Skip to main content
Top
Published in: Wireless Networks 5/2019

22-04-2019

A combining design of precoder and equalizer based on shared redundancy to improve performance of ISI MIMO systems

Authors: Bui Quoc Doanh, Do Thanh Quan, Pham Thanh Hiep, Ta Chi Hieu

Published in: Wireless Networks | Issue 5/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

There have been a number of researches on block transmission systems via MIMO channels due to really high data transmission rate. However, because of the existence of inter-symbol interference (ISI) in the systems, guard intervals are added to eliminate the ISI, leading to a reduction in channel energy and bandwidth efficiency. In order to optimize these systems, there are many solutions in which a combining design of precoder and equalizer appears as a potential candidate. In this paper, a jointly optimal design for precoder and equalizer for ISI multiple input multiple output (MIMO) channels based on sharing redundancy is proposed. Theory analysis and simulation results demonstrate that the proposed design produces a significant improvement in the system performance such as a reduction in bit error rate, a decrease in channel energy loss and an increase in system throughput.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Gohil, A., Modi, H., & Patel, S. K. (2013). 5G technology of mobile communication: A survey. In 2013 international conference on intelligent systems and signal processing (ISSP) (pp. 288–292). New York: IEEE. Gohil, A., Modi, H., & Patel, S. K. (2013). 5G technology of mobile communication: A survey. In 2013 international conference on intelligent systems and signal processing (ISSP) (pp. 288–292). New York: IEEE.
2.
go back to reference Gupta, A., & Jha, R. K. (2015). A survey of 5G network: Architecture and emerging technologies. IEEE Access, 3, 1206–1232.CrossRef Gupta, A., & Jha, R. K. (2015). A survey of 5G network: Architecture and emerging technologies. IEEE Access, 3, 1206–1232.CrossRef
3.
go back to reference Agiwal, M., Roy, A., & Saxena, N. (2016). Next generation 5G wireless networks: A comprehensive survey. IEEE Communications Surveys and Tutorials, 18(3), 1617–1655.CrossRef Agiwal, M., Roy, A., & Saxena, N. (2016). Next generation 5G wireless networks: A comprehensive survey. IEEE Communications Surveys and Tutorials, 18(3), 1617–1655.CrossRef
4.
go back to reference Al-Falahy, N., & Alani, O. Y. (2017). Technologies for 5G networks: Challenges and opportunities. IT Professional, 19(1), 12–20.CrossRef Al-Falahy, N., & Alani, O. Y. (2017). Technologies for 5G networks: Challenges and opportunities. IT Professional, 19(1), 12–20.CrossRef
5.
go back to reference Akpakwu, G. A., Silva, B. J., Hancke, G. P., & Abu-Mahfouz, A. M. (2018). A survey on 5G networks for the internet of things: Communication technologies and challenges. IEEE Access, 6, 3619–3647.CrossRef Akpakwu, G. A., Silva, B. J., Hancke, G. P., & Abu-Mahfouz, A. M. (2018). A survey on 5G networks for the internet of things: Communication technologies and challenges. IEEE Access, 6, 3619–3647.CrossRef
6.
go back to reference Maaref, A., & Aïssa, S. (2004). Combined adaptive modulation and truncated ARQ for packet data transmission in MIMO systems. In Global telecommunications conference. GLOBECOM’04. IEEE (Vol. 6, pp. 3818–3822). New York: IEEE. Maaref, A., & Aïssa, S. (2004). Combined adaptive modulation and truncated ARQ for packet data transmission in MIMO systems. In Global telecommunications conference. GLOBECOM’04. IEEE (Vol. 6, pp. 3818–3822). New York: IEEE.
7.
go back to reference Gao, X., Jiang, B., You, X., Pan, Z., Xue, Y., & Schulz, E. (2007). Efficient channel estimation for MIMO single-carrier block transmission with dual cyclic timeslot structure. IEEE Transactions on Communications, 55(11), 2210–2223.CrossRef Gao, X., Jiang, B., You, X., Pan, Z., Xue, Y., & Schulz, E. (2007). Efficient channel estimation for MIMO single-carrier block transmission with dual cyclic timeslot structure. IEEE Transactions on Communications, 55(11), 2210–2223.CrossRef
8.
go back to reference Lin, C.-Y., Wu, J.-Y., & Lee, T.-S. (2008). Robust receiver design for MIMO single-carrier block transmission over time-varying dispersive channels against imperfect channel knowledge. IEEE Transactions on Wireless Communications, 7(10), 3799–3812.CrossRef Lin, C.-Y., Wu, J.-Y., & Lee, T.-S. (2008). Robust receiver design for MIMO single-carrier block transmission over time-varying dispersive channels against imperfect channel knowledge. IEEE Transactions on Wireless Communications, 7(10), 3799–3812.CrossRef
9.
go back to reference Dall’Anese, E., Pupolin, S., & Assalini, A., (2011). Sum mutual information of block-faded MIMO MAC with LMMSE channel estimation for packet transmission. In 14th international symposium on wireless personal multimedia communications (WPMC) (pp. 1–5). New York: IEEE. Dall’Anese, E., Pupolin, S., & Assalini, A., (2011). Sum mutual information of block-faded MIMO MAC with LMMSE channel estimation for packet transmission. In 14th international symposium on wireless personal multimedia communications (WPMC) (pp. 1–5). New York: IEEE.
10.
go back to reference Cheng, S.-Y., Tsai, C.-A., & Hsu, T.-Y. (2011). Channel estimator and aliasing canceller for equalizing and decoding non-cyclic prefixed single-carrier block transmission via MIMO-OFDM modem. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 19(1), 156–160.CrossRef Cheng, S.-Y., Tsai, C.-A., & Hsu, T.-Y. (2011). Channel estimator and aliasing canceller for equalizing and decoding non-cyclic prefixed single-carrier block transmission via MIMO-OFDM modem. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 19(1), 156–160.CrossRef
11.
go back to reference Vrigneau, B., Letessier, J., Rostaing, P., Collin, L., & Burel, G. (2008). Extension of the MIMO precoder based on the minimum euclidean distance: A cross-form matrix. IEEE Journal of Selected Topics in Signal Processing, 2(2), 135.CrossRef Vrigneau, B., Letessier, J., Rostaing, P., Collin, L., & Burel, G. (2008). Extension of the MIMO precoder based on the minimum euclidean distance: A cross-form matrix. IEEE Journal of Selected Topics in Signal Processing, 2(2), 135.CrossRef
12.
go back to reference Grossmann, M. (2009). SVD-based precoding for single carrier MIMO transmission with frequency domain MMSE turbo equalization. IEEE Signal Processing Letters, 16(5), 418–421.CrossRef Grossmann, M. (2009). SVD-based precoding for single carrier MIMO transmission with frequency domain MMSE turbo equalization. IEEE Signal Processing Letters, 16(5), 418–421.CrossRef
13.
go back to reference Xiao, P., & Sellathurai, M. (2010). Improved linear transmit processing for single-user and multi-user MIMO communications systems. IEEE Transactions on Signal Processing, 58(3), 1768–1779.MathSciNetCrossRefMATH Xiao, P., & Sellathurai, M. (2010). Improved linear transmit processing for single-user and multi-user MIMO communications systems. IEEE Transactions on Signal Processing, 58(3), 1768–1779.MathSciNetCrossRefMATH
14.
go back to reference Sandell, M., Vetter, H., & Tosato, F. (2011). Joint linear and nonlinear precoding in MIMO systems. IEEE Communications Letters, 15(12), 1265–1267.CrossRef Sandell, M., Vetter, H., & Tosato, F. (2011). Joint linear and nonlinear precoding in MIMO systems. IEEE Communications Letters, 15(12), 1265–1267.CrossRef
15.
go back to reference Zeng, W., Xiao, C., Wang, M., & Lu, J. (2012). Linear precoding for finite-alphabet inputs over MIMO fading channels with statistical CSI. IEEE Transactions on Signal Processing, 60(6), 3134–3148.MathSciNetCrossRefMATH Zeng, W., Xiao, C., Wang, M., & Lu, J. (2012). Linear precoding for finite-alphabet inputs over MIMO fading channels with statistical CSI. IEEE Transactions on Signal Processing, 60(6), 3134–3148.MathSciNetCrossRefMATH
16.
go back to reference Scaglione, A., Stoica, P., Barbarossa, S., Giannakis, G. B., & Sampath, H. (2002). Optimal designs for space–time linear precoders and decoders. IEEE Transactions on Signal Processing, 50(5), 1051–1064.CrossRef Scaglione, A., Stoica, P., Barbarossa, S., Giannakis, G. B., & Sampath, H. (2002). Optimal designs for space–time linear precoders and decoders. IEEE Transactions on Signal Processing, 50(5), 1051–1064.CrossRef
17.
go back to reference Rottenberg, F., Mestre, X., & Louveaux, J. (2016). Optimal zero forcing precoder and decoder design for multi-user MIMO FBMC under strong channel selectivity. In ICASSP (pp. 3541–3545). Rottenberg, F., Mestre, X., & Louveaux, J. (2016). Optimal zero forcing precoder and decoder design for multi-user MIMO FBMC under strong channel selectivity. In ICASSP (pp. 3541–3545).
18.
go back to reference Zhao, N., Yu, F. R., & Leung, V. C. M. (2015). Opportunistic communications in interference alignment networks with wireless power transfer. IEEE Wireless Communications, 22(1), 88–95.CrossRef Zhao, N., Yu, F. R., & Leung, V. C. M. (2015). Opportunistic communications in interference alignment networks with wireless power transfer. IEEE Wireless Communications, 22(1), 88–95.CrossRef
19.
go back to reference Guo, J., Zhao, N., Yu, F. R., Liu, X., & Leung, V. C. M. (2017). Exploiting adversarial jamming signals for energy harvesting in interference networks. IEEE Transactions on Wireless Communications, 16(2), 1267–1280.CrossRef Guo, J., Zhao, N., Yu, F. R., Liu, X., & Leung, V. C. M. (2017). Exploiting adversarial jamming signals for energy harvesting in interference networks. IEEE Transactions on Wireless Communications, 16(2), 1267–1280.CrossRef
20.
go back to reference Cao, Y., Zhao, N., Yu, F. R., Jin, M., Chen, Y., Tang, J., et al. (2018). Optimization or alignment: Secure primary transmission assisted by secondary networks. IEEE Journal on Selected Areas in Communications, 36(4), 905–917.CrossRef Cao, Y., Zhao, N., Yu, F. R., Jin, M., Chen, Y., Tang, J., et al. (2018). Optimization or alignment: Secure primary transmission assisted by secondary networks. IEEE Journal on Selected Areas in Communications, 36(4), 905–917.CrossRef
21.
go back to reference Shao, X., Yuan, J., & Shao, Y. (2007). Error performance analysis of linear zero forcing and MMSE precoders for MIMO broadcast channels. IET Communications, 1(5), 1067–1074.CrossRef Shao, X., Yuan, J., & Shao, Y. (2007). Error performance analysis of linear zero forcing and MMSE precoders for MIMO broadcast channels. IET Communications, 1(5), 1067–1074.CrossRef
22.
go back to reference Mehana, A. H., & Nosratinia, A. (2014). Diversity of MIMO linear precoding. IEEE Transactions on Information Theory, 60(2), 1019–1038.MathSciNetCrossRefMATH Mehana, A. H., & Nosratinia, A. (2014). Diversity of MIMO linear precoding. IEEE Transactions on Information Theory, 60(2), 1019–1038.MathSciNetCrossRefMATH
23.
go back to reference Saeid, E., Jeoti, V., & Samir, B. B. (2013). On MU-MIMO precoding techniques for WiMAX. In Selected topics in WiMAX. InTech. Saeid, E., Jeoti, V., & Samir, B. B. (2013). On MU-MIMO precoding techniques for WiMAX. In Selected topics in WiMAX. InTech.
24.
go back to reference Kwan, M.-W., & Kok, C.-W. (2007). Mmse equalizer for MIMO-ISI channel with shorten guard period. IEEE Transactions on Signal Processing, 55(1), 389–395.MathSciNetCrossRefMATH Kwan, M.-W., & Kok, C.-W. (2007). Mmse equalizer for MIMO-ISI channel with shorten guard period. IEEE Transactions on Signal Processing, 55(1), 389–395.MathSciNetCrossRefMATH
25.
go back to reference Kuchi, K. (2012). MMSE-prewhitened-MLD equalizer for MIMO DFT-precoded-OFDMA. IEEE Wireless Communications Letters, 1(4), 328–331.CrossRef Kuchi, K. (2012). MMSE-prewhitened-MLD equalizer for MIMO DFT-precoded-OFDMA. IEEE Wireless Communications Letters, 1(4), 328–331.CrossRef
26.
go back to reference Dong, C., Lin, J., Niu, K., He, Z., & Bie, Z. (2012). Block-iterative decision feedback equalizer with noise prediction for single-carrier MIMO transmission. IEEE Transactions on Vehicular Technology, 61(8), 3772–3776.CrossRef Dong, C., Lin, J., Niu, K., He, Z., & Bie, Z. (2012). Block-iterative decision feedback equalizer with noise prediction for single-carrier MIMO transmission. IEEE Transactions on Vehicular Technology, 61(8), 3772–3776.CrossRef
27.
go back to reference Song, S., & Letaief, K. B. (2011). Diversity analysis for linear equalizers over ISI channels. IEEE Transactions on Communications, 59(9), 2414–2423.CrossRef Song, S., & Letaief, K. B. (2011). Diversity analysis for linear equalizers over ISI channels. IEEE Transactions on Communications, 59(9), 2414–2423.CrossRef
28.
go back to reference Gupta, R., & Grover, A. (2012). BER performance analysis of MIMO systems using equalization techniques. Innovative Systems Design and Engineering, 3(10), 11–25. Gupta, R., & Grover, A. (2012). BER performance analysis of MIMO systems using equalization techniques. Innovative Systems Design and Engineering, 3(10), 11–25.
29.
go back to reference Scaglione, A., Giannakis, G. B., & Barbarossa, S. (1999). Redundant filterbank precoders and equalizers. i. Unification and optimal designs. IEEE Transactions on Signal Processing, 47(7), 1988–2006.CrossRef Scaglione, A., Giannakis, G. B., & Barbarossa, S. (1999). Redundant filterbank precoders and equalizers. i. Unification and optimal designs. IEEE Transactions on Signal Processing, 47(7), 1988–2006.CrossRef
30.
go back to reference Scaglione, A., Barbarossa, S., & Giannakis, G. B. (1999). Filterbank transceivers optimizing information rate in block transmissions over dispersive channels. IEEE Transactions on Information Theory, 45(3), 1019–1032.MathSciNetCrossRefMATH Scaglione, A., Barbarossa, S., & Giannakis, G. B. (1999). Filterbank transceivers optimizing information rate in block transmissions over dispersive channels. IEEE Transactions on Information Theory, 45(3), 1019–1032.MathSciNetCrossRefMATH
31.
go back to reference Sampath, H., Stoica, P., & Paulraj, A. (2001). Generalized linear precoder and decoder design for MIMO channels using the weighted MMSE criterion. IEEE Transactions on Communications, 49(12), 2198–2206.CrossRef Sampath, H., Stoica, P., & Paulraj, A. (2001). Generalized linear precoder and decoder design for MIMO channels using the weighted MMSE criterion. IEEE Transactions on Communications, 49(12), 2198–2206.CrossRef
32.
go back to reference Yang, H., Chen, C., Zhong, W., & Alphones, A. (2018). Joint precoder and equalizer design for multi-user multi-cell MIMO VLC systems. IEEE Transactions on Vehicular Technology, 67(12), 11354–11364.CrossRef Yang, H., Chen, C., Zhong, W., & Alphones, A. (2018). Joint precoder and equalizer design for multi-user multi-cell MIMO VLC systems. IEEE Transactions on Vehicular Technology, 67(12), 11354–11364.CrossRef
33.
go back to reference Zhai, Y., Tong, J., & Xi, J. (2019). Precoder design for MIMO visible light communications with decision-feedback receivers. IEEE Photonics Technology Letters, 31(7), 521–524.CrossRef Zhai, Y., Tong, J., & Xi, J. (2019). Precoder design for MIMO visible light communications with decision-feedback receivers. IEEE Photonics Technology Letters, 31(7), 521–524.CrossRef
34.
go back to reference Ta, C. H., & Weiss, S. (2007). A jointly optimal precoder and block decision feedback equaliser design with low redundancy. In 15th European signal processing conference (pp. 489–492). New York: IEEE. Ta, C. H., & Weiss, S. (2007). A jointly optimal precoder and block decision feedback equaliser design with low redundancy. In 15th European signal processing conference (pp. 489–492). New York: IEEE.
35.
go back to reference Liu, C., Ta, C. H., & Weiss, S., (2007). Joint precoding and equalisation design using oversampled filter banks for dispersive channels with correlated noise. In IEEE workshop on signal processing systems (pp. 232–236). New York: IEEE. Liu, C., Ta, C. H., & Weiss, S., (2007). Joint precoding and equalisation design using oversampled filter banks for dispersive channels with correlated noise. In IEEE workshop on signal processing systems (pp. 232–236). New York: IEEE.
36.
go back to reference Weiss, S., Ta, C. H., & Liu, C, (2007). A wiener filter approach to the design of filter bank based single-carrier precoding and equalisation. In IEEE international symposium on power line communications and its applications ISPLC’07 (pp. 493–498). New York: IEEE. Weiss, S., Ta, C. H., & Liu, C, (2007). A wiener filter approach to the design of filter bank based single-carrier precoding and equalisation. In IEEE international symposium on power line communications and its applications ISPLC’07 (pp. 493–498). New York: IEEE.
37.
go back to reference Takeda, K., Tomeba, H., & Adachi, F. (2006). Single-carrier transmission with joint Tomlinson–Harashima precoding and frequency-domain equalization. In The 3rd IEEE VTS Asia pacific wireless communications symposium (APWCS2006) (pp. 262–266). Takeda, K., Tomeba, H., & Adachi, F. (2006). Single-carrier transmission with joint Tomlinson–Harashima precoding and frequency-domain equalization. In The 3rd IEEE VTS Asia pacific wireless communications symposium (APWCS2006) (pp. 262–266).
38.
go back to reference Ta, C. H., Liu, C., & Weiss, S. (2008). An approach for block transmission based precoding and equalisation with improved performance. In IEEE international symposium on power line communications and its applications. ISPLC 2008 (pp. 331–335). New York: IEEE. Ta, C. H., Liu, C., & Weiss, S. (2008). An approach for block transmission based precoding and equalisation with improved performance. In IEEE international symposium on power line communications and its applications. ISPLC 2008 (pp. 331–335). New York: IEEE.
39.
go back to reference Lin, Y.-P., & Phoong, S.-M. (2002). Minimum redundancy for ISI free FIR filterbank transceivers. IEEE Transactions on Signal Processing, 50(4), 842–853.CrossRef Lin, Y.-P., & Phoong, S.-M. (2002). Minimum redundancy for ISI free FIR filterbank transceivers. IEEE Transactions on Signal Processing, 50(4), 842–853.CrossRef
40.
go back to reference Martins, W. A., & Diniz, P. S. R. (2010). Block-based transceivers with minimum redundancy. IEEE Transactions on Signal Processing, 58(3), 1321–1333.MathSciNetCrossRefMATH Martins, W. A., & Diniz, P. S. R. (2010). Block-based transceivers with minimum redundancy. IEEE Transactions on Signal Processing, 58(3), 1321–1333.MathSciNetCrossRefMATH
41.
go back to reference Saleh, A. A., & Valenzuela, R. (1987). A statistical model for indoor multipath propagation. IEEE Journal on Selected Areas in Communications, 5(2), 128–137.CrossRef Saleh, A. A., & Valenzuela, R. (1987). A statistical model for indoor multipath propagation. IEEE Journal on Selected Areas in Communications, 5(2), 128–137.CrossRef
Metadata
Title
A combining design of precoder and equalizer based on shared redundancy to improve performance of ISI MIMO systems
Authors
Bui Quoc Doanh
Do Thanh Quan
Pham Thanh Hiep
Ta Chi Hieu
Publication date
22-04-2019
Publisher
Springer US
Published in
Wireless Networks / Issue 5/2019
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-019-01990-z

Other articles of this Issue 5/2019

Wireless Networks 5/2019 Go to the issue