Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 7/2015

01-07-2015 | Review

Present status of Sn–Zn lead-free solders bearing alloying elements

Authors: Shuang Liu, Song-bai Xue, Peng Xue, Dong-xue Luo

Published in: Journal of Materials Science: Materials in Electronics | Issue 7/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Recently, the Sn–Zn family of alloys, which possesses many attractive advantages such as relatively low melting point, cheap cost and the environmentally friendly component of Zn, has been widely used in electronic industry as one of the most potential replacements for the traditional Sn–Pb solders. However, there’re still some arguments on its shortcomings about the poor wettability and the weak oxidation resistance, which definitely limits its further application in lead-free electronic manufacturing. In order to overcome these disadvantages and further enhance the properties of Sn–Zn lead-free solders, alloying elements such as RE, Bi, Ag, Al, Ga, Cu, etc. were selected by lots of researchers as alloys addition into the solders. This paper summarizes the effects of alloying elements on the wettability, oxidation resistance, mechanical properties and microstructures of Sn–Zn lead-free solder alloys.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S.M. Hayes, N. Chawla, D.R. Frear, Interfacial fracture toughness of Pb-free solders. Microelectron. Reliab. 49(3), 269–287 (2009)CrossRef S.M. Hayes, N. Chawla, D.R. Frear, Interfacial fracture toughness of Pb-free solders. Microelectron. Reliab. 49(3), 269–287 (2009)CrossRef
2.
go back to reference S. Chada, Topics in lead-free solders: interfacial and Sn whisker growth. J. Miner. Met. Mater. Soc. 64(10), 1174–1175 (2012)CrossRef S. Chada, Topics in lead-free solders: interfacial and Sn whisker growth. J. Miner. Met. Mater. Soc. 64(10), 1174–1175 (2012)CrossRef
3.
go back to reference J. Chen, J. Shen, D. Min et al., Influence of minor Bi additions on the interfacial morphology between Sn–Zn–xBi solders and a Cu layer. J. Mater. Sci. Mater. Electron. 20(11), 1112–1117 (2009)CrossRef J. Chen, J. Shen, D. Min et al., Influence of minor Bi additions on the interfacial morphology between Sn–Zn–xBi solders and a Cu layer. J. Mater. Sci. Mater. Electron. 20(11), 1112–1117 (2009)CrossRef
4.
go back to reference S.K. Seo, S.K. Kang, D.Y. Shih et al., The evolution of microstructure and microhardness of Sn–Ag and Sn–Cu solders during high temperature aging. Microelectron. Reliab. 49(3), 288–295 (2009)CrossRef S.K. Seo, S.K. Kang, D.Y. Shih et al., The evolution of microstructure and microhardness of Sn–Ag and Sn–Cu solders during high temperature aging. Microelectron. Reliab. 49(3), 288–295 (2009)CrossRef
5.
go back to reference J.O. Kim, J.P. Jung, J.H. Lee et al., Effects of laser parameters on the characteristics of a Sn-3.5 wt% Ag solder joint. Met. Mater. Int. 15(1), 119–123 (2009)CrossRef J.O. Kim, J.P. Jung, J.H. Lee et al., Effects of laser parameters on the characteristics of a Sn-3.5 wt% Ag solder joint. Met. Mater. Int. 15(1), 119–123 (2009)CrossRef
6.
go back to reference Y. Shi, J. Tian, H. Hao et al., Effects of small amount addition of rare earth Er on microstructure and property of SnAgCu solder. J. Alloys Compd. 453(1), 180–184 (2008)CrossRef Y. Shi, J. Tian, H. Hao et al., Effects of small amount addition of rare earth Er on microstructure and property of SnAgCu solder. J. Alloys Compd. 453(1), 180–184 (2008)CrossRef
7.
go back to reference N. Zhao, X.Y. Liu, M.L. Huang et al., Characters of multicomponent lead-free solders. J. Mater. Sci. Mater. Electron. 24(10), 3925–3931 (2013)CrossRef N. Zhao, X.Y. Liu, M.L. Huang et al., Characters of multicomponent lead-free solders. J. Mater. Sci. Mater. Electron. 24(10), 3925–3931 (2013)CrossRef
8.
go back to reference H. Ma, J.C. Suhling, A review of mechanical properties of lead-free solders for electronic packaging. J. Mater. Sci. 44(5), 1141–1158 (2009)CrossRef H. Ma, J.C. Suhling, A review of mechanical properties of lead-free solders for electronic packaging. J. Mater. Sci. 44(5), 1141–1158 (2009)CrossRef
9.
go back to reference X.P. Zhang, L.M. Yin, C.B. Yu, Thermal creep and fracture behaviors of the lead-free Sn-Ag-Cu-Bi solder interconnections under different stress levels. J. Mater. Sci. Mater. Electron. 19(4), 393–398 (2008) X.P. Zhang, L.M. Yin, C.B. Yu, Thermal creep and fracture behaviors of the lead-free Sn-Ag-Cu-Bi solder interconnections under different stress levels. J. Mater. Sci. Mater. Electron. 19(4), 393–398 (2008)
10.
go back to reference L. Zhang, S. Xue, L. Gao et al., Development of Sn–Zn lead-free solders bearing alloying elements. J. Mater. Sci. Mater. Electron. 21(1), 1–15 (2010)CrossRef L. Zhang, S. Xue, L. Gao et al., Development of Sn–Zn lead-free solders bearing alloying elements. J. Mater. Sci. Mater. Electron. 21(1), 1–15 (2010)CrossRef
11.
go back to reference G. Zeng, S. Xue, L. Zhang et al., Properties and microstructure of Sn–0.7Cu–0.05Ni solder bearing rare earth element Pr. J. Mater. Sci. Mater. Electron. 22(8), 1101–1108 (2011)CrossRef G. Zeng, S. Xue, L. Zhang et al., Properties and microstructure of Sn–0.7Cu–0.05Ni solder bearing rare earth element Pr. J. Mater. Sci. Mater. Electron. 22(8), 1101–1108 (2011)CrossRef
12.
go back to reference G. Zeng, S. Xue, L. Zhang et al., Recent advances on Sn–Cu solders with alloying elements: review. J. Mater. Sci. Mater. Electron. 22(6), 565–578 (2011)CrossRef G. Zeng, S. Xue, L. Zhang et al., Recent advances on Sn–Cu solders with alloying elements: review. J. Mater. Sci. Mater. Electron. 22(6), 565–578 (2011)CrossRef
13.
go back to reference G. Zeng, S. Xue, L. Zhang et al., A review on the interfacial intermetallic compounds between Sn–Ag–Cu based solders and substrates. J. Mater. Sci. Mater. Electron. 21(5), 421–440 (2010)CrossRef G. Zeng, S. Xue, L. Zhang et al., A review on the interfacial intermetallic compounds between Sn–Ag–Cu based solders and substrates. J. Mater. Sci. Mater. Electron. 21(5), 421–440 (2010)CrossRef
14.
go back to reference L. Zhang, S. Xue, Y. Chen et al., Effects of cerium on Sn–Ag–Cu alloys based on finite element simulation and experiments. J. Rare Earths 27(1), 138–144 (2009)CrossRef L. Zhang, S. Xue, Y. Chen et al., Effects of cerium on Sn–Ag–Cu alloys based on finite element simulation and experiments. J. Rare Earths 27(1), 138–144 (2009)CrossRef
15.
go back to reference P. Liu, P. Yao, J. Liu, Effects of multiple reflows on interfacial reaction and shear strength of SnAgCu and SnPb solder joints with different PCB surface finishes. J. Alloys Compd. 470(1), 188–194 (2009)CrossRef P. Liu, P. Yao, J. Liu, Effects of multiple reflows on interfacial reaction and shear strength of SnAgCu and SnPb solder joints with different PCB surface finishes. J. Alloys Compd. 470(1), 188–194 (2009)CrossRef
16.
go back to reference D. Luo, S. Xue, Z. Li, Effects of Ga addition on microstructure and properties of Sn–0.5Ag–0.7Cu solder. J. Mater. Sci. Mater. Electron. 25(8), 3566–3571 (2014)CrossRef D. Luo, S. Xue, Z. Li, Effects of Ga addition on microstructure and properties of Sn–0.5Ag–0.7Cu solder. J. Mater. Sci. Mater. Electron. 25(8), 3566–3571 (2014)CrossRef
17.
go back to reference D.X. Luo, S.B. Xue, S. Liu, Investigation on the intermetallic compound layer growth of Sn–0.5Ag–0.7Cu–xGa/Cu solder joints during isothermal aging. J. Mater. Sci. Mater. Electron. 25(12), 5195–5200 (2014)CrossRef D.X. Luo, S.B. Xue, S. Liu, Investigation on the intermetallic compound layer growth of Sn–0.5Ag–0.7Cu–xGa/Cu solder joints during isothermal aging. J. Mater. Sci. Mater. Electron. 25(12), 5195–5200 (2014)CrossRef
18.
go back to reference M. Erinc, T.M. Assman, P.J.G. Schreurs et al., Fatigue fracture of SnAgCu solder joints by microstructural modeling. Int. J. Fract. 152(1), 37–49 (2008)CrossRef M. Erinc, T.M. Assman, P.J.G. Schreurs et al., Fatigue fracture of SnAgCu solder joints by microstructural modeling. Int. J. Fract. 152(1), 37–49 (2008)CrossRef
19.
go back to reference R.M. Shalaby, Correlation between thermal diffusivity and activation energy of ordering of lead free solder alloys Sn65–xAg25Sb10Cu x rapidly solidified from molten state. J. Mater. Sci. Mater. Electron. 16(4), 187–191 (2005)CrossRef R.M. Shalaby, Correlation between thermal diffusivity and activation energy of ordering of lead free solder alloys Sn65–xAg25Sb10Cu x rapidly solidified from molten state. J. Mater. Sci. Mater. Electron. 16(4), 187–191 (2005)CrossRef
20.
go back to reference L. Zhang, S. Xue, L. Gao et al., Effects of trace amount addition of rare earth on properties and microstructure of Sn–Ag–Cu alloys. J. Mater. Sci. Mater. Electron. 20(12), 1193–1199 (2009)CrossRef L. Zhang, S. Xue, L. Gao et al., Effects of trace amount addition of rare earth on properties and microstructure of Sn–Ag–Cu alloys. J. Mater. Sci. Mater. Electron. 20(12), 1193–1199 (2009)CrossRef
21.
go back to reference L. Zhang, S. Xue, L. Gao et al., Properties of SnAgCu/SnAgCuCe soldered joints for electronic packaging. J. Mater. Sci. Mater. Electron. 21(6), 635–642 (2010)CrossRef L. Zhang, S. Xue, L. Gao et al., Properties of SnAgCu/SnAgCuCe soldered joints for electronic packaging. J. Mater. Sci. Mater. Electron. 21(6), 635–642 (2010)CrossRef
22.
go back to reference X.P. Zhang, C.B. Yu, S. Shrestha et al., Creep and fatigue behaviors of the lead-free Sn–Ag–Cu–Bi and Sn60Pb40 solder interconnections at elevated temperatures. J. Mater. Sci. Mater. Electron. 18(6), 665–670 (2007)CrossRef X.P. Zhang, C.B. Yu, S. Shrestha et al., Creep and fatigue behaviors of the lead-free Sn–Ag–Cu–Bi and Sn60Pb40 solder interconnections at elevated temperatures. J. Mater. Sci. Mater. Electron. 18(6), 665–670 (2007)CrossRef
23.
go back to reference W.M. Xiao, Y.W. Shi, Y.P. Lei et al., In situ scanning electron microscopy observation of tensile deformation in Sn–Ag–Cu alloys containing rare-earth elements. J. Electron. Mater. 37(11), 1751–1755 (2008)CrossRef W.M. Xiao, Y.W. Shi, Y.P. Lei et al., In situ scanning electron microscopy observation of tensile deformation in Sn–Ag–Cu alloys containing rare-earth elements. J. Electron. Mater. 37(11), 1751–1755 (2008)CrossRef
24.
go back to reference L. Gao, S. Xue, L. Zhang et al., Effects of trace rare earth Nd addition on microstructure and properties of SnAgCu solder. J. Mater. Sci. Mater. Electron. 21(7), 643–648 (2010)CrossRef L. Gao, S. Xue, L. Zhang et al., Effects of trace rare earth Nd addition on microstructure and properties of SnAgCu solder. J. Mater. Sci. Mater. Electron. 21(7), 643–648 (2010)CrossRef
25.
go back to reference L. Gao, S. Xue, L. Zhang et al., Effect of praseodymium on the microstructure and properties of Sn3.8Ag0.7Cu solder. J. Mater. Sci. Mater. Electron. 21(9), 910–916 (2010)CrossRef L. Gao, S. Xue, L. Zhang et al., Effect of praseodymium on the microstructure and properties of Sn3.8Ag0.7Cu solder. J. Mater. Sci. Mater. Electron. 21(9), 910–916 (2010)CrossRef
26.
go back to reference S. Kumar, D. Jung, J. Jung, Wetting behavior and elastic properties of low alpha SAC105 and pure Sn solder. J. Mater. Sci. Mater. Electron. 24(6), 1748–1757 (2013)CrossRef S. Kumar, D. Jung, J. Jung, Wetting behavior and elastic properties of low alpha SAC105 and pure Sn solder. J. Mater. Sci. Mater. Electron. 24(6), 1748–1757 (2013)CrossRef
27.
go back to reference J.B. Wan, Y.C. Liu, C. Wei et al., Effect of the soldering time on the formation of interfacial structure between Sn–Ag–Zn lead-free solder and Cu substrate. J. Mater. Sci. Mater. Electron. 19(12), 1160–1168 (2008)CrossRef J.B. Wan, Y.C. Liu, C. Wei et al., Effect of the soldering time on the formation of interfacial structure between Sn–Ag–Zn lead-free solder and Cu substrate. J. Mater. Sci. Mater. Electron. 19(12), 1160–1168 (2008)CrossRef
28.
go back to reference J.B. Wan, Y.C. Liu, C. Wei et al., Effect of Al content on the formation of intermetallic compounds in Sn–Ag–Zn lead-free solder. J. Mater. Sci. Mater. Electron. 19(3), 247–253 (2008)CrossRef J.B. Wan, Y.C. Liu, C. Wei et al., Effect of Al content on the formation of intermetallic compounds in Sn–Ag–Zn lead-free solder. J. Mater. Sci. Mater. Electron. 19(3), 247–253 (2008)CrossRef
29.
go back to reference W.X. Chen, S.B. Xue, H. Wang, Wetting properties and interfacial microstructures of Sn–Zn–xGa solders on Cu substrate. Mater. Des. 31(4), 2196–2200 (2010)CrossRef W.X. Chen, S.B. Xue, H. Wang, Wetting properties and interfacial microstructures of Sn–Zn–xGa solders on Cu substrate. Mater. Des. 31(4), 2196–2200 (2010)CrossRef
30.
go back to reference L.R. Garcia, W.R. Osorio, L.C. Peixoto et al., Mechanical properties of Sn–Zn lead-free solder alloys based on the microstructure array. Mater. Charact. 61(2), 212–220 (2010)CrossRef L.R. Garcia, W.R. Osorio, L.C. Peixoto et al., Mechanical properties of Sn–Zn lead-free solder alloys based on the microstructure array. Mater. Charact. 61(2), 212–220 (2010)CrossRef
31.
go back to reference C. Morando, O. Fornaro, O. Garbellini et al., Thermal properties of Sn-based solder alloys. J. Mater. Sci. Mater. Electron. 25(8), 3440–3447 (2014)CrossRef C. Morando, O. Fornaro, O. Garbellini et al., Thermal properties of Sn-based solder alloys. J. Mater. Sci. Mater. Electron. 25(8), 3440–3447 (2014)CrossRef
32.
go back to reference P. Xue, S. Xue, Y. Shen et al., Effect of Pr on properties and Sn whisker growth of Sn–9Zn–xPr solder. Solder. Surf. Mount Technol. 24(4), 280–286 (2012)CrossRef P. Xue, S. Xue, Y. Shen et al., Effect of Pr on properties and Sn whisker growth of Sn–9Zn–xPr solder. Solder. Surf. Mount Technol. 24(4), 280–286 (2012)CrossRef
33.
go back to reference Q. Li, Y.C. Chan, K. Zhang et al., Study of microstructure evolution in novel Sn–Zn/Cu bi-layer and Cu/Sn–Zn/Cu sandwich structures with nanoscale thickness for 3D packaging interconnection. Microelectron. Eng. 122, 52–58 (2014)CrossRef Q. Li, Y.C. Chan, K. Zhang et al., Study of microstructure evolution in novel Sn–Zn/Cu bi-layer and Cu/Sn–Zn/Cu sandwich structures with nanoscale thickness for 3D packaging interconnection. Microelectron. Eng. 122, 52–58 (2014)CrossRef
34.
go back to reference Y.X. Jing, G.M. Sheng, Z.H. Huang et al., Effects of 0.1 wt% Ni addition and rapid solidification process on Sn–9Zn solder. J. Mater. Sci. Mater. Electron. 24(12), 4868–4872 (2013)CrossRef Y.X. Jing, G.M. Sheng, Z.H. Huang et al., Effects of 0.1 wt% Ni addition and rapid solidification process on Sn–9Zn solder. J. Mater. Sci. Mater. Electron. 24(12), 4868–4872 (2013)CrossRef
35.
go back to reference K.L. Lin, C.L. Shih, Microstructure and thermal behavior of Sn–Zn–Ag solders. J. Electron. Mater. 32(12), 1496–1500 (2003)CrossRef K.L. Lin, C.L. Shih, Microstructure and thermal behavior of Sn–Zn–Ag solders. J. Electron. Mater. 32(12), 1496–1500 (2003)CrossRef
36.
go back to reference S.W. Park, S. Nagao, T. Sugahara et al., Retarding intermetallic compounds growth of Zn high-temperature solder and Cu substrate by trace element addition. J. Mater. Sci. Mater. Electron. 24(12), 4704–4712 (2013)CrossRef S.W. Park, S. Nagao, T. Sugahara et al., Retarding intermetallic compounds growth of Zn high-temperature solder and Cu substrate by trace element addition. J. Mater. Sci. Mater. Electron. 24(12), 4704–4712 (2013)CrossRef
37.
go back to reference S. Amore, E. Ricci, G. Borzone et al., Wetting behaviour of lead-free Sn-based alloys on Cu and Ni substrates. Mater. Sci. Eng. A 495(1), 108–112 (2008)CrossRef S. Amore, E. Ricci, G. Borzone et al., Wetting behaviour of lead-free Sn-based alloys on Cu and Ni substrates. Mater. Sci. Eng. A 495(1), 108–112 (2008)CrossRef
38.
go back to reference Q.V. Bui, S.B. Jung, Effect of Pd thickness on wettability and interfacial reaction of Sn–1.0Ag–Ce solders on ENEPIG surface finish. J. Mater. Sci. Mater. Electron. 25(1), 423–430 (2014)CrossRef Q.V. Bui, S.B. Jung, Effect of Pd thickness on wettability and interfacial reaction of Sn–1.0Ag–Ce solders on ENEPIG surface finish. J. Mater. Sci. Mater. Electron. 25(1), 423–430 (2014)CrossRef
39.
go back to reference W. Feng, C. Wang, M. Morinaga, Electronic structure mechanism for the wettability of Sn-based solder alloys. J. Electron. Mater. 31(3), 185–190 (2002)CrossRef W. Feng, C. Wang, M. Morinaga, Electronic structure mechanism for the wettability of Sn-based solder alloys. J. Electron. Mater. 31(3), 185–190 (2002)CrossRef
40.
go back to reference Y. Hu, S. Xue, H. Wang et al., Effects of rare earth element Nd on the solderability and microstructure of Sn–Zn lead-free solder. J. Mater. Sci. Mater. Electron. 22(5), 481–487 (2011)CrossRef Y. Hu, S. Xue, H. Wang et al., Effects of rare earth element Nd on the solderability and microstructure of Sn–Zn lead-free solder. J. Mater. Sci. Mater. Electron. 22(5), 481–487 (2011)CrossRef
41.
go back to reference P. Xue, S. Xue, Y. Shen et al., Wettability and interfacial whiskers of Sn–9Zn–0.5Ga–0.08Nd solder with Sn, SnBi and Au/Ni coatings. J. Mater. Sci. Mater. Electron. 25(8), 3520–3525 (2014)CrossRef P. Xue, S. Xue, Y. Shen et al., Wettability and interfacial whiskers of Sn–9Zn–0.5Ga–0.08Nd solder with Sn, SnBi and Au/Ni coatings. J. Mater. Sci. Mater. Electron. 25(8), 3520–3525 (2014)CrossRef
42.
go back to reference Z. Xiao, S. Xue, Y. Hu et al., Properties and microstructure of Sn–9Zn lead-free solder alloy bearing Pr. J. Mater. Sci. Mater. Electron. 22(6), 659–665 (2011)CrossRef Z. Xiao, S. Xue, Y. Hu et al., Properties and microstructure of Sn–9Zn lead-free solder alloy bearing Pr. J. Mater. Sci. Mater. Electron. 22(6), 659–665 (2011)CrossRef
43.
go back to reference W.X. Chen, S. Xue, H. Wang et al., Effects of rare earth Ce on properties of Sn–9Zn lead-free solder. J. Mater. Sci. Mater. Electron. 21(7), 719–725 (2010)CrossRef W.X. Chen, S. Xue, H. Wang et al., Effects of rare earth Ce on properties of Sn–9Zn lead-free solder. J. Mater. Sci. Mater. Electron. 21(7), 719–725 (2010)CrossRef
44.
go back to reference L. Zhang, J.G. Han, C.W. He, Y.H. Guo, Microstructures and properties of SnZn lead-free solder joints bearing La for electronic packaging. IEEE Trans. Electron Devices 59(12), 3269–3272 (2012)CrossRef L. Zhang, J.G. Han, C.W. He, Y.H. Guo, Microstructures and properties of SnZn lead-free solder joints bearing La for electronic packaging. IEEE Trans. Electron Devices 59(12), 3269–3272 (2012)CrossRef
45.
go back to reference L. Zhang, J.G. Han, C.W. He, Y.H. Guo, Properties of SnZn lead-free solders bearing rare earth Y. Sci. Technol. Weld. Join. 17(5), 424–428 (2012)CrossRef L. Zhang, J.G. Han, C.W. He, Y.H. Guo, Properties of SnZn lead-free solders bearing rare earth Y. Sci. Technol. Weld. Join. 17(5), 424–428 (2012)CrossRef
46.
go back to reference L. Zhang, J. Cui, J. Han et al., Microstructures and properties of SnZn-xEr lead-free solders. J. Rare Earths 30(8), 790–793 (2012)CrossRef L. Zhang, J. Cui, J. Han et al., Microstructures and properties of SnZn-xEr lead-free solders. J. Rare Earths 30(8), 790–793 (2012)CrossRef
47.
go back to reference S.A. Mladenović, D.D. Marković, L.S. Ivanić et al., The microstructure and properties of as-cast Sn–Zn–Bi solder alloys. Hem. Ind. 66(4), 595–600 (2012)CrossRef S.A. Mladenović, D.D. Marković, L.S. Ivanić et al., The microstructure and properties of as-cast Sn–Zn–Bi solder alloys. Hem. Ind. 66(4), 595–600 (2012)CrossRef
48.
go back to reference P. Fima, T. Gancarz, J. Pstruś et al., Wetting of Sn–Zn–xIn (x = 0.5, 1.0, 1.5 wt%) alloys on Cu and Ni substrates. J. Mater. Eng. Perform. 21(5), 595–598 (2012)CrossRef P. Fima, T. Gancarz, J. Pstruś et al., Wetting of Sn–Zn–xIn (x = 0.5, 1.0, 1.5 wt%) alloys on Cu and Ni substrates. J. Mater. Eng. Perform. 21(5), 595–598 (2012)CrossRef
49.
go back to reference Y.T. Wang, C.J. Ho, H.L. Tsai, Effect of In addition on wetting properties of Sn–Zn–In/Cu soldering. Mater. Trans. 51(10), 1735–1740 (2010)CrossRef Y.T. Wang, C.J. Ho, H.L. Tsai, Effect of In addition on wetting properties of Sn–Zn–In/Cu soldering. Mater. Trans. 51(10), 1735–1740 (2010)CrossRef
50.
go back to reference H. Huang, X. Wei, D. Tan et al., Effects of phosphorus addition on the properties of Sn–9Zn lead-free solder alloy. Int. J. Miner. Metall. Mater. 20(6), 563–567 (2013)CrossRef H. Huang, X. Wei, D. Tan et al., Effects of phosphorus addition on the properties of Sn–9Zn lead-free solder alloy. Int. J. Miner. Metall. Mater. 20(6), 563–567 (2013)CrossRef
51.
go back to reference W. Chen, S. Xue, H. Wang et al., Effects of Ag on Properties of Sn–9Zn lead-free solder. Rare Met. Mater. Eng. 39(10), 1702–1706 (2010)CrossRef W. Chen, S. Xue, H. Wang et al., Effects of Ag on Properties of Sn–9Zn lead-free solder. Rare Met. Mater. Eng. 39(10), 1702–1706 (2010)CrossRef
52.
go back to reference M. Yang, X.Z. Liu, X.H. Liu et al., Development of Sn–Zn–Cu lead free solder, in The 11th International Conference on Electronic Packaging Technology and High Density Packaging (Xi’an, China, 2010), pp. 784–788 M. Yang, X.Z. Liu, X.H. Liu et al., Development of Sn–Zn–Cu lead free solder, in The 11th International Conference on Electronic Packaging Technology and High Density Packaging (Xi’an, China, 2010), pp. 784–788
53.
go back to reference H. Wang, S. Xue, W. Chen et al., Effects of Ga–Ag, Ga–Al and Al–Ag additions on the wetting characteristics of Sn–9Zn–X–Y lead-free solders. J. Mater. Sci. Mater. Electron. 20(12), 1239–1246 (2009)CrossRef H. Wang, S. Xue, W. Chen et al., Effects of Ga–Ag, Ga–Al and Al–Ag additions on the wetting characteristics of Sn–9Zn–X–Y lead-free solders. J. Mater. Sci. Mater. Electron. 20(12), 1239–1246 (2009)CrossRef
54.
go back to reference H. Wang, S. Xue, F. Zhao et al., Effects of Ga, Al, Ag, and Ce multi-additions on the properties of Sn–9Zn lead-free solder. J. Mater. Sci. Mater. Electron. 21(2), 111–119 (2010)CrossRef H. Wang, S. Xue, F. Zhao et al., Effects of Ga, Al, Ag, and Ce multi-additions on the properties of Sn–9Zn lead-free solder. J. Mater. Sci. Mater. Electron. 21(2), 111–119 (2010)CrossRef
55.
go back to reference X.J. Wang, Q.S. Zhu, B. Liu et al., Effect of doping Al on the liquid oxidation of Sn–Bi–Zn solder. J. Mater. Sci. Mater. Electron. 25(5), 2297–2304 (2014)CrossRef X.J. Wang, Q.S. Zhu, B. Liu et al., Effect of doping Al on the liquid oxidation of Sn–Bi–Zn solder. J. Mater. Sci. Mater. Electron. 25(5), 2297–2304 (2014)CrossRef
56.
go back to reference L. Zhang, L. Sun, Y.H. Guo et al., Reliability of lead-free solder joints in CSP device under thermal cycling. J. Mater. Sci. Mater. Electron. 25(3), 1209–1213 (2014)CrossRef L. Zhang, L. Sun, Y.H. Guo et al., Reliability of lead-free solder joints in CSP device under thermal cycling. J. Mater. Sci. Mater. Electron. 25(3), 1209–1213 (2014)CrossRef
57.
go back to reference K.L. Lin, T.P. Liu, High-temperature oxidation of a Sn–Zn–Al solder. Oxid. Met. 50(3–4), 255–267 (1998)CrossRef K.L. Lin, T.P. Liu, High-temperature oxidation of a Sn–Zn–Al solder. Oxid. Met. 50(3–4), 255–267 (1998)CrossRef
58.
go back to reference X. Wei, G. Ju, P. Sun et al., Microstructure evolution of Sn–Zn based lead-free solder joints aged in humid atmosphere at high temperature. Chin. J. Nonferr. Met. 16(7), 1177–1183 (2006) X. Wei, G. Ju, P. Sun et al., Microstructure evolution of Sn–Zn based lead-free solder joints aged in humid atmosphere at high temperature. Chin. J. Nonferr. Met. 16(7), 1177–1183 (2006)
59.
go back to reference N.S. Liu, K.L. Lin, Effect of Ga on the oxidation properties of Sn-8.5Zn-0.5Ag-0.1Al-xGa solders. Oxid. Met. 78(5–6), 285–294 (2012) N.S. Liu, K.L. Lin, Effect of Ga on the oxidation properties of Sn-8.5Zn-0.5Ag-0.1Al-xGa solders. Oxid. Met. 78(5–6), 285–294 (2012)
60.
go back to reference H. Wang, S.B. Xue, W.X. Chen et al., Effects of Ga and Al additions on corrosion resistance and high-temperature oxidation resistance of Sn–9Zn lead-free solder. Rare Met. Mater. Eng. 38(12), 2187–2190 (2009) H. Wang, S.B. Xue, W.X. Chen et al., Effects of Ga and Al additions on corrosion resistance and high-temperature oxidation resistance of Sn–9Zn lead-free solder. Rare Met. Mater. Eng. 38(12), 2187–2190 (2009)
61.
go back to reference J.X. Jiang, J.E. Lee, K.S. Kim et al., Oxidation behavior of Sn–Zn solders under high-temperature and high-humidity conditions. J. Alloys Compd. 462(1–2), 244–251 (2008)CrossRef J.X. Jiang, J.E. Lee, K.S. Kim et al., Oxidation behavior of Sn–Zn solders under high-temperature and high-humidity conditions. J. Alloys Compd. 462(1–2), 244–251 (2008)CrossRef
62.
go back to reference K.S. Kim, T. Matsuura, K. Suganuma, Effects of Bi and Pb on oxidation in humidity for low-temperature lead-free solder systems. J. Electron. Mater. 35(1), 41–47 (2006)CrossRef K.S. Kim, T. Matsuura, K. Suganuma, Effects of Bi and Pb on oxidation in humidity for low-temperature lead-free solder systems. J. Electron. Mater. 35(1), 41–47 (2006)CrossRef
63.
go back to reference W.X. Chen, S.B. Xue, H. Wang et al., Effects of Ag on microstructures, wettabilities of Sn–9Zn–xAg solders as well as mechanical properties of soldered joints. J. Mater. Sci. Mater. Electron. 21(5), 461–467 (2010)CrossRef W.X. Chen, S.B. Xue, H. Wang et al., Effects of Ag on microstructures, wettabilities of Sn–9Zn–xAg solders as well as mechanical properties of soldered joints. J. Mater. Sci. Mater. Electron. 21(5), 461–467 (2010)CrossRef
64.
go back to reference J.E. Lee, K.S. Kim, M. Inoue et al., Effects of Ag and Cu addition on microstructural properties and oxidation resistance of Sn–Zn eutectic alloy. J. Alloys Compd. 454(1–2), 310–320 (2008)CrossRef J.E. Lee, K.S. Kim, M. Inoue et al., Effects of Ag and Cu addition on microstructural properties and oxidation resistance of Sn–Zn eutectic alloy. J. Alloys Compd. 454(1–2), 310–320 (2008)CrossRef
65.
go back to reference W.X. Chen, S.B. Xue, H. Wang et al., Investigation on properties of Ga to Sn–9Zn lead-free solder. J. Mater. Sci. Mater. Electron. 21(5), 496–502 (2010)CrossRef W.X. Chen, S.B. Xue, H. Wang et al., Investigation on properties of Ga to Sn–9Zn lead-free solder. J. Mater. Sci. Mater. Electron. 21(5), 496–502 (2010)CrossRef
66.
go back to reference C.Y. Chou, S.W. Chen, Y.S. Chang, Interfacial reactions in the Sn–9Zn–(xCu)/Cu and Sn–9Zn–(xCu)/Ni couples. J. Mater. Res. 21(7), 1849–1856 (2006)CrossRef C.Y. Chou, S.W. Chen, Y.S. Chang, Interfacial reactions in the Sn–9Zn–(xCu)/Cu and Sn–9Zn–(xCu)/Ni couples. J. Mater. Res. 21(7), 1849–1856 (2006)CrossRef
67.
go back to reference N. Huang, A. Hu, M. Li et al., Influence of Cr alloying on the oxidation resistance of Sn–8Zn–3Bi solders. J. Mater. Sci. Mater. Electron. 24(8), 2812–2817 (2013)CrossRef N. Huang, A. Hu, M. Li et al., Influence of Cr alloying on the oxidation resistance of Sn–8Zn–3Bi solders. J. Mater. Sci. Mater. Electron. 24(8), 2812–2817 (2013)CrossRef
68.
go back to reference C.L. Wang, J. Zhou, Y.S. Sun et al., Investigation on oxidation resistance of Sn–8Zn–3Bi lead-free solder alloys. J. Southeast Univ. (Natural Science Edition) 38(4), 693–697 (2008) C.L. Wang, J. Zhou, Y.S. Sun et al., Investigation on oxidation resistance of Sn–8Zn–3Bi lead-free solder alloys. J. Southeast Univ. (Natural Science Edition) 38(4), 693–697 (2008)
69.
go back to reference J.W. Yoon, S.B. Jung, Reliability studies of Sn–9Zn/Cu solder joints with aging treatment. J. Alloys Compd. 407(1), 141–149 (2006)CrossRef J.W. Yoon, S.B. Jung, Reliability studies of Sn–9Zn/Cu solder joints with aging treatment. J. Alloys Compd. 407(1), 141–149 (2006)CrossRef
70.
go back to reference T. Gancarz, P. Fima, J. Pstruś, Thermal expansion, electrical resistivity, and spreading area of Sn–Zn–In alloys. J. Mater. Eng. Perform. 23(5), 1524–1529 (2014)CrossRef T. Gancarz, P. Fima, J. Pstruś, Thermal expansion, electrical resistivity, and spreading area of Sn–Zn–In alloys. J. Mater. Eng. Perform. 23(5), 1524–1529 (2014)CrossRef
71.
go back to reference P. Xue, S. Xue, Y. Shen et al., Study on properties of Sn–9Zn–Ga solder bearing Nd. J. Mater. Sci. Mater. Electron. 23(6), 1272–1278 (2012)CrossRef P. Xue, S. Xue, Y. Shen et al., Study on properties of Sn–9Zn–Ga solder bearing Nd. J. Mater. Sci. Mater. Electron. 23(6), 1272–1278 (2012)CrossRef
72.
go back to reference R. Mahmudi, A.R. Geranmayeh, B. Zahiri et al., Effect of rare earth element additions on the impression creep of Sn–9Zn solder alloy. J. Mater. Sci. Mater. Electron. 21(1), 58–64 (2010)CrossRef R. Mahmudi, A.R. Geranmayeh, B. Zahiri et al., Effect of rare earth element additions on the impression creep of Sn–9Zn solder alloy. J. Mater. Sci. Mater. Electron. 21(1), 58–64 (2010)CrossRef
73.
go back to reference C.M.L. Wu, Y.W. Wong, Rare-earth additions to lead-free electronic solders. J. Mater. Sci. Mater. Electron. 18(1–3), 77–91 (2007) C.M.L. Wu, Y.W. Wong, Rare-earth additions to lead-free electronic solders. J. Mater. Sci. Mater. Electron. 18(1–3), 77–91 (2007)
74.
go back to reference A.A. El-Daly, Y. Swilem, M.H. Makled et al., Thermal and mechanical properties of Sn–Zn–Bi lead-free solder alloys. J. Alloys Compd. 484(1), 134–142 (2009)CrossRef A.A. El-Daly, Y. Swilem, M.H. Makled et al., Thermal and mechanical properties of Sn–Zn–Bi lead-free solder alloys. J. Alloys Compd. 484(1), 134–142 (2009)CrossRef
75.
go back to reference K.I. Chen, S.C. Cheng, C.H. Cheng et al., The effects of gallium additions on microstructures and thermal and mechanical properties of Sn–9Zn solder alloys. Adv. Mater. Eng. (2014). doi:10.1155/2014/606814 K.I. Chen, S.C. Cheng, C.H. Cheng et al., The effects of gallium additions on microstructures and thermal and mechanical properties of Sn–9Zn solder alloys. Adv. Mater. Eng. (2014). doi:10.​1155/​2014/​606814
76.
go back to reference K. Chen, K.L. Lin, The microstructures and mechanical properties of the Sn–Zn–Ag–Al–Ga solder alloys—the effect of Ag. J. Electron. Mater. 31(8), 861–867 (2002)CrossRef K. Chen, K.L. Lin, The microstructures and mechanical properties of the Sn–Zn–Ag–Al–Ga solder alloys—the effect of Ag. J. Electron. Mater. 31(8), 861–867 (2002)CrossRef
77.
go back to reference M.L. Huang, X.L. Hou, N. Kang et al., Microstructure and interfacial reaction of Sn–Zn–x (Al, Ag) near-eutectic solders on Al and Cu substrates. J. Mater. Sci. Mater. Electron. 25(5), 2311–2319 (2014)CrossRef M.L. Huang, X.L. Hou, N. Kang et al., Microstructure and interfacial reaction of Sn–Zn–x (Al, Ag) near-eutectic solders on Al and Cu substrates. J. Mater. Sci. Mater. Electron. 25(5), 2311–2319 (2014)CrossRef
78.
go back to reference Y.T. Wang, C.J. Ho, H.L. Tsai, Effect of In addition on mechanical properties of Sn–9Zn–In/Cu solder, in The 8th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (Suzhou, China, 2013), pp. 1038–1041 Y.T. Wang, C.J. Ho, H.L. Tsai, Effect of In addition on mechanical properties of Sn–9Zn–In/Cu solder, in The 8th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (Suzhou, China, 2013), pp. 1038–1041
79.
go back to reference J.C. Liu, H.J. Yu, G. Zhang, et al., Constitutive behavior and Anand model of novel lead-free solder Sn–Zn–Bi–In-P, in 2014 International Conference on Electronics Packaging (ICEP) (Toyama, Japan, 2014), pp. 156–161 J.C. Liu, H.J. Yu, G. Zhang, et al., Constitutive behavior and Anand model of novel lead-free solder Sn–Zn–Bi–In-P, in 2014 International Conference on Electronics Packaging (ICEP) (Toyama, Japan, 2014), pp. 156–161
80.
go back to reference M.L. Huang, N. Kang, Q. Zhou et al., Effect of Ni content on mechanical properties and corrosion behavior of Al/Sn–9Zn–xNi/Cu joints. J. Mater. Sci. Technol. 28(9), 844–852 (2012)CrossRef M.L. Huang, N. Kang, Q. Zhou et al., Effect of Ni content on mechanical properties and corrosion behavior of Al/Sn–9Zn–xNi/Cu joints. J. Mater. Sci. Technol. 28(9), 844–852 (2012)CrossRef
81.
go back to reference S.H. Wang, T.S. Chin, C.F. Yang et al., Pb-free solder-alloy based on Sn–Zn–Bi with the addition of germanium. J. Alloys Compd. 497(1), 428–431 (2010)CrossRef S.H. Wang, T.S. Chin, C.F. Yang et al., Pb-free solder-alloy based on Sn–Zn–Bi with the addition of germanium. J. Alloys Compd. 497(1), 428–431 (2010)CrossRef
82.
go back to reference A.R. Geranmayeh, R. Mahmudi, Power law indentation creep of Sn–5%Sb solder alloy. J. Mater. Sci. 40(13), 3361–3366 (2005)CrossRef A.R. Geranmayeh, R. Mahmudi, Power law indentation creep of Sn–5%Sb solder alloy. J. Mater. Sci. 40(13), 3361–3366 (2005)CrossRef
83.
go back to reference R. Mahmudi, A.R. Geranmayeh, M. Bakherad et al., Indentation creep study of lead-free Sn–5%Sb solder alloy. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct 457(1–2), 173–179 (2007)CrossRef R. Mahmudi, A.R. Geranmayeh, M. Bakherad et al., Indentation creep study of lead-free Sn–5%Sb solder alloy. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct 457(1–2), 173–179 (2007)CrossRef
84.
go back to reference H.T. Ma, Constitutive models of creep for lead-free solders. J. Mater. Sci. 44(14), 3841–3851 (2009)CrossRef H.T. Ma, Constitutive models of creep for lead-free solders. J. Mater. Sci. 44(14), 3841–3851 (2009)CrossRef
85.
go back to reference I. Dutta, A constitutive model for creep of lead-free solders undergoing strain-enhanced microstructural coarsening: a first report. J. Electron. Mater. 32(4), 201–207 (2003)CrossRef I. Dutta, A constitutive model for creep of lead-free solders undergoing strain-enhanced microstructural coarsening: a first report. J. Electron. Mater. 32(4), 201–207 (2003)CrossRef
86.
go back to reference Y.X. Zhu, X.Y. Li, R.T. Gao et al., Effect of hold time on the mechanical fatigue failure behavior of lead-free solder joint under high temperature. J. Mater. Sci. Mater. Electron. 25(9), 3863–3869 (2014)CrossRef Y.X. Zhu, X.Y. Li, R.T. Gao et al., Effect of hold time on the mechanical fatigue failure behavior of lead-free solder joint under high temperature. J. Mater. Sci. Mater. Electron. 25(9), 3863–3869 (2014)CrossRef
87.
go back to reference L. Zhang, S.B. Xue, Z.J. Han et al., Mechanical properties of fine pitch devices soldered joints based on creep model. Chin. J. Mech. Eng. 21(6), 82–85 (2008)CrossRef L. Zhang, S.B. Xue, Z.J. Han et al., Mechanical properties of fine pitch devices soldered joints based on creep model. Chin. J. Mech. Eng. 21(6), 82–85 (2008)CrossRef
88.
go back to reference B. Vandevelde, M. Gonzalez, P. Limaye et al., Thermal cycling reliability of SnAgCu and SnPb solder joints: a comparison for several IC-packages. Microelectron. Reliab. 47(2–3), 259–265 (2007)CrossRef B. Vandevelde, M. Gonzalez, P. Limaye et al., Thermal cycling reliability of SnAgCu and SnPb solder joints: a comparison for several IC-packages. Microelectron. Reliab. 47(2–3), 259–265 (2007)CrossRef
89.
go back to reference L. Yin, S. Wei, Z. Xu et al., The effect of joint size on the creep properties of microscale lead-free solder joints at elevated temperatures. J. Mater. Sci. Mater. Electron. 24(4), 1369–1374 (2013)CrossRef L. Yin, S. Wei, Z. Xu et al., The effect of joint size on the creep properties of microscale lead-free solder joints at elevated temperatures. J. Mater. Sci. Mater. Electron. 24(4), 1369–1374 (2013)CrossRef
90.
go back to reference J. Villain, W. Jillck, E. Schmitt, et al., Properties and reliability of SnZn-based lead-free solder alloys, in International IEEE Conference on the Asian Green Electronics (Hong Kong, China, 2004), pp. 38–41 J. Villain, W. Jillck, E. Schmitt, et al., Properties and reliability of SnZn-based lead-free solder alloys, in International IEEE Conference on the Asian Green Electronics (Hong Kong, China, 2004), pp. 38–41
91.
go back to reference R. Mahmudi, A.R. Geranmayeh, H. Noori et al., Impression creep of hypoeutectic Sn–Zn lead-free solder alloys. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. 491(1–2), 110–116 (2008)CrossRef R. Mahmudi, A.R. Geranmayeh, H. Noori et al., Impression creep of hypoeutectic Sn–Zn lead-free solder alloys. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. 491(1–2), 110–116 (2008)CrossRef
92.
go back to reference T. Shrestha, S. Gollapudi, I. Charit et al., Creep deformation behavior of Sn–Zn solder alloys. J. Mater. Sci. 49(5), 2127–2135 (2014)CrossRef T. Shrestha, S. Gollapudi, I. Charit et al., Creep deformation behavior of Sn–Zn solder alloys. J. Mater. Sci. 49(5), 2127–2135 (2014)CrossRef
93.
go back to reference R. Mahmudi, A.R. Geranmayeh, H. Khanbareh et al., Indentation creep of lead-free Sn–9Zn and Sn–8Zn–3Bi solder alloys. Mater. Des. 30(3), 574–580 (2009)CrossRef R. Mahmudi, A.R. Geranmayeh, H. Khanbareh et al., Indentation creep of lead-free Sn–9Zn and Sn–8Zn–3Bi solder alloys. Mater. Des. 30(3), 574–580 (2009)CrossRef
94.
go back to reference A.A. El-Daly, A.E. Hammad, G.A. Al-Ganainy et al., Enhancing mechanical response of hypoeutectic Sn–6.5 Zn solder alloy using Ni and Sb additions. Mater. Des. 52, 966–973 (2013)CrossRef A.A. El-Daly, A.E. Hammad, G.A. Al-Ganainy et al., Enhancing mechanical response of hypoeutectic Sn–6.5 Zn solder alloy using Ni and Sb additions. Mater. Des. 52, 966–973 (2013)CrossRef
95.
go back to reference G. Saad, A. Fawzy, E. Shawky, Effect of Ag addition on the creep characteristics of Sn-8.8 wt% Zn solder alloy. J. Alloys Compd. 479(1–2), 844–850 (2009)CrossRef G. Saad, A. Fawzy, E. Shawky, Effect of Ag addition on the creep characteristics of Sn-8.8 wt% Zn solder alloy. J. Alloys Compd. 479(1–2), 844–850 (2009)CrossRef
96.
go back to reference L. Zhang, S. Xue, L. Gao et al., Effects of rare earths on properties and microstructures of lead-free solder alloys. J. Mater. Sci. Mater. Electron. 20(8), 685–694 (2009)CrossRef L. Zhang, S. Xue, L. Gao et al., Effects of rare earths on properties and microstructures of lead-free solder alloys. J. Mater. Sci. Mater. Electron. 20(8), 685–694 (2009)CrossRef
97.
go back to reference H. Ye, S. Xue, M. Pecht, Evaluation of the microstructure and whisker growth in Sn–Zn–Ga solder with Pr content. J. Mater. Res. 27(14), 1887–1894 (2012)CrossRef H. Ye, S. Xue, M. Pecht, Evaluation of the microstructure and whisker growth in Sn–Zn–Ga solder with Pr content. J. Mater. Res. 27(14), 1887–1894 (2012)CrossRef
98.
go back to reference H. Ye, S. Xue, L. Zhang et al., Sn whisker growth in Sn–9Zn–0.5Ga–0.7 Pr lead-free solder. J. Alloys Compd. 509(5), L52–L55 (2011)CrossRef H. Ye, S. Xue, L. Zhang et al., Sn whisker growth in Sn–9Zn–0.5Ga–0.7 Pr lead-free solder. J. Alloys Compd. 509(5), L52–L55 (2011)CrossRef
99.
go back to reference H. Ye, S. Xue, M. Pecht, Effects of thermal cycling on rare earth (Pr)-induced Sn whisker/hillock growth. Mater. Lett. 98, 78–81 (2013)CrossRef H. Ye, S. Xue, M. Pecht, Effects of thermal cycling on rare earth (Pr)-induced Sn whisker/hillock growth. Mater. Lett. 98, 78–81 (2013)CrossRef
100.
go back to reference H. Ye, S. Xue, C. Chen et al., Growth behaviors of tin whisker in RE-doped Sn–Zn–Ga solder. Solder. Surf. Mount Technol. 25(3), 139–144 (2013)CrossRef H. Ye, S. Xue, C. Chen et al., Growth behaviors of tin whisker in RE-doped Sn–Zn–Ga solder. Solder. Surf. Mount Technol. 25(3), 139–144 (2013)CrossRef
101.
go back to reference P. Xue, S. Xue, Y. Shen et al., Inhibiting the growth of Sn whisker in Sn–9Zn lead-free solder by Nd and Ga. J. Mater. Sci. Mater. Electron. 25(6), 2671–2675 (2014)CrossRef P. Xue, S. Xue, Y. Shen et al., Inhibiting the growth of Sn whisker in Sn–9Zn lead-free solder by Nd and Ga. J. Mater. Sci. Mater. Electron. 25(6), 2671–2675 (2014)CrossRef
102.
go back to reference P. Xue, S. Xue, Y.F. Shen et al., Mechanism of reaction between Nd and Ga in Sn–Zn–0.5Ga–xNd solder. J. Electron. Mater. 43(9), 3404–3410 (2014)CrossRef P. Xue, S. Xue, Y.F. Shen et al., Mechanism of reaction between Nd and Ga in Sn–Zn–0.5Ga–xNd solder. J. Electron. Mater. 43(9), 3404–3410 (2014)CrossRef
103.
go back to reference A.A. El-Daly, A.E. Hammad, Effects of small addition of Ag and/or Cu on the microstructure and properties of Sn–9Zn lead-free solders. Mater. Sci. Eng. A 527(20), 5212–5219 (2010)CrossRef A.A. El-Daly, A.E. Hammad, Effects of small addition of Ag and/or Cu on the microstructure and properties of Sn–9Zn lead-free solders. Mater. Sci. Eng. A 527(20), 5212–5219 (2010)CrossRef
104.
go back to reference T. Luo, A. Hu, J. Hu, M. Li, D. Mao, Microstructure and mechanical properties of Sn–Zn–Bi–Cr lead-free solder. Microelectron. Reliab. 52(3), 585–588 (2012)CrossRef T. Luo, A. Hu, J. Hu, M. Li, D. Mao, Microstructure and mechanical properties of Sn–Zn–Bi–Cr lead-free solder. Microelectron. Reliab. 52(3), 585–588 (2012)CrossRef
105.
go back to reference X. Chen, A. Hu, M. Li et al., Study on the properties of Sn–9Zn–xCr lead-free solder. J. Alloys Compd. 460(1), 478–484 (2008)CrossRef X. Chen, A. Hu, M. Li et al., Study on the properties of Sn–9Zn–xCr lead-free solder. J. Alloys Compd. 460(1), 478–484 (2008)CrossRef
106.
go back to reference X.Z. Liu, M. Yang, X.H. Liu, et al., Microstructure and property of Sn–Zn–Cu–Bi lead free solder, in The 11th International Conference on Electronic Packaging Technology & High Density Packaging (Xi’an, China, 2010), pp. 789–793 X.Z. Liu, M. Yang, X.H. Liu, et al., Microstructure and property of Sn–Zn–Cu–Bi lead free solder, in The 11th International Conference on Electronic Packaging Technology & High Density Packaging (Xi’an, China, 2010), pp. 789–793
107.
go back to reference T.K. Yeh, K.L. Lin, U.S. Mohanty, Effect of Ag on the microstructure of Sn–8.5Zn–xAg–0.01Al–0.1Ga solders under high-temperature and high-humidity conditions. J. Electron. Mater. 42(4), 616–627 (2013)CrossRef T.K. Yeh, K.L. Lin, U.S. Mohanty, Effect of Ag on the microstructure of Sn–8.5Zn–xAg–0.01Al–0.1Ga solders under high-temperature and high-humidity conditions. J. Electron. Mater. 42(4), 616–627 (2013)CrossRef
108.
go back to reference T.C. Chang, M.C. Wang, M.H. Hon, Growth and morphology of the intermetallic compounds formed at the Sn–9Zn–2.5 Ag/Cu interface. J. Alloys Compd. 402(1–2), 141–148 (2005)CrossRef T.C. Chang, M.C. Wang, M.H. Hon, Growth and morphology of the intermetallic compounds formed at the Sn–9Zn–2.5 Ag/Cu interface. J. Alloys Compd. 402(1–2), 141–148 (2005)CrossRef
109.
go back to reference M. Date, K.N. Tu, T. Shoji et al., Interfacial reactions and impact reliability of Sn–Zn solder joints on Cu or electroless Au/Ni (P) bond-pads. J. Mater. Res. 19(10), 2887–2896 (2004)CrossRef M. Date, K.N. Tu, T. Shoji et al., Interfacial reactions and impact reliability of Sn–Zn solder joints on Cu or electroless Au/Ni (P) bond-pads. J. Mater. Res. 19(10), 2887–2896 (2004)CrossRef
110.
go back to reference L. Zhang, J.G. Han, Y.H. Guo et al., Reliability of SnAgCu/SnAgCuCe solder joints with different heights for electronic packaging. J. Mater. Sci. Mater. Electron. 25(10), 4489–4494 (2014)CrossRef L. Zhang, J.G. Han, Y.H. Guo et al., Reliability of SnAgCu/SnAgCuCe solder joints with different heights for electronic packaging. J. Mater. Sci. Mater. Electron. 25(10), 4489–4494 (2014)CrossRef
111.
go back to reference Y. Liu, J. Meerwijk, L.L. Luo et al., Formation and evolution of intermetallic layer structures at SAC305/Ag/Cu and SAC0705–Bi–Ni/Ag/Cu solder joint interfaces after reflow and aging. J. Mater. Sci. Mater. Electron. 25(11), 4954–4959 (2014)CrossRef Y. Liu, J. Meerwijk, L.L. Luo et al., Formation and evolution of intermetallic layer structures at SAC305/Ag/Cu and SAC0705–Bi–Ni/Ag/Cu solder joint interfaces after reflow and aging. J. Mater. Sci. Mater. Electron. 25(11), 4954–4959 (2014)CrossRef
112.
go back to reference H. Ye, S.B. Xue, J.D. Luo et al., Properties and interfacial microstructure of Sn–Zn–Ga solder joint with rare earth Pr addition. Mater. Des. 46, 816–823 (2013)CrossRef H. Ye, S.B. Xue, J.D. Luo et al., Properties and interfacial microstructure of Sn–Zn–Ga solder joint with rare earth Pr addition. Mater. Des. 46, 816–823 (2013)CrossRef
113.
go back to reference K. Berent, P. Fima, T. Ganacarz et al., Wetting and microstructure evolution of the Sn–Zn–Ag/Cu interface. J. Mater. Eng. Perform. 23(5), 1630–1633 (2014)CrossRef K. Berent, P. Fima, T. Ganacarz et al., Wetting and microstructure evolution of the Sn–Zn–Ag/Cu interface. J. Mater. Eng. Perform. 23(5), 1630–1633 (2014)CrossRef
114.
go back to reference Y. Huang, S. Chen, Co alloying and size effects on solidification and interfacial reactions in the Sn–Zn–(Co)/Cu couples. J. Mater. Res. 25(12), 2430–2438 (2010)CrossRef Y. Huang, S. Chen, Co alloying and size effects on solidification and interfacial reactions in the Sn–Zn–(Co)/Cu couples. J. Mater. Res. 25(12), 2430–2438 (2010)CrossRef
115.
go back to reference C.M. Chen, C.H. Chen, Interfacial reactions between eutectic SnZn solder and bulk or thin-film Cu substrates. J. Electron. Mater. 36(10), 1363–1371 (2007)CrossRef C.M. Chen, C.H. Chen, Interfacial reactions between eutectic SnZn solder and bulk or thin-film Cu substrates. J. Electron. Mater. 36(10), 1363–1371 (2007)CrossRef
116.
go back to reference T. Ichitsubo, E. Matsubara, K. Fujiwara et al., Control of compound forming reaction at the interface between SnZn solder and Cu substrate. J. Alloys Compd. 392(1–2), 200–205 (2005)CrossRef T. Ichitsubo, E. Matsubara, K. Fujiwara et al., Control of compound forming reaction at the interface between SnZn solder and Cu substrate. J. Alloys Compd. 392(1–2), 200–205 (2005)CrossRef
117.
go back to reference N. Dariavach, P. Callahan, J. Liang et al., Intermetallic growth kinetics for Sn–Ag, Sn–Cu, and Sn–Ag–Cu lead-free solders on Cu, Ni, and Fe-42Ni substrates. J. Electron. Mater. 35(7), 1581–1592 (2006)CrossRef N. Dariavach, P. Callahan, J. Liang et al., Intermetallic growth kinetics for Sn–Ag, Sn–Cu, and Sn–Ag–Cu lead-free solders on Cu, Ni, and Fe-42Ni substrates. J. Electron. Mater. 35(7), 1581–1592 (2006)CrossRef
118.
go back to reference R.K. Shiue, L.W. Tsay, C.L. Lin et al., The reliability study of selected Sn–Zn based lead-free solders on Au/Ni–P/Cu substrate. Microelectron. Reliab. 43(3), 453–463 (2003)CrossRef R.K. Shiue, L.W. Tsay, C.L. Lin et al., The reliability study of selected Sn–Zn based lead-free solders on Au/Ni–P/Cu substrate. Microelectron. Reliab. 43(3), 453–463 (2003)CrossRef
119.
go back to reference J. Bi, A. Hu, J. Hu et al., Effect of Cr additions on interfacial reaction between the Sn–Zn–Bi solder and Cu/electroplated Ni substrates. Microelectron. Reliab. 51(3), 636–641 (2011)CrossRef J. Bi, A. Hu, J. Hu et al., Effect of Cr additions on interfacial reaction between the Sn–Zn–Bi solder and Cu/electroplated Ni substrates. Microelectron. Reliab. 51(3), 636–641 (2011)CrossRef
120.
go back to reference W. Liou, Y.W. Yen, C.C. Jao, Interfacial reactions of Sn–9Zn–xCu (x = 1, 4, 7, 10) solders with Ni substrates. J. Electron. Mater. 38(11), 2222–2227 (2009)CrossRef W. Liou, Y.W. Yen, C.C. Jao, Interfacial reactions of Sn–9Zn–xCu (x = 1, 4, 7, 10) solders with Ni substrates. J. Electron. Mater. 38(11), 2222–2227 (2009)CrossRef
121.
go back to reference P. Fima, J. Pstruś, T. Gancarz, Wetting and interfacial chemistry of SnZnCu alloys with Cu and Al substrates. J. Mater. Eng. Perform. 23(5), 1530–1535 (2014)CrossRef P. Fima, J. Pstruś, T. Gancarz, Wetting and interfacial chemistry of SnZnCu alloys with Cu and Al substrates. J. Mater. Eng. Perform. 23(5), 1530–1535 (2014)CrossRef
122.
go back to reference C.S. Hsi, C.T. Lin, T.C. Chang et al., Interfacial reactions, microstructure, and strength of Sn–8Zn–3Bi and Sn–9Zn–Al solder on Cu and Au/Ni (P) pads. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 41(2), 275–284 (2010)CrossRef C.S. Hsi, C.T. Lin, T.C. Chang et al., Interfacial reactions, microstructure, and strength of Sn–8Zn–3Bi and Sn–9Zn–Al solder on Cu and Au/Ni (P) pads. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 41(2), 275–284 (2010)CrossRef
123.
go back to reference M. Ahmed, T. Fouzder, A. Sharif et al., Influence of Ag micro-particle additions on the microstructure, hardness and tensile properties of Sn–9Zn binary eutectic solder alloy. Microelectron. Reliab. 50(8), 1134–1141 (2010)CrossRef M. Ahmed, T. Fouzder, A. Sharif et al., Influence of Ag micro-particle additions on the microstructure, hardness and tensile properties of Sn–9Zn binary eutectic solder alloy. Microelectron. Reliab. 50(8), 1134–1141 (2010)CrossRef
124.
go back to reference I. Shafiq, Y.C. Chan, N.B. Wong et al., Influence of small Sb nanoparticles additions on the microstructure, hardness and tensile properties of Sn–9Zn binary eutectic solder alloy. J. Mater. Sci. Mater. Electron. 23(7), 1427–1434 (2012)CrossRef I. Shafiq, Y.C. Chan, N.B. Wong et al., Influence of small Sb nanoparticles additions on the microstructure, hardness and tensile properties of Sn–9Zn binary eutectic solder alloy. J. Mater. Sci. Mater. Electron. 23(7), 1427–1434 (2012)CrossRef
125.
go back to reference J. Shen, Y.C. Chan, Effects of ZrO2 nanoparticles on the mechanical properties of Sn–Zn solder joints on Au/Ni/Cu pads. J. Alloys Compd. 477(1–2), 552–559 (2009)CrossRef J. Shen, Y.C. Chan, Effects of ZrO2 nanoparticles on the mechanical properties of Sn–Zn solder joints on Au/Ni/Cu pads. J. Alloys Compd. 477(1–2), 552–559 (2009)CrossRef
126.
go back to reference A.K. Gain, Y.C. Chan, W.K.C. Yung, Effect of nano Ni additions on the structure and properties of Sn–9Zn and Sn–Zn–3Bi solders in Au/Ni/Cu ball grid array packages. Mater. Sci. Eng. B 162(2), 92–98 (2009)CrossRef A.K. Gain, Y.C. Chan, W.K.C. Yung, Effect of nano Ni additions on the structure and properties of Sn–9Zn and Sn–Zn–3Bi solders in Au/Ni/Cu ball grid array packages. Mater. Sci. Eng. B 162(2), 92–98 (2009)CrossRef
127.
go back to reference W.H. Zhong, Y.C. Chan, B.Y. Wu et al., Multiple reflow study of ball grid array (BGA) solder joints on Au/Ni metallization. J. Mater. Sci. 42(13), 5239–5247 (2007)CrossRef W.H. Zhong, Y.C. Chan, B.Y. Wu et al., Multiple reflow study of ball grid array (BGA) solder joints on Au/Ni metallization. J. Mater. Sci. 42(13), 5239–5247 (2007)CrossRef
128.
go back to reference G. Wei, M. Kuang, Y. Yang, Interfacial reaction of Sn–9Zn/Cu joint with Cu particle-reinforced composite solder Sn–9Zn. Trans. China Weld. Inst. 28(5), 105–108 (2007). (in Chinese) G. Wei, M. Kuang, Y. Yang, Interfacial reaction of Sn–9Zn/Cu joint with Cu particle-reinforced composite solder Sn–9Zn. Trans. China Weld. Inst. 28(5), 105–108 (2007). (in Chinese)
129.
go back to reference T. Fouzder, A.K. Gain, Y.C. Chan et al., Effect of nano Al2O3 additions on the microstructure, hardness and shear strength of eutectic Sn–9Zn solder on Au/Ni metallized Cu pads. Microelectron. Reliab. 50(12), 2051–2058 (2010)CrossRef T. Fouzder, A.K. Gain, Y.C. Chan et al., Effect of nano Al2O3 additions on the microstructure, hardness and shear strength of eutectic Sn–9Zn solder on Au/Ni metallized Cu pads. Microelectron. Reliab. 50(12), 2051–2058 (2010)CrossRef
130.
go back to reference T. Fouzder, Q. Li, Y.C. Chan et al., Interfacial microstructure and hardness of nickel(Ni) nanoparticle-doped tin–silver–copper(Sn–Ag–Cu) solders on immersion silver(Ag)-plated copper(Cu) substrates. J. Mater. Sci. Mater. Electron. 25(9), 4012–4023 (2014)CrossRef T. Fouzder, Q. Li, Y.C. Chan et al., Interfacial microstructure and hardness of nickel(Ni) nanoparticle-doped tin–silver–copper(Sn–Ag–Cu) solders on immersion silver(Ag)-plated copper(Cu) substrates. J. Mater. Sci. Mater. Electron. 25(9), 4012–4023 (2014)CrossRef
131.
go back to reference T. Fouzder, Q. Li, Y.C. Chan et al., Microstructure and kinetic analysis of the properties and behavior of nickel (Ni) nano-particle doped tin–zinc–bismuth (Sn–8Zn–3Bi) solders on immersion silver (Ag)-plated copper (Cu) substrates. J. Mater. Sci. Mater. Electron. 25(6), 2529–2539 (2014)CrossRef T. Fouzder, Q. Li, Y.C. Chan et al., Microstructure and kinetic analysis of the properties and behavior of nickel (Ni) nano-particle doped tin–zinc–bismuth (Sn–8Zn–3Bi) solders on immersion silver (Ag)-plated copper (Cu) substrates. J. Mater. Sci. Mater. Electron. 25(6), 2529–2539 (2014)CrossRef
132.
go back to reference M.M. Billah, K.M. Shorowordi, A. Sharif, Effect of micron size Ni particle addition in Sn–8Zn–3Bi lead-free solder alloy on the microstructure, thermal and mechanical properties. J. Alloys Compd. 585, 32–39 (2014)CrossRef M.M. Billah, K.M. Shorowordi, A. Sharif, Effect of micron size Ni particle addition in Sn–8Zn–3Bi lead-free solder alloy on the microstructure, thermal and mechanical properties. J. Alloys Compd. 585, 32–39 (2014)CrossRef
Metadata
Title
Present status of Sn–Zn lead-free solders bearing alloying elements
Authors
Shuang Liu
Song-bai Xue
Peng Xue
Dong-xue Luo
Publication date
01-07-2015
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 7/2015
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-014-2659-7

Other articles of this Issue 7/2015

Journal of Materials Science: Materials in Electronics 7/2015 Go to the issue