83, 4963 (2003)
73.
74.
go back to reference K. Bejtka, F. Rizzi, P.R. Edwards, R.W. Martin, E. Gu, M.D. Dawson, I.M. Watson, I.R. Sellers, F. Semond, Phys. Status Solidi A 202, 2648 (2005) K. Bejtka, F. Rizzi, P.R. Edwards, R.W. Martin, E. Gu, M.D. Dawson, I.M. Watson, I.R. Sellers, F. Semond, Phys. Status Solidi A 202, 2648 (2005)
75.
go back to reference I. Gorczyca, T. Suski, N.E. Christensen, A. Svane, Appl. Phys. Lett. 96, 101907 (2010) I. Gorczyca, T. Suski, N.E. Christensen, A. Svane, Appl. Phys. Lett. 96, 101907 (2010)
76.
go back to reference S. Strite, H. Morkoç, J. Vac. Sci. Technol. B 10, 1237 (1992) S. Strite, H. Morkoç, J. Vac. Sci. Technol. B 10, 1237 (1992)
77.
go back to reference S. Strite, M.E. Lin, H. Morkoç, Thin Solid Films 231, 197 (1993) S. Strite, M.E. Lin, H. Morkoç, Thin Solid Films 231, 197 (1993)
78.
go back to reference I. Akasaki, H. Amano, H. Murakami, M. Sassa, H. Kato, K. Manabe, J. Cryst. Growth 128, 379 (1993) I. Akasaki, H. Amano, H. Murakami, M. Sassa, H. Kato, K. Manabe, J. Cryst. Growth 128, 379 (1993)
79.
go back to reference S.N. Mohammad, A.A. Salvador, H. Morkoç, Proc. IEEE 83, 1306 (1995) S.N. Mohammad, A.A. Salvador, H. Morkoç, Proc. IEEE 83, 1306 (1995)
80.
go back to reference S.N. Mohammad, H. Morkoç, Prog. Quantum Electron. 20, 361 (1996) S.N. Mohammad, H. Morkoç, Prog. Quantum Electron. 20, 361 (1996)
81.
go back to reference S. Porowski, J. Cryst. Growth 166, 583 (1996) S. Porowski, J. Cryst. Growth 166, 583 (1996)
82.
83.
go back to reference M.S. Shur, Solid-State Electron. 42, 2131 (1998) M.S. Shur, Solid-State Electron. 42, 2131 (1998)
84.
go back to reference S.J. Pearton, J.C. Zolper, R.J. Shul, F. Ren, J. Appl. Phys. 86, 1 (1999) S.J. Pearton, J.C. Zolper, R.J. Shul, F. Ren, J. Appl. Phys. 86, 1 (1999)
85.
go back to reference M.S. Shur, R.F. Davis (eds.), GaN-Based Materials and Devices: Growth, Fabrication, Characterization and Performance (World Scientific, River Edge, 2004) M.S. Shur, R.F. Davis (eds.), GaN-Based Materials and Devices: Growth, Fabrication, Characterization and Performance (World Scientific, River Edge, 2004)
86.
go back to reference C. Liu, F. Yun, H. Morkoç, J. Mater. Sci.: Mater. Electron. 16, 555 (2005) C. Liu, F. Yun, H. Morkoç, J. Mater. Sci.: Mater. Electron. 16, 555 (2005)
87.
go back to reference M. Bockowski, Cryst. Res. Technol. 42, 1162 (2007) M. Bockowski, Cryst. Res. Technol. 42, 1162 (2007)
88.
go back to reference R.P. Davies, C.R. Abernathy, S.J. Pearton, D.P. Norton, M.P. Ivill, F. Ren, Chem. Eng. Commun. 196, 1030 (2009) R.P. Davies, C.R. Abernathy, S.J. Pearton, D.P. Norton, M.P. Ivill, F. Ren, Chem. Eng. Commun. 196, 1030 (2009)
89.
go back to reference R. Brazis, R. Raguotis, Phys. Status Solidi C 6, 2674 (2009) R. Brazis, R. Raguotis, Phys. Status Solidi C 6, 2674 (2009)
90.
go back to reference J.A. del Alamo, J. Joh, Micro. Reliability 49, 1200 (2009) J.A. del Alamo, J. Joh, Micro. Reliability 49, 1200 (2009)
91.
92.
go back to reference A. Katz, M. Franco, IEEE Microw. Mag. 11, S24 (2010) A. Katz, M. Franco, IEEE Microw. Mag. 11, S24 (2010)
93.
go back to reference S.J. Pearton, C.R. Abernathy, F. Ren, Gallium Nitride Processing for Electronics, Sensors and Spintronics (Springer, New York, 2010) S.J. Pearton, C.R. Abernathy, F. Ren, Gallium Nitride Processing for Electronics, Sensors and Spintronics (Springer, New York, 2010)
94.
95.
go back to reference F. Scholz, Semicond. Sci. Technol. 27, 024002 (2012) F. Scholz, Semicond. Sci. Technol. 27, 024002 (2012)
96.
go back to reference Y. Hao, J. Zhang, B. Shen, X. Liu, J. Semicond. 33, 081001 (2012) Y. Hao, J. Zhang, B. Shen, X. Liu, J. Semicond. 33, 081001 (2012)
97.
go back to reference B.J. Baliga, Semicond. Sci. Technol. 28, 074011 (2013) B.J. Baliga, Semicond. Sci. Technol. 28, 074011 (2013)
98.
go back to reference S. Nakamura, M.R. Krames, Proc. IEEE 101, 2211 (2013) S. Nakamura, M.R. Krames, Proc. IEEE 101, 2211 (2013)
99.
go back to reference S.J. Pearton, R. Deist, F. Ren, L. Liu, A.Y. Polyakov, J. Kim, J. Vac. Sci. Technol. A 31, 050801 (2013) S.J. Pearton, R. Deist, F. Ren, L. Liu, A.Y. Polyakov, J. Kim, J. Vac. Sci. Technol. A 31, 050801 (2013)
100.
go back to reference S. Colangeli, A. Bentini, W. Ciccognani, E. Limiti, A. Nanni, IEEE Trans. Electron Devices 60, 3238 (2013) S. Colangeli, A. Bentini, W. Ciccognani, E. Limiti, A. Nanni, IEEE Trans. Electron Devices 60, 3238 (2013)
101.
go back to reference T. Kachi, IEICE Electron. Express 10, 20132005 (2013) T. Kachi, IEICE Electron. Express 10, 20132005 (2013)
102.
go back to reference D.W. Runton, B. Trabert, J.B. Shealy, R. Vetury, IEEE Microw. Mag. 14, 82 (2013) D.W. Runton, B. Trabert, J.B. Shealy, R. Vetury, IEEE Microw. Mag. 14, 82 (2013)
103.
go back to reference D. Visalli, M. Van Hove, P. Srivastava, J. Derluyn, J. Das, M. Leys, S. Degroote, K. Cheng, M. Germain, G. Borghs, Appl. Phys. Lett. 97, 113501 (2010) D. Visalli, M. Van Hove, P. Srivastava, J. Derluyn, J. Das, M. Leys, S. Degroote, K. Cheng, M. Germain, G. Borghs, Appl. Phys. Lett. 97, 113501 (2010)
104.
go back to reference I.B. Rowena, S.L. Selvaraj, T. Egawa, IEEE Electron Device Lett. 32, 1534 (2011) I.B. Rowena, S.L. Selvaraj, T. Egawa, IEEE Electron Device Lett. 32, 1534 (2011)
105.
go back to reference B.A. Danilchenko, I.A. Obukhov, T. Paszkiewicz, S. Wolski, A. Jeżowski, Solid State Commun. 144, 114 (2007) B.A. Danilchenko, I.A. Obukhov, T. Paszkiewicz, S. Wolski, A. Jeżowski, Solid State Commun. 144, 114 (2007)
106.
go back to reference K. Jagannadham, E.A. Berkman, N. Elmasry, J. Vac. Sci. Technol. A 26, 375 (2008) K. Jagannadham, E.A. Berkman, N. Elmasry, J. Vac. Sci. Technol. A 26, 375 (2008)
107.
go back to reference B.E. Foutz, S.K. O’Leary, M.S. Shur, L.F. Eastman, J. Appl. Phys. 85, 7727 (1999) B.E. Foutz, S.K. O’Leary, M.S. Shur, L.F. Eastman, J. Appl. Phys. 85, 7727 (1999)
108.
go back to reference S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, Solid State Commun. 118, 79 (2001) S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, Solid State Commun. 118, 79 (2001)
109.
go back to reference S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, J. Electron. Mater. 32, 327 (2003) S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, J. Electron. Mater. 32, 327 (2003)
110.
go back to reference S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, J. Mater. Sci.: Mater. Electron. 17, 87 (2006) S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, J. Mater. Sci.: Mater. Electron. 17, 87 (2006)
111.
go back to reference S. Nakamura, Mater. Res. Soc. Bull. 22(2), 29 (1997) S. Nakamura, Mater. Res. Soc. Bull. 22(2), 29 (1997)
112.
go back to reference M.S. Shur, M.A. Khan, Mater. Res. Soc. Bull. 22(2), 44 (1997) M.S. Shur, M.A. Khan, Mater. Res. Soc. Bull. 22(2), 44 (1997)
113.
go back to reference A.A. Burk Jr, M.J. O’Loughlin, R.R. Siergiej, A.K. Agarwal, S. Sriram, R.C. Clarke, M.F. MacMillan, V. Balakrishna, C.D. Brandt, Solid-State Electron. 43, 1459 (1999) A.A. Burk Jr, M.J. O’Loughlin, R.R. Siergiej, A.K. Agarwal, S. Sriram, R.C. Clarke, M.F. MacMillan, V. Balakrishna, C.D. Brandt, Solid-State Electron. 43, 1459 (1999)
114.
go back to reference S. Nakamura, S.F. Chichibu (eds.), Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes (Taylor and Francis, New York, 2000) S. Nakamura, S.F. Chichibu (eds.), Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes (Taylor and Francis, New York, 2000)
115.
go back to reference M.A. Khan, J.W. Yang, W. Knap, E. Frayssinet, X. Hu, G. Simin, P. Prystawko, M. Leszczynski, I. Grzegory, S. Porowski, R. Gaska, M.S. Shur, B. Beaumont, M. Teisseire, G. Neu, Appl. Phys. Lett. 76, 3807 (2000) M.A. Khan, J.W. Yang, W. Knap, E. Frayssinet, X. Hu, G. Simin, P. Prystawko, M. Leszczynski, I. Grzegory, S. Porowski, R. Gaska, M.S. Shur, B. Beaumont, M. Teisseire, G. Neu, Appl. Phys. Lett. 76, 3807 (2000)
116.
go back to reference S. Nakamura, S. Pearton, G. Fasol, The Blue Laser Diode: The Complete Story (Springer, New York, 2000) S. Nakamura, S. Pearton, G. Fasol, The Blue Laser Diode: The Complete Story (Springer, New York, 2000)
117.
go back to reference M. Umeno, T. Egawa, H. Ishikawa, Mater. Sci. Semicond. Process. 4, 459 (2001) M. Umeno, T. Egawa, H. Ishikawa, Mater. Sci. Semicond. Process. 4, 459 (2001)
118.
go back to reference A. Krost, A. Dadgar, Phys. Status Solidi A 194, 361 (2002) A. Krost, A. Dadgar, Phys. Status Solidi A 194, 361 (2002)
119.
go back to reference A. Žukauskas, M.S. Shur, R. Gaska, Introduction to Solid-State Lighting (Wiley, New York, 2002) A. Žukauskas, M.S. Shur, R. Gaska, Introduction to Solid-State Lighting (Wiley, New York, 2002)
120.
go back to reference X. Hu, J. Deng, N. Pala, R. Gaska, M.S. Shur, C.Q. Chen, J. Yang, G. Simin, M.A. Khan, J.C. Rojo, L.J. Schowalter, Appl. Phys. Lett. 82, 1299 (2003) X. Hu, J. Deng, N. Pala, R. Gaska, M.S. Shur, C.Q. Chen, J. Yang, G. Simin, M.A. Khan, J.C. Rojo, L.J. Schowalter, Appl. Phys. Lett. 82, 1299 (2003)
121.
go back to reference A. Jiménez, Z. Bougrioua, J.M. Tirado, A.F. Braña, E. Calleja, E. Muñoz, I. Moerman, Appl. Phys. Lett. 82, 4827 (2003) A. Jiménez, Z. Bougrioua, J.M. Tirado, A.F. Braña, E. Calleja, E. Muñoz, I. Moerman, Appl. Phys. Lett. 82, 4827 (2003)
122.
go back to reference W. Lu, V. Kumar, E.L. Piner, I. Adesida, IEEE Trans. Electron Devices 50, 1069 (2003) W. Lu, V. Kumar, E.L. Piner, I. Adesida, IEEE Trans. Electron Devices 50, 1069 (2003)
123.
go back to reference C.L. Tseng, M.J. Youh, G.P. Moore, M.A. Hopkins, R. Stevens, W.N. Wang, Appl. Phys. Lett. 83, 3677 (2003) C.L. Tseng, M.J. Youh, G.P. Moore, M.A. Hopkins, R. Stevens, W.N. Wang, Appl. Phys. Lett. 83, 3677 (2003)
124.
go back to reference J.C. Carrano, A. Zukauskas (eds.), Optically Based Biological and Chemical Sensing for Defense (SPIE, Bellingham, 2004) J.C. Carrano, A. Zukauskas (eds.), Optically Based Biological and Chemical Sensing for Defense (SPIE, Bellingham, 2004)
125.
go back to reference M.S. Shur, A. Žukauskas (eds.), UV Solid-State Light Emitters and Detectors (Kluwer, Boston, 2004) M.S. Shur, A. Žukauskas (eds.), UV Solid-State Light Emitters and Detectors (Kluwer, Boston, 2004)
126.
go back to reference M. Shur, M. Shatalov, A. Dobrinsky, R. Gaska, GaN and ZnO-based Materials and Devices, in Materials and Devices Series in Materials Science, ed. by S. Pearton (Springer, Berlin, 2012), pp. 83–120 M. Shur, M. Shatalov, A. Dobrinsky, R. Gaska, GaN and ZnO-based Materials and Devices, in Materials and Devices Series in Materials Science, ed. by S. Pearton (Springer, Berlin, 2012), pp. 83–120
127.
go back to reference Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005) Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005)
128.
go back to reference A. Ashrafi, C. Jagadish, J. Appl. Phys. 102, 071101 (2007) A. Ashrafi, C. Jagadish, J. Appl. Phys. 102, 071101 (2007)
129.
go back to reference H. Morkoç, Ü. Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology (Wiley, Weinheim, 2009) H. Morkoç, Ü. Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology (Wiley, Weinheim, 2009)
130.
go back to reference Ü. Özgür, D. Hofstetter, H. Morkoç, Proc. IEEE 98, 1255 (2010) Ü. Özgür, D. Hofstetter, H. Morkoç, Proc. IEEE 98, 1255 (2010)
131.
go back to reference Y.-S. Choi, J.-W. Kang, D.-K. Hwang, S.-J. Park, IEEE Trans. Electron Devices 57, 26 (2010) Y.-S. Choi, J.-W. Kang, D.-K. Hwang, S.-J. Park, IEEE Trans. Electron Devices 57, 26 (2010)
132.
go back to reference D.H. Levy, S.F. Nelson, J. Vac. Sci. Technol. A 30, 018501 (2012) D.H. Levy, S.F. Nelson, J. Vac. Sci. Technol. A 30, 018501 (2012)
133.
go back to reference H. Liu, V. Avrutin, N. Izyumskaya, Ü. Özgür, H. Moroç, Super. Micro. 48, 458 (2010) H. Liu, V. Avrutin, N. Izyumskaya, Ü. Özgür, H. Moroç, Super. Micro. 48, 458 (2010)
134.
go back to reference C.-K. Yang, K.S. Dy, Solid State Commun. 88, 491 (1993) C.-K. Yang, K.S. Dy, Solid State Commun. 88, 491 (1993)
135.
go back to reference J.D. Albrecht, P.P. Ruden, S. Limpijumnong, W.R.L. Lambrecht, K.F. Brennan, J. Appl. Phys. 86, 6864 (1999) J.D. Albrecht, P.P. Ruden, S. Limpijumnong, W.R.L. Lambrecht, K.F. Brennan, J. Appl. Phys. 86, 6864 (1999)
136.
go back to reference J.F. Muth, R.M. Kolbas, A.K. Sharma, S. Oktyabrsky, J. Narayan, J. Appl. Phys. 85, 7884 (1999) J.F. Muth, R.M. Kolbas, A.K. Sharma, S. Oktyabrsky, J. Narayan, J. Appl. Phys. 85, 7884 (1999)
137.
go back to reference H. Saitoh, W.A. Yarbrough, Diam. Rel. Mater. 1, 137 (1992) H. Saitoh, W.A. Yarbrough, Diam. Rel. Mater. 1, 137 (1992)
138.
go back to reference M. Yano, M. Okamoto, Y.K. Yap, M. Yoshimura, Y. Mori, T. Sasaki, Diam. Rel. Mater. 9, 512 (2000) M. Yano, M. Okamoto, Y.K. Yap, M. Yoshimura, Y. Mori, T. Sasaki, Diam. Rel. Mater. 9, 512 (2000)
139.
go back to reference C.-X. Wang, G.-W. Yang, T.-C. Zhang, H.-W. Liu, Y.-H. Han, J.-F. Luo, C.-X. Gao, G.-T. Zou, Appl. Phys. Lett. 83, 4854 (2003) C.-X. Wang, G.-W. Yang, T.-C. Zhang, H.-W. Liu, Y.-H. Han, J.-F. Luo, C.-X. Gao, G.-T. Zou, Appl. Phys. Lett. 83, 4854 (2003)
140.
go back to reference S. Miwa, K. Kimura, T. Yasuda, L.H. Kuo, S. Jin, K. Tanaka, T. Yao, Appl. Surf. Sci. 107, 184 (1996) S. Miwa, K. Kimura, T. Yasuda, L.H. Kuo, S. Jin, K. Tanaka, T. Yao, Appl. Surf. Sci. 107, 184 (1996)
141.
go back to reference V.D. Ryzhikov, L.P. Gal’chinetskii, S.N. Galkin, K.A. Katrunov, E.K. Lisetskaya, Proc. SPIE 3359, 302 (1998) V.D. Ryzhikov, L.P. Gal’chinetskii, S.N. Galkin, K.A. Katrunov, E.K. Lisetskaya, Proc. SPIE 3359, 302 (1998)
142.
go back to reference M.A. Abdel-Rahim, M.M. Hafiz, A.E.B. Alwany, Opt. Laser Technol. 47, 88 (2013) M.A. Abdel-Rahim, M.M. Hafiz, A.E.B. Alwany, Opt. Laser Technol. 47, 88 (2013)
143.
go back to reference I. Friel, S.L. Clewes, H.K. Dhillon, N. Perkins, D.J. Twitchen, G.A. Scarsbrook, Diam. Rel. Mater. 18, 808 (2009) I. Friel, S.L. Clewes, H.K. Dhillon, N. Perkins, D.J. Twitchen, G.A. Scarsbrook, Diam. Rel. Mater. 18, 808 (2009)
144.
145.
go back to reference M.A. Littlejohn, J.R. Hauser, T.H. Glisson, Appl. Phys. Lett. 26, 625 (1975) M.A. Littlejohn, J.R. Hauser, T.H. Glisson, Appl. Phys. Lett. 26, 625 (1975)
146.
go back to reference B. Gelmont, K. Kim, M. Shur, J. Appl. Phys. 74, 1818 (1993) B. Gelmont, K. Kim, M. Shur, J. Appl. Phys. 74, 1818 (1993)
147.
go back to reference V.W.L. Chin, T.L. Tansley, T. Osotchan, J. Appl. Phys. 75, 7365 (1994) V.W.L. Chin, T.L. Tansley, T. Osotchan, J. Appl. Phys. 75, 7365 (1994)
148.
go back to reference N.S. Mansour, K.W. Kim, M.A. Littlejohn, J. Appl. Phys. 77, 2834 (1995) N.S. Mansour, K.W. Kim, M.A. Littlejohn, J. Appl. Phys. 77, 2834 (1995)
149.
go back to reference J. Kolník, İ.H. Oğuzman, K.F. Brennan, R. Wang, P.P. Ruden, Y. Wang, J. Appl. Phys. 78, 1033 (1995) J. Kolník, İ.H. Oğuzman, K.F. Brennan, R. Wang, P.P. Ruden, Y. Wang, J. Appl. Phys. 78, 1033 (1995)
150.
go back to reference M. Shur, B. Gelmont, M.A. Khan, J. Electron. Mater. 25, 777 (1996) M. Shur, B. Gelmont, M.A. Khan, J. Electron. Mater. 25, 777 (1996)
151.
go back to reference U.V. Bhapkar, M.S. Shur, J. Appl. Phys. 82, 1649 (1997) U.V. Bhapkar, M.S. Shur, J. Appl. Phys. 82, 1649 (1997)
152.
go back to reference B.E. Foutz, L.F. Eastman, U.V. Bhapkar, M.S. Shur, Appl. Phys. Lett. 70, 2849 (1997) B.E. Foutz, L.F. Eastman, U.V. Bhapkar, M.S. Shur, Appl. Phys. Lett. 70, 2849 (1997)
153.
go back to reference E.G. Brazel, M.A. Chin, V. Narayanamurti, D. Kapolnek, E.J. Tarsa, S.P. DenBaars, Appl. Phys. Lett. 70, 330 (1997) E.G. Brazel, M.A. Chin, V. Narayanamurti, D. Kapolnek, E.J. Tarsa, S.P. DenBaars, Appl. Phys. Lett. 70, 330 (1997)
154.
go back to reference J.D. Albrecht, R.P. Wang, P.P. Ruden, M. Farahmand, K.F. Brennan, J. Appl. Phys. 83, 1446 (1998) J.D. Albrecht, R.P. Wang, P.P. Ruden, M. Farahmand, K.F. Brennan, J. Appl. Phys. 83, 1446 (1998)
155.
go back to reference S.K. O’Leary, B.E. Foutz, M.S. Shur, U.V. Bhapkar, L.F. Eastman, J. Appl. Phys. 83, 826 (1998) S.K. O’Leary, B.E. Foutz, M.S. Shur, U.V. Bhapkar, L.F. Eastman, J. Appl. Phys. 83, 826 (1998)
156.
go back to reference D.C. Look, D.C. Reynolds, J.R. Sizelove, R.L. Jones, C.W. Litton, G. Cantwell, W.C. Harsch, Solid State Commun. 105, 399 (1998) D.C. Look, D.C. Reynolds, J.R. Sizelove, R.L. Jones, C.W. Litton, G. Cantwell, W.C. Harsch, Solid State Commun. 105, 399 (1998)
157.
go back to reference J.D. Albrecht, R.P. Wang, P.P. Ruden, M. Farahmand, K.F. Brennan, J. Appl. Phys. 83, 4777 (1998) J.D. Albrecht, R.P. Wang, P.P. Ruden, M. Farahmand, K.F. Brennan, J. Appl. Phys. 83, 4777 (1998)
158.
go back to reference M.S. Krishnan, N. Goldsman, A. Christou, J. Appl. Phys. 83, 5896 (1998) M.S. Krishnan, N. Goldsman, A. Christou, J. Appl. Phys. 83, 5896 (1998)
159.
go back to reference N.G. Weimann, L.F. Eastman, D. Doppalapudi, H.M. Ng, T.D. Moustakas, J. Appl. Phys. 83, 3656 (1998) N.G. Weimann, L.F. Eastman, D. Doppalapudi, H.M. Ng, T.D. Moustakas, J. Appl. Phys. 83, 3656 (1998)
160.
go back to reference S.K. O’Leary, B.E. Foutz, M.S. Shur, U.V. Bhapkar, L.F. Eastman, Solid State Commun. 105, 621 (1998) S.K. O’Leary, B.E. Foutz, M.S. Shur, U.V. Bhapkar, L.F. Eastman, Solid State Commun. 105, 621 (1998)
161.
go back to reference J.D. Albrecht, R. Wang, P.P. Ruden, M. Farahmand, E. Bellotti, K.F. Brennan, Mater. Res. Soc. Symp. Proc. 482, 815 (1998) J.D. Albrecht, R. Wang, P.P. Ruden, M. Farahmand, E. Bellotti, K.F. Brennan, Mater. Res. Soc. Symp. Proc. 482, 815 (1998)
162.
go back to reference I.A. Khan, J.A. Cooper Jr., Mater. Sci. Forum 264–268, 509 (1998) I.A. Khan, J.A. Cooper Jr., Mater. Sci. Forum 264–268, 509 (1998)
163.
go back to reference R. Mickevičius, J.H. Zhao, Mater. Sci. Forum 264–268, 291 (1998) R. Mickevičius, J.H. Zhao, Mater. Sci. Forum 264–268, 291 (1998)
164.
go back to reference R. Oberhuber, G. Zandler, P. Vogl, Appl. Phys. Lett. 73, 818 (1998) R. Oberhuber, G. Zandler, P. Vogl, Appl. Phys. Lett. 73, 818 (1998)
165.
go back to reference N.A. Zakhleniuk, C.R. Bennett, B.K. Ridley, M. Babiker, Appl. Phys. Lett. 73, 2485 (1998) N.A. Zakhleniuk, C.R. Bennett, B.K. Ridley, M. Babiker, Appl. Phys. Lett. 73, 2485 (1998)
166.
go back to reference B.E. Foutz, S.K. O’Leary, M.S. Shur, L.F. Eastman, Mater. Res. Soc. Symp. Proc. 572, 445 (1999) B.E. Foutz, S.K. O’Leary, M.S. Shur, L.F. Eastman, Mater. Res. Soc. Symp. Proc. 572, 445 (1999)
167.
go back to reference J.H. Zhao, V. Gruzinskis, Y. Luo, M. Weiner, M. Pan, P. Shiktorov, E. Starikov, Semicond. Sci. Technol. 15, 1093 (2000) J.H. Zhao, V. Gruzinskis, Y. Luo, M. Weiner, M. Pan, P. Shiktorov, E. Starikov, Semicond. Sci. Technol. 15, 1093 (2000)
168.
go back to reference V. Gruzinskis, Y. Luo, J. Zhao, M. Weiner, M. Pan, P. Shiktorov, E. Starikov, Mater. Sci. Forum 338–342, 1379 (2000) V. Gruzinskis, Y. Luo, J. Zhao, M. Weiner, M. Pan, P. Shiktorov, E. Starikov, Mater. Sci. Forum 338–342, 1379 (2000)
169.
go back to reference M. Hjelm, K. Bertilsson, H.-E. Nilsson, Appl. Surf. Sci. 184, 194 (2001) M. Hjelm, K. Bertilsson, H.-E. Nilsson, Appl. Surf. Sci. 184, 194 (2001)
170.
go back to reference H.-E. Nilsson, E. Bellotti, M. Hjelm, K. Brennan, Math. Comp. Sim. 55, 199 (2001) H.-E. Nilsson, E. Bellotti, M. Hjelm, K. Brennan, Math. Comp. Sim. 55, 199 (2001)
171.
go back to reference N. Balkan, M.C. Arikan, S. Gokden, V. Tilak, B. Schaff, R.J. Shealy, J. Phys.: Condens. Matter. 14, 3457 (2002) N. Balkan, M.C. Arikan, S. Gokden, V. Tilak, B. Schaff, R.J. Shealy, J. Phys.: Condens. Matter. 14, 3457 (2002)
172.
go back to reference H.-E. Nilsson, U. Englund, M. Hjelm, E. Bellotti, K. Brennan, J. Appl. Phys. 93, 3389 (2003) H.-E. Nilsson, U. Englund, M. Hjelm, E. Bellotti, K. Brennan, J. Appl. Phys. 93, 3389 (2003)
173.
go back to reference M. Hjelm, H.-E. Nilsson, A. Martinez, K.F. Brennan, E. Bellotti, J. Appl. Phys. 93, 1099 (2003) M. Hjelm, H.-E. Nilsson, A. Martinez, K.F. Brennan, E. Bellotti, J. Appl. Phys. 93, 1099 (2003)
174.
175.
go back to reference S. Gokden, N. Balkan, B.K. Ridley, Semicond. Sci. Technol. 18, 206 (2003) S. Gokden, N. Balkan, B.K. Ridley, Semicond. Sci. Technol. 18, 206 (2003)
176.
177.
go back to reference B.K. Ridley, W.J. Schaff, L.F. Eastman, J. Appl. Phys. 96, 1499 (2004) B.K. Ridley, W.J. Schaff, L.F. Eastman, J. Appl. Phys. 96, 1499 (2004)
178.
go back to reference B. Guo, U. Ravaioli, M. Staedele, Comp. Phys. Commun. 175, 482 (2006) B. Guo, U. Ravaioli, M. Staedele, Comp. Phys. Commun. 175, 482 (2006)
179.
go back to reference S. Kabra, H. Kaur, S. Haldar, M. Gupta, R.S. Gupta, Phys. Status Solidi C 3, 2350 (2006) S. Kabra, H. Kaur, S. Haldar, M. Gupta, R.S. Gupta, Phys. Status Solidi C 3, 2350 (2006)
180.
go back to reference C.H. Oxley, M.J. Uren, A. Coates, D.G. Hayes, IEEE Trans. Electron Devices 53, 565 (2006) C.H. Oxley, M.J. Uren, A. Coates, D.G. Hayes, IEEE Trans. Electron Devices 53, 565 (2006)
181.
go back to reference B. Benbakhti, M. Rousseau, A. Soltani, J.-C. De Jaeger, IEEE Trans. Electron Devices 53, 2237 (2006) B. Benbakhti, M. Rousseau, A. Soltani, J.-C. De Jaeger, IEEE Trans. Electron Devices 53, 2237 (2006)
182.
go back to reference Y. Tomita, H. Ikegami, H.I. Fujishiro, Phys. Status Solidi C 4, 2695 (2007) Y. Tomita, H. Ikegami, H.I. Fujishiro, Phys. Status Solidi C 4, 2695 (2007)
183.
go back to reference M. Ramonas, A. Matulionis, L.F. Eastman, Semicond. Sci. Technol. 22, 875 (2007) M. Ramonas, A. Matulionis, L.F. Eastman, Semicond. Sci. Technol. 22, 875 (2007)
184.
go back to reference J. Khurgin, Y.J. Ding, D. Jena, Appl. Phys. Lett. 91, 252104 (2007) J. Khurgin, Y.J. Ding, D. Jena, Appl. Phys. Lett. 91, 252104 (2007)
185.
go back to reference F. Bertazzi, M. Goano, E. Bellotti, J. Electron. Mater. 36, 857 (2007) F. Bertazzi, M. Goano, E. Bellotti, J. Electron. Mater. 36, 857 (2007)
186.
go back to reference S. Yamakawa, M. Saraniti, S.M. Goodnick, Proc. SPIE 6471, 64710M (2007) S. Yamakawa, M. Saraniti, S.M. Goodnick, Proc. SPIE 6471, 64710M (2007)
187.
go back to reference A. Matulionis, J. Liberis, E. Šermukšnis, J. Xie, J.H. Leach, M. Wu, H. Morkoç, Semicond. Sci. Technol. 23, 075048 (2008) A. Matulionis, J. Liberis, E. Šermukšnis, J. Xie, J.H. Leach, M. Wu, H. Morkoç, Semicond. Sci. Technol. 23, 075048 (2008)
188.
go back to reference E. Furno, F. Bertazzi, M. Goano, G. Ghione, E. Bellotti, Solid-State Electron. 52, 1796 (2008) E. Furno, F. Bertazzi, M. Goano, G. Ghione, E. Bellotti, Solid-State Electron. 52, 1796 (2008)
189.
go back to reference F. Bertazzi, E. Bellotti, E. Furno, M. Goano, J. Electron. Mater. 38, 1677 (2009) F. Bertazzi, E. Bellotti, E. Furno, M. Goano, J. Electron. Mater. 38, 1677 (2009)
190.
go back to reference A. Hamdoune, N.-E.C. Sari, Phys. Procedia 2, 905 (2009) A. Hamdoune, N.-E.C. Sari, Phys. Procedia 2, 905 (2009)
191.
go back to reference H. Arabshahi, M.R. Rokn-Abadi, F.B. Bagh-Siyahi, Res. J. Appl. Sci. 5, 215 (2010) H. Arabshahi, M.R. Rokn-Abadi, F.B. Bagh-Siyahi, Res. J. Appl. Sci. 5, 215 (2010)
192.
go back to reference F. Bertazzi, M. Penna, M. Goano, E. Bellotti, Proc. SPIE 7603, 760303 (2010) F. Bertazzi, M. Penna, M. Goano, E. Bellotti, Proc. SPIE 7603, 760303 (2010)
193.
go back to reference S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, Solid State Commun. 150, 2182 (2010) S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, Solid State Commun. 150, 2182 (2010)
194.
go back to reference Z. Yarar, J. Electron. Mater. 40, 466 (2011) Z. Yarar, J. Electron. Mater. 40, 466 (2011)
195.
go back to reference W.A. Hadi, S.K. O’Leary, M.S. Shur, L.F. Eastman, Solid State Commun. 151, 874 (2011) W.A. Hadi, S.K. O’Leary, M.S. Shur, L.F. Eastman, Solid State Commun. 151, 874 (2011)
196.
go back to reference W.A. Hadi, M.S. Shur, S.K. O’Leary, J. Appl. Phys. 112, 033720 (2012) W.A. Hadi, M.S. Shur, S.K. O’Leary, J. Appl. Phys. 112, 033720 (2012)
197.
go back to reference W.A. Hadi, S. Chowdhury, M.S. Shur, S.K. O’Leary, J. Appl. Phys. 112, 123722 (2012) W.A. Hadi, S. Chowdhury, M.S. Shur, S.K. O’Leary, J. Appl. Phys. 112, 123722 (2012)
198.
go back to reference W.A. Hadi, M.S. Shur, S.K. O’Leary, J. Mater. Sci.: Mater. Electron. 24, 2 (2013) W.A. Hadi, M.S. Shur, S.K. O’Leary, J. Mater. Sci.: Mater. Electron. 24, 2 (2013)
199.
go back to reference W.A. Hadi, P.K. Guram, M.S. Shur, S.K. O’Leary, J. Appl. Phys. 113, 113709 (2013) W.A. Hadi, P.K. Guram, M.S. Shur, S.K. O’Leary, J. Appl. Phys. 113, 113709 (2013)
200.
go back to reference E. Baghani, S.K. O’Leary, J. Appl. Phys. 114, 023703 (2013) E. Baghani, S.K. O’Leary, J. Appl. Phys. 114, 023703 (2013)
201.
go back to reference S. Shishehchi, F. Bertazzi, E. Bellotti, Proc. SPIE 8619, 86190H (2013) S. Shishehchi, F. Bertazzi, E. Bellotti, Proc. SPIE 8619, 86190H (2013)
203.
go back to reference J. Woźny, Z. Lisik, J. Podgórski, J. Phys. Conf. Ser. 494, 012005 (2014) J. Woźny, Z. Lisik, J. Podgórski, J. Phys. Conf. Ser. 494, 012005 (2014)
204.
go back to reference W.A. Hadi, M.S. Shur, S.K. O’Leary, J. Mater. Sci.: Mater. Electron. 25, 4675 (2014) W.A. Hadi, M.S. Shur, S.K. O’Leary, J. Mater. Sci.: Mater. Electron. 25, 4675 (2014)
205.
go back to reference B.R. Nag, Electron Transport in Compound Semiconductors (Springer, Berlin, 1980) B.R. Nag, Electron Transport in Compound Semiconductors (Springer, Berlin, 1980)
206.
go back to reference M. Shur, Physics of Semiconductor Devices (Prentice-Hall, Englewood Cliffs, 1990) M. Shur, Physics of Semiconductor Devices (Prentice-Hall, Englewood Cliffs, 1990)
207.
go back to reference U.K. Mishra, J. Singh, Semiconductor Device Physics and Design (Springer, Dordrecht, 2008) U.K. Mishra, J. Singh, Semiconductor Device Physics and Design (Springer, Dordrecht, 2008)
208.
go back to reference N.W. Ashcroft, N.D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976) N.W. Ashcroft, N.D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976)
209.
go back to reference C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley, New York, 2005) C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley, New York, 2005)
210.
go back to reference D.C. Look, J.R. Sizelove, S. Keller, Y.F. Wu, U.K. Mishra, S.P. DenBaars, Solid State Commun. 102, 297 (1997) D.C. Look, J.R. Sizelove, S. Keller, Y.F. Wu, U.K. Mishra, S.P. DenBaars, Solid State Commun. 102, 297 (1997)
211.
go back to reference E.M. Conwell, M.O. Vassell, IEEE Trans. Electron Devices 13, 22 (1966) E.M. Conwell, M.O. Vassell, IEEE Trans. Electron Devices 13, 22 (1966)
212.
go back to reference P.A. Sandborn, A. Rao, P.A. Blakey, IEEE Trans. Electron Devices 36, 1244 (1989) P.A. Sandborn, A. Rao, P.A. Blakey, IEEE Trans. Electron Devices 36, 1244 (1989)
213.
go back to reference S. Zukotynski, W. Howlett, Solid-State Electron. 21, 35 (1978) S. Zukotynski, W. Howlett, Solid-State Electron. 21, 35 (1978)
214.
go back to reference D.K. Ferry, C. Jacoboni (eds.), Quantum Transport in Semiconductors (Plenum Press, New York, 1992) D.K. Ferry, C. Jacoboni (eds.), Quantum Transport in Semiconductors (Plenum Press, New York, 1992)
215.
go back to reference A. Papoulis, Probability, Random Variables, and Stochastic Processes, 3rd edn. (McGraw-Hill, New York, 1991) A. Papoulis, Probability, Random Variables, and Stochastic Processes, 3rd edn. (McGraw-Hill, New York, 1991)
216.
go back to reference R.M. Yorston, J. Comput. Phys. 64, 177 (1986) R.M. Yorston, J. Comput. Phys. 64, 177 (1986)
217.
go back to reference W. Fawcett, A.D. Boardman, S. Swain, J. Phys. Chem. Solids 31, 1963 (1970) W. Fawcett, A.D. Boardman, S. Swain, J. Phys. Chem. Solids 31, 1963 (1970)
218.
go back to reference B.K. Ridley, Quantum Processes in Semiconductors, 3rd edn. (Oxford, New York, 1993) B.K. Ridley, Quantum Processes in Semiconductors, 3rd edn. (Oxford, New York, 1993)
219.
go back to reference C. Jacoboni, L. Reggiani, Rev. Mod. Phys. 55, 645 (1983) C. Jacoboni, L. Reggiani, Rev. Mod. Phys. 55, 645 (1983)
220.
go back to reference C. Jacoboni, P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation (Springer, New York, 1989) C. Jacoboni, P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation (Springer, New York, 1989)
221.
go back to reference G.U. Jensen, B. Lund, T.A. Fjeldly, M. Shur, Comp. Phys. Commun. 67, 1 (1991) G.U. Jensen, B. Lund, T.A. Fjeldly, M. Shur, Comp. Phys. Commun. 67, 1 (1991)
222.
go back to reference A. Bykhovski, B. Gelmont, M. Shur, A. Khan, J. Appl. Phys. 77, 1616 (1995) A. Bykhovski, B. Gelmont, M. Shur, A. Khan, J. Appl. Phys. 77, 1616 (1995)
223.
go back to reference A.D. Bykhovski, V.V. Kaminski, M.S. Shur, Q.C. Chen, M.A. Khan, Appl. Phys. Lett. 68, 818 (1996) A.D. Bykhovski, V.V. Kaminski, M.S. Shur, Q.C. Chen, M.A. Khan, Appl. Phys. Lett. 68, 818 (1996)
224.
go back to reference M.A. Littlejohn, J.R. Hauser, T.H. Glisson, J. Appl. Phys. 48, 4587 (1977) M.A. Littlejohn, J.R. Hauser, T.H. Glisson, J. Appl. Phys. 48, 4587 (1977)
225.
go back to reference W.R.L. Lambrecht, B. Segall, in Properties of Group III Nitrides, No. 11 EMIS Datareviews Series, Edited by J. H. Edgar (Inspec, London, 1994), Chapter 4 W.R.L. Lambrecht, B. Segall, in Properties of Group III Nitrides, No. 11 EMIS Datareviews Series, Edited by J. H. Edgar (Inspec, London, 1994), Chapter 4
226.
go back to reference J.S. Blakemore, J. Appl. Phys. 53, R123 (1982) J.S. Blakemore, J. Appl. Phys. 53, R123 (1982)
227.
go back to reference S.M. Sze, K.K. Ng, Physics of Semiconductor Devices, 3rd edn. (Wiley, Hoboken, 2007) S.M. Sze, K.K. Ng, Physics of Semiconductor Devices, 3rd edn. (Wiley, Hoboken, 2007)
228.
go back to reference M. Shur, S. Rumyantsev, M. Levinshtein (eds.), SiC Materials and Devices, vol. 1 (World Scientific, London, 2006) M. Shur, S. Rumyantsev, M. Levinshtein (eds.), SiC Materials and Devices, vol. 1 (World Scientific, London, 2006)
229.
go back to reference P. Lugli, D.K. Ferry, IEEE Trans. Electron Devices 32, 2431 (1985) P. Lugli, D.K. Ferry, IEEE Trans. Electron Devices 32, 2431 (1985)
230.
go back to reference K. Seeger, Semiconductor Physics: An Introduction, 9th edn. (Springer, Berlin, 2004) K. Seeger, Semiconductor Physics: An Introduction, 9th edn. (Springer, Berlin, 2004)
231.
go back to reference B.E. Foutz, S.K. O’Leary, M.S. Shur, L.F. Eastman, U.V. Bhapkar, Mater. Res. Soc. Symp. Proc. 482, 821 (1998) B.E. Foutz, S.K. O’Leary, M.S. Shur, L.F. Eastman, U.V. Bhapkar, Mater. Res. Soc. Symp. Proc. 482, 821 (1998)
232.
go back to reference S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, U.V. Bhapkar, Mater. Res. Soc. Symp. Proc. 482, 845 (1998) S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, U.V. Bhapkar, Mater. Res. Soc. Symp. Proc. 482, 845 (1998)
233.
go back to reference B.E. Foutz, S.K. O’Leary, M.S. Shur, L.F. Eastman, Mater. Res. Soc. Symp. Proc. 512, 555 (1998) B.E. Foutz, S.K. O’Leary, M.S. Shur, L.F. Eastman, Mater. Res. Soc. Symp. Proc. 512, 555 (1998)
234.
go back to reference S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, Appl. Phys. Lett. 87, 222103 (2005) S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, Appl. Phys. Lett. 87, 222103 (2005)
235.
go back to reference S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, Appl. Phys. Lett. 88, 152113 (2006) S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, Appl. Phys. Lett. 88, 152113 (2006)
236.
go back to reference W.A. Hadi, R. Cheekoori, M.S. Shur, S.K. O’Leary, J. Mater. Sci.: Mater. Electron. 24, 807 (2013) W.A. Hadi, R. Cheekoori, M.S. Shur, S.K. O’Leary, J. Mater. Sci.: Mater. Electron. 24, 807 (2013)
237.
go back to reference W.A. Hadi, M.S. Shur, S.K. O’Leary, J. Mater. Sci.: Mater. Electron. 24, 1624 (2013) W.A. Hadi, M.S. Shur, S.K. O’Leary, J. Mater. Sci.: Mater. Electron. 24, 1624 (2013)
238.
go back to reference J.G. Ruch, IEEE Trans. Electron Devices 19, 652 (1972) J.G. Ruch, IEEE Trans. Electron Devices 19, 652 (1972)
239.
go back to reference M.S. Shur, L.F. Eastman, IEEE Trans. Electron Devices 26, 1677 (1979) M.S. Shur, L.F. Eastman, IEEE Trans. Electron Devices 26, 1677 (1979)
240.
go back to reference M. Heiblum, M.I. Nathan, D.C. Thomas, C.M. Knoedler, Phys. Rev. Lett. 55, 2200 (1985) M. Heiblum, M.I. Nathan, D.C. Thomas, C.M. Knoedler, Phys. Rev. Lett. 55, 2200 (1985)
241.
go back to reference A. Palevski, M. Heiblum, C.P. Umbach, C.M. Knoedler, A.N. Broers, R.H. Koch, Phys. Rev. Lett. 62, 1776 (1989) A. Palevski, M. Heiblum, C.P. Umbach, C.M. Knoedler, A.N. Broers, R.H. Koch, Phys. Rev. Lett. 62, 1776 (1989)
242.
go back to reference A. Palevski, C.P. Umbach, M. Heiblum, Appl. Phys. Lett. 55, 1421 (1989) A. Palevski, C.P. Umbach, M. Heiblum, Appl. Phys. Lett. 55, 1421 (1989)
243.
go back to reference A. Yacoby, U. Sivan, C.P. Umbach, J.M. Hong, Phys. Rev. Lett. 66, 1938 (1991) A. Yacoby, U. Sivan, C.P. Umbach, J.M. Hong, Phys. Rev. Lett. 66, 1938 (1991)
244.
245.
go back to reference G.S. Parks, C.E. Hablutzel, L.E. Webster, J. Am. Chem. Soc. 49, 2792 (1927) G.S. Parks, C.E. Hablutzel, L.E. Webster, J. Am. Chem. Soc. 49, 2792 (1927)
246.
go back to reference E. Tiede, M. Thimann, K. Sensse, Chem. Berichte 61, 1568 (1928) E. Tiede, M. Thimann, K. Sensse, Chem. Berichte 61, 1568 (1928)
247.
go back to reference W.C. Johnson, J.B. Parsons, M.C. Crew, J. Phys. Chem. 36, 2651 (1932) W.C. Johnson, J.B. Parsons, M.C. Crew, J. Phys. Chem. 36, 2651 (1932)
248.
go back to reference G. I. Finch, H. Wilman, J. Chem. Soc., 751 (1934) G. I. Finch, H. Wilman, J. Chem. Soc., 751 (1934)
249.
250.
go back to reference R. Juza, H. Hahn, Zeitschr. Anorgan. Allgem. Chem. 239, 282 (1938) R. Juza, H. Hahn, Zeitschr. Anorgan. Allgem. Chem. 239, 282 (1938)
251.
go back to reference M.A. Khan, Q. Chen, C.J. Sun, M. Shur, B. Gelmont, Appl. Phys. Lett. 67, 1429 (1995) M.A. Khan, Q. Chen, C.J. Sun, M. Shur, B. Gelmont, Appl. Phys. Lett. 67, 1429 (1995)
252.
go back to reference S. Yoshida, S. Misawa, S. Gonda, J. Vac. Sci. Technol. B 1, 250 (1983) S. Yoshida, S. Misawa, S. Gonda, J. Vac. Sci. Technol. B 1, 250 (1983)
253.
go back to reference H. Nakayama, P. Hacke, M.R.H. Khan, T. Detchprohm, K. Hiramatsu, N. Sawaki, Jpn. J. Appl. Phys. 35, L282 (1996) H. Nakayama, P. Hacke, M.R.H. Khan, T. Detchprohm, K. Hiramatsu, N. Sawaki, Jpn. J. Appl. Phys. 35, L282 (1996)
254.
go back to reference C.A. Hurni, J.R. Lang, P.G. Burke, J.S. Speck, Appl. Phys. Lett. 101, 102106 (2012) C.A. Hurni, J.R. Lang, P.G. Burke, J.S. Speck, Appl. Phys. Lett. 101, 102106 (2012)
255.
go back to reference Z.C. Huang, R. Goldberg, J.C. Chen, Y. Zheng, D.B. Mott, P. Shu, Appl. Phys. Lett. 67, 2825 (1995) Z.C. Huang, R. Goldberg, J.C. Chen, Y. Zheng, D.B. Mott, P. Shu, Appl. Phys. Lett. 67, 2825 (1995)
256.
go back to reference S. Krishnamurthy, M. van Schilfgaarde, A. Sher, A.-B. Chen, Appl. Phys. Lett. 71, 1999 (1997) S. Krishnamurthy, M. van Schilfgaarde, A. Sher, A.-B. Chen, Appl. Phys. Lett. 71, 1999 (1997)
257.
go back to reference A. Matulionis, J. Liberis, L. Ardaravičius, M. Ramonas, I. Matulionienė, J. Smart, Semicond. Sci. Technol. 17, L9 (2002) A. Matulionis, J. Liberis, L. Ardaravičius, M. Ramonas, I. Matulionienė, J. Smart, Semicond. Sci. Technol. 17, L9 (2002)
258.
go back to reference C. Bulutay, B.K. Ridley, N.A. Zakhleniuk, Phys. Rev. B 68, 115205 (2003) C. Bulutay, B.K. Ridley, N.A. Zakhleniuk, Phys. Rev. B 68, 115205 (2003)
259.
go back to reference R. Brazis, R. Raguotis, Appl. Phys. Lett. 85, 609 (2004) R. Brazis, R. Raguotis, Appl. Phys. Lett. 85, 609 (2004)
260.
go back to reference A.A.P. Silva, V.A. Nascimento, J. Lumin. 106, 253 (2004) A.A.P. Silva, V.A. Nascimento, J. Lumin. 106, 253 (2004)
261.
go back to reference C.E. Martinez, N.M. Stanton, A.J. Kent, M.L. Williams, I. Harrison, H. Tang, J.B. Webb, J.A. Bardwell, Semicond. Sci. Technol. 21, 1580 (2006) C.E. Martinez, N.M. Stanton, A.J. Kent, M.L. Williams, I. Harrison, H. Tang, J.B. Webb, J.A. Bardwell, Semicond. Sci. Technol. 21, 1580 (2006)
262.
go back to reference M. Tas, B. Tanatar, Phys. Status Solidi C 4, 372 (2007) M. Tas, B. Tanatar, Phys. Status Solidi C 4, 372 (2007)
263.
go back to reference A. Matulionis, J. Liberis, IEE Proc. Circ. Dev. Syst. 151, 148 (2004) A. Matulionis, J. Liberis, IEE Proc. Circ. Dev. Syst. 151, 148 (2004)
264.
go back to reference M. Ramonas, A. Matulionis, J. Liberis, L. Eastman, X. Chen, Y.-J. Sun, Phys. Rev. B 71, 075324 (2005) M. Ramonas, A. Matulionis, J. Liberis, L. Eastman, X. Chen, Y.-J. Sun, Phys. Rev. B 71, 075324 (2005)
265.
go back to reference J.M. Barker, D.K. Ferry, S.M. Goodnick, D.D. Koleske, A. Allerman, R.J. Shul, Phys. Status Solidi C 2, 2564 (2005) J.M. Barker, D.K. Ferry, S.M. Goodnick, D.D. Koleske, A. Allerman, R.J. Shul, Phys. Status Solidi C 2, 2564 (2005)
266.
go back to reference L. Ardaravičius, M. Ramonas, O. Kiprijanovic, J. Liberis, A. Matulionis, L.F. Eastman, J.R. Shealy, X. Chen, Y.J. Sun, Phys. Status Solidi A 202, 808 (2005) L. Ardaravičius, M. Ramonas, O. Kiprijanovic, J. Liberis, A. Matulionis, L.F. Eastman, J.R. Shealy, X. Chen, Y.J. Sun, Phys. Status Solidi A 202, 808 (2005)
267.
go back to reference Y. Chang, K.Y. Tong, C. Surya, Semicond. Sci. Technol. 20, 188 (2005) Y. Chang, K.Y. Tong, C. Surya, Semicond. Sci. Technol. 20, 188 (2005)
268.
go back to reference S. Yamakawa, S.M. Goodnick, J. Branlard, M. Saraniti, Phys. Status Solidi C 2, 2573 (2005) S. Yamakawa, S.M. Goodnick, J. Branlard, M. Saraniti, Phys. Status Solidi C 2, 2573 (2005)
269.
go back to reference A. Reklaitis, L. Reggiani, J. Appl. Phys. 97, 043709 (2005) A. Reklaitis, L. Reggiani, J. Appl. Phys. 97, 043709 (2005)
270.
go back to reference L.F. Eastman, V. Tilak, J. Smart, B.M. Green, E.M. Chumbes, R. Dimitrov, H. Kim, O.S. Ambacher, N. Weimann, T. Prunty, M. Murphy, W.J. Schaff, J.R. Shealy, IEEE Trans. Electron Devices 48, 479 (2001) L.F. Eastman, V. Tilak, J. Smart, B.M. Green, E.M. Chumbes, R. Dimitrov, H. Kim, O.S. Ambacher, N. Weimann, T. Prunty, M. Murphy, W.J. Schaff, J.R. Shealy, IEEE Trans. Electron Devices 48, 479 (2001)
271.
go back to reference C.H. Oxley, M.J. Uren, IEEE Trans. Electron Devices 52, 165 (2005) C.H. Oxley, M.J. Uren, IEEE Trans. Electron Devices 52, 165 (2005)
272.
go back to reference M. Farahmand, C. Garetto, E. Bellotti, K.F. Brennan, M. Goano, E. Ghillino, G. Ghione, J.D. Albrecht, P.P. Ruden, IEEE Trans. Electron Devices 48, 535 (2001) M. Farahmand, C. Garetto, E. Bellotti, K.F. Brennan, M. Goano, E. Ghillino, G. Ghione, J.D. Albrecht, P.P. Ruden, IEEE Trans. Electron Devices 48, 535 (2001)
273.
274.
go back to reference T. Li, R.P. Joshi, R.D. del Rosario, IEEE Trans. Electron Devices 49, 1511 (2002) T. Li, R.P. Joshi, R.D. del Rosario, IEEE Trans. Electron Devices 49, 1511 (2002)
275.
go back to reference C. Sevik, C. Bulutay, IEE Proc. Optoelectron. 150, 86 (2003) C. Sevik, C. Bulutay, IEE Proc. Optoelectron. 150, 86 (2003)
276.
go back to reference J. Edwards, K. Kawabe, G. Stevens, R.H. Tredgold, Solid State Commun. 3, 99 (1965) J. Edwards, K. Kawabe, G. Stevens, R.H. Tredgold, Solid State Commun. 3, 99 (1965)
277.
go back to reference V.M. Polyakov, F. Schwierz, I. Cimalla, M. Kittler, B. Lübbers, A. Schober, J. Appl. Phys. 106, 023715 (2009) V.M. Polyakov, F. Schwierz, I. Cimalla, M. Kittler, B. Lübbers, A. Schober, J. Appl. Phys. 106, 023715 (2009)
278.
go back to reference E. Bellotti, B.K. Doshi, K.F. Brennan, J.D. Albrecht, P.P. Ruden, J. Appl. Phys. 85, 916 (1999) E. Bellotti, B.K. Doshi, K.F. Brennan, J.D. Albrecht, P.P. Ruden, J. Appl. Phys. 85, 916 (1999)
279.
go back to reference T.L. Tansley, C.P. Foley, J. Appl. Phys. 59, 3241 (1986) T.L. Tansley, C.P. Foley, J. Appl. Phys. 59, 3241 (1986)
280.
go back to reference T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, E. Kurimoto, Appl. Phys. Lett. 81, 1246 (2002) T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, E. Kurimoto, Appl. Phys. Lett. 81, 1246 (2002)
281.
go back to reference J. Wu, W. Walukiewicz, W. Shan, K.M. Yu, J.W. Ager III, S.X. Li, E.E. Haller, H. Lu, W.J. Schaff, J. Appl. Phys. 94, 4457 (2003) J. Wu, W. Walukiewicz, W. Shan, K.M. Yu, J.W. Ager III, S.X. Li, E.E. Haller, H. Lu, W.J. Schaff, J. Appl. Phys. 94, 4457 (2003)
282.
go back to reference V.M. Polyakov, F. Schwierz, Appl. Phys. Lett. 88, 032101 (2006) V.M. Polyakov, F. Schwierz, Appl. Phys. Lett. 88, 032101 (2006)
283.
go back to reference Z. Yarar, Phys. Status Solidi B 244, 3711 (2007) Z. Yarar, Phys. Status Solidi B 244, 3711 (2007)
284.
go back to reference V.M. Polyakov, F. Schwierz, F. Fuchs, J. Furthmüller, F. Bechstedt, Appl. Phys. Lett. 94, 022102 (2009) V.M. Polyakov, F. Schwierz, F. Fuchs, J. Furthmüller, F. Bechstedt, Appl. Phys. Lett. 94, 022102 (2009)
285.
go back to reference J.S. Thakur, R. Naik, V.M. Naik, D. Haddad, G.W. Auner, H. Lu, W.J. Schaff, J. Appl. Phys. 99, 023504 (2006) J.S. Thakur, R. Naik, V.M. Naik, D. Haddad, G.W. Auner, H. Lu, W.J. Schaff, J. Appl. Phys. 99, 023504 (2006)
286.
go back to reference A. Ilgaz, S. Gökden, R. Tülek, A. Teke, S. Özçelik, E. Özbay, Eur. Phys. J. Appl. Phys. 55, 30102 (2011) A. Ilgaz, S. Gökden, R. Tülek, A. Teke, S. Özçelik, E. Özbay, Eur. Phys. J. Appl. Phys. 55, 30102 (2011)
287.
go back to reference D.R. Naylor, A. Dyson, B.K. Ridley, Solid State Commun. 152, 549 (2012) D.R. Naylor, A. Dyson, B.K. Ridley, Solid State Commun. 152, 549 (2012)
288.
go back to reference D.R. Naylor, A. Dyson, B.K. Ridley, J. Appl. Phys. 111, 053703 (2012) D.R. Naylor, A. Dyson, B.K. Ridley, J. Appl. Phys. 111, 053703 (2012)
289.
go back to reference E. Bellotti, F. Bertazzi, S. Shishehchi, M. Matsubara, M. Goano, IEEE Trans. Electron Devices 60, 3204 (2013) E. Bellotti, F. Bertazzi, S. Shishehchi, M. Matsubara, M. Goano, IEEE Trans. Electron Devices 60, 3204 (2013)
290.
go back to reference S. Dasgupta, J. Lu, Nidhi, A. Raman, C. Hurni, G. Gupta, J.S. Speck, U.K. Mishra, Appl. Phys. Express 6, 034002 (2013) S. Dasgupta, J. Lu, Nidhi, A. Raman, C. Hurni, G. Gupta, J.S. Speck, U.K. Mishra, Appl. Phys. Express 6, 034002 (2013)
291.
go back to reference J.-Z. Zhang, A. Dyson, B.K. Ridley, Appl. Phys. Lett. 102, 062104 (2013) J.-Z. Zhang, A. Dyson, B.K. Ridley, Appl. Phys. Lett. 102, 062104 (2013)
292.
go back to reference S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, J. Mater. Sci.: Mater. Electron. 21, 218 (2010) S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, J. Mater. Sci.: Mater. Electron. 21, 218 (2010)
293.
go back to reference E. Baghani, S.K. O’Leary, Appl. Phys. Lett. 99, 262106 (2011) E. Baghani, S.K. O’Leary, Appl. Phys. Lett. 99, 262106 (2011)
294.
go back to reference W.A. Hadi, P. Siddiqua, S.K. O’Leary, J. Mater. Sci.: Mater. Electron. 25, 5524 (2014) W.A. Hadi, P. Siddiqua, S.K. O’Leary, J. Mater. Sci.: Mater. Electron. 25, 5524 (2014)
295.
go back to reference P. Siddiqua, W.A. Hadi, A.K. Salhotra, M.S. Shur, S.K. O’Leary, J. Appl. Phys. 117, 125705 (2015) P. Siddiqua, W.A. Hadi, A.K. Salhotra, M.S. Shur, S.K. O’Leary, J. Appl. Phys. 117, 125705 (2015)
300.
go back to reference P. Siddiqua, W.A. Hadi, M.S. Shur, S.K. O’Leary, Mater. Res. Soc. Symp. Proc. (submitted) P. Siddiqua, W.A. Hadi, M.S. Shur, S.K. O’Leary, Mater. Res. Soc. Symp. Proc. (submitted)
Metadata
Title
A 2015 perspective on the nature of the steady-state and transient electron transport within the wurtzite phases of gallium nitride, aluminum nitride, indium nitride, and zinc oxide: a critical and retrospective review
Authors
Poppy Siddiqua
Walid A. Hadi
Michael S. Shur
Stephen K. O’Leary
Publication date
01-07-2015
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 7/2015
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-015-3055-7

Other articles of this Issue 7/2015

Journal of Materials Science: Materials in Electronics 7/2015 Go to the issue