Skip to main content
Top
Published in: Wireless Networks 5/2019

10-04-2019

Delay Tolerant Network assisted flying Ad-Hoc network scenario: modeling and analytical perspective

Authors: Amartya Mukherjee, Nilanjan Dey, Rajesh Kumar, B. K. Panigrahi, Aboul Ella Hassanien, João Manuel R. S. Tavares

Published in: Wireless Networks | Issue 5/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Flying Ad-Hoc networks (FANET) are the extended paradigm of the mobile Ad-Hoc networks and, perhaps, one of the most emerging research domains in the current era. A huge number of tangible applications have been developed in this domain. The main advantages of such networks are their easy deployment, scalability, and robustness. However, the sparseness of these networks is an inherent characteristic that is known to be a bottleneck. The main objective of this work was to provide an alternative solution for the intermittently connected FANET by considering the philosophy of the Delay Tolerant Network (DTN) approach. To realize the functionality of the DTN protocols in a three-dimensional (3D) space, a social FANET model is proposed. FANET nodes are supposed to have a sparse node density. Fundamentally, the proposed DTN assisted Flying Ad hoc Network exploits the DTN routing and mobility features. The new mobility modeling for 3D spaces was re-engineered and tested with well-known routing protocols to analyze the performance of the model based on node speed, density, buffer, latency, message overhead, and power consumption. The effectiveness of 3D mobility models has also been compared against the one of classical models. The obtained results reflect a significant enhanced performance of the suggested DTN protocol for sparse FANET in a social scenario.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Dey, N., & Mukherjee, A. (2016). Embedded systems and robotics with open source tools. Boca Raton: CRC Press. Dey, N., & Mukherjee, A. (2016). Embedded systems and robotics with open source tools. Boca Raton: CRC Press.
3.
go back to reference Bekmezci, I., Sahingoz, O. K., & Temel, Ş. (2013). Flying ad-hoc networks (FANETs): A survey. Ad Hoc Networks, 11(3), 1254–1270.CrossRef Bekmezci, I., Sahingoz, O. K., & Temel, Ş. (2013). Flying ad-hoc networks (FANETs): A survey. Ad Hoc Networks, 11(3), 1254–1270.CrossRef
4.
go back to reference Kumari, K., Sah, B., & Maakar, S. (2015). A survey: Different mobility model for FANET. International Journal of Advanced Research in Computer Science and Software Engineering, 5(6), 1170–1173. Kumari, K., Sah, B., & Maakar, S. (2015). A survey: Different mobility model for FANET. International Journal of Advanced Research in Computer Science and Software Engineering, 5(6), 1170–1173.
5.
go back to reference Sahingoz, O. K. (2014). Networking models in flying ad-hoc networks (FANETs): Concepts and challenges. Journal of Intelligent and Robotic Systems, 74(1–2), 513–527.CrossRef Sahingoz, O. K. (2014). Networking models in flying ad-hoc networks (FANETs): Concepts and challenges. Journal of Intelligent and Robotic Systems, 74(1–2), 513–527.CrossRef
6.
go back to reference Zheng, Z., Sangaiah, A. K., & Wang, T. (2018). Adaptive communication protocols in flying ad hoc network. IEEE Communications Magazine, 56(1), 136–142.CrossRef Zheng, Z., Sangaiah, A. K., & Wang, T. (2018). Adaptive communication protocols in flying ad hoc network. IEEE Communications Magazine, 56(1), 136–142.CrossRef
7.
go back to reference Lewis, M., Templin, F., Bellur, B., & Ogier, R. (2002). Topology broadcast based on reverse-path forwarding (TBRPF). Internet Engineering Task Force (IETF) draft, draft-ietf-manettbrpf-06. txt. Lewis, M., Templin, F., Bellur, B., & Ogier, R. (2002). Topology broadcast based on reverse-path forwarding (TBRPF). Internet Engineering Task Force (IETF) draft, draft-ietf-manettbrpf-06. txt.
8.
go back to reference Zhang, X., Cao, X., Yan, L., & Sung, D. (2016). A street-centric opportunistic routing protocol based on link correlation for urban vanets. IEEE Transactions on Mobile Computing, 1, 1. Zhang, X., Cao, X., Yan, L., & Sung, D. (2016). A street-centric opportunistic routing protocol based on link correlation for urban vanets. IEEE Transactions on Mobile Computing, 1, 1.
9.
go back to reference Oubbati, O. S., Lakas, A., Zhou, F., Güneş, M., & Yagoubi, M. B. (2017). A survey on position-based routing protocols for Flying Ad hoc Networks (FANETs). Vehicular Communications, 10, 29–56.CrossRef Oubbati, O. S., Lakas, A., Zhou, F., Güneş, M., & Yagoubi, M. B. (2017). A survey on position-based routing protocols for Flying Ad hoc Networks (FANETs). Vehicular Communications, 10, 29–56.CrossRef
10.
go back to reference Oubbati, O. S., Lakas, A., Zhou, F., Güneş, M., Lagraa, N., & Yagoubi, M. B. (2017). Intelligent UAV-assisted routing protocol for urban VANETs. Computer Communications, 107, 93–111.CrossRef Oubbati, O. S., Lakas, A., Zhou, F., Güneş, M., Lagraa, N., & Yagoubi, M. B. (2017). Intelligent UAV-assisted routing protocol for urban VANETs. Computer Communications, 107, 93–111.CrossRef
11.
go back to reference Singh, H., & Rana, P. S. G. (2017). An emergency message dissemination protocol using greedy forwarding technique and clustering for VANETS. Ph.D. dissertation, 2017. Singh, H., & Rana, P. S. G. (2017). An emergency message dissemination protocol using greedy forwarding technique and clustering for VANETS. Ph.D. dissertation, 2017.
12.
go back to reference Cui, B., & Li, R. (2017). A greedy and neighbor aware data forwarding protocol in named data MANETs. In 2017 ninth international conference on ubiquitous and future networks (ICUFN) (pp. 934–939). IEEE, 2017. Cui, B., & Li, R. (2017). A greedy and neighbor aware data forwarding protocol in named data MANETs. In 2017 ninth international conference on ubiquitous and future networks (ICUFN) (pp. 934–939). IEEE, 2017.
13.
go back to reference Maxa, J.-A., Mahmoud, M.-S. B., & Larrieu, N. (2017). Survey on uaanet routing protocols and network security challenges. Ad Hoc & Sensor Wireless Networks, 37(1–4), 231–320. Maxa, J.-A., Mahmoud, M.-S. B., & Larrieu, N. (2017). Survey on uaanet routing protocols and network security challenges. Ad Hoc & Sensor Wireless Networks, 37(1–4), 231–320.
14.
go back to reference Khan, I. L., Hussain, R., Iqbal, A., Shakeel, A., Alvi, S., Abbas, W., et al. (2018). Design and evaluation of self organizing, collision free MAC protocol for distributed cognitive radio networks. Wireless Personal Communications, 99(2), 1081–1101.CrossRef Khan, I. L., Hussain, R., Iqbal, A., Shakeel, A., Alvi, S., Abbas, W., et al. (2018). Design and evaluation of self organizing, collision free MAC protocol for distributed cognitive radio networks. Wireless Personal Communications, 99(2), 1081–1101.CrossRef
15.
go back to reference Rosário, D., Arnaldo Filho, J., Rosário, D., Santosy, A., & Gerla, M. (2017). A relay placement mechanism based on UAV mobility for satisfactory video transmissions. In Ad hoc networking workshop (Med-Hoc-Net), 2017 16th annual mediterranean (pp. 1–8). IEEE, 2017. Rosário, D., Arnaldo Filho, J., Rosário, D., Santosy, A., & Gerla, M. (2017). A relay placement mechanism based on UAV mobility for satisfactory video transmissions. In Ad hoc networking workshop (Med-Hoc-Net), 2017 16th annual mediterranean (pp. 1–8). IEEE, 2017.
16.
go back to reference Patra, S., Balaji, A., Saha, S., Mukherjee, A., & Nandi, S. (2011). A qualitative survey on unicast routing algorithms in delay tolerant networks. In V. V. Das, G. Thomas & F. L. Gaol (Eds.), Information technology and mobile communication (pp. 291–296). Berlin: Springer.CrossRef Patra, S., Balaji, A., Saha, S., Mukherjee, A., & Nandi, S. (2011). A qualitative survey on unicast routing algorithms in delay tolerant networks. In V. V. Das, G. Thomas & F. L. Gaol (Eds.), Information technology and mobile communication (pp. 291–296). Berlin: Springer.CrossRef
17.
18.
go back to reference Han, G., Zhou, L., Wang, H., Zhang, W., & Chan, S. (2018). A source location protection protocol based on dynamic routing in WSNs for the social internet of things. Future Generation Computer Systems, 82, 689–697.CrossRef Han, G., Zhou, L., Wang, H., Zhang, W., & Chan, S. (2018). A source location protection protocol based on dynamic routing in WSNs for the social internet of things. Future Generation Computer Systems, 82, 689–697.CrossRef
19.
go back to reference Bujari, A., Palazzi, C. E., & Ronzani, D. (2018). A comparison of stateless position-based packet routing algorithms for FANETs. IEEE Transactions on Mobile Computing, 1, 1. Bujari, A., Palazzi, C. E., & Ronzani, D. (2018). A comparison of stateless position-based packet routing algorithms for FANETs. IEEE Transactions on Mobile Computing, 1, 1.
20.
go back to reference Amjad, K., & Stocker, A. J. (2010). Impact of node density and mobility on the performance of AODV and DSR in MANETS. In 2010 7th international symposium on communication systems networks and digital signal processing (CSNDSP) (pp. 61–65). IEEE, 2010. Amjad, K., & Stocker, A. J. (2010). Impact of node density and mobility on the performance of AODV and DSR in MANETS. In 2010 7th international symposium on communication systems networks and digital signal processing (CSNDSP) (pp. 61–65). IEEE, 2010.
21.
go back to reference Mukherjee, A., Chakraborty, S., Azar, A. T., Bhattacharyay, S. K., Chatterjee, B., & Dey, N. (2014). Unmanned aerial system for post disaster identification. In 2014 international conference on circuits, communication, control and computing (I4C) (pp. 247–252). IEEE, 2014. Mukherjee, A., Chakraborty, S., Azar, A. T., Bhattacharyay, S. K., Chatterjee, B., & Dey, N. (2014). Unmanned aerial system for post disaster identification. In 2014 international conference on circuits, communication, control and computing (I4C) (pp. 247–252). IEEE, 2014.
22.
go back to reference Priyan, M. K., & Devi, G. U. (2017). Energy efficient node selection algorithm based on node performance index and random waypoint mobility model in internet of vehicles. Cluster Computing, 21(1), 1–15. Priyan, M. K., & Devi, G. U. (2017). Energy efficient node selection algorithm based on node performance index and random waypoint mobility model in internet of vehicles. Cluster Computing, 21(1), 1–15.
23.
go back to reference Deng, S., Huang, L., Taheri, J., Yin, J., Zhou, M., & Zomaya, A. Y. (2017). Mobility-aware service composition in mobile communities. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47(3), 555–568.CrossRef Deng, S., Huang, L., Taheri, J., Yin, J., Zhou, M., & Zomaya, A. Y. (2017). Mobility-aware service composition in mobile communities. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47(3), 555–568.CrossRef
24.
go back to reference Ren, J., Zhang, G., & Li, D. (2017). Multicast capacity for VANETs with directional antenna and delay constraint under random walk mobility model. IEEE Access, 5, 3958–3970.CrossRef Ren, J., Zhang, G., & Li, D. (2017). Multicast capacity for VANETs with directional antenna and delay constraint under random walk mobility model. IEEE Access, 5, 3958–3970.CrossRef
25.
go back to reference Mukherjee, A., Dey, N., Kausar, N., Ashour, A. S., Taiar, R., & Hassanien, A. E. (2016). A disaster management specific mobility model for flying ad-hoc network. International Journal of Rough Sets and Data Analysis (IJRSDA), 3(3), 72–103.CrossRef Mukherjee, A., Dey, N., Kausar, N., Ashour, A. S., Taiar, R., & Hassanien, A. E. (2016). A disaster management specific mobility model for flying ad-hoc network. International Journal of Rough Sets and Data Analysis (IJRSDA), 3(3), 72–103.CrossRef
26.
go back to reference Hayat, S., Yanmaz, E., & Muzaffar, R. (2016). Survey on unmanned aerial vehicle networks for civil applications: A communications viewpoint. IEEE Communications Surveys Tutorials, 18(4), 2624–2661.CrossRef Hayat, S., Yanmaz, E., & Muzaffar, R. (2016). Survey on unmanned aerial vehicle networks for civil applications: A communications viewpoint. IEEE Communications Surveys Tutorials, 18(4), 2624–2661.CrossRef
27.
go back to reference He, R., Ai, B., Stüber, G. L., & Zhong, Z. (2017). Non-stationary mobile-to-mobile channel modeling using the Gauss–Markov mobility model. In 2017 9th international conference on wireless communications and signal processing (WCSP) (pp. 1–6). IEEE, 2017. He, R., Ai, B., Stüber, G. L., & Zhong, Z. (2017). Non-stationary mobile-to-mobile channel modeling using the Gauss–Markov mobility model. In 2017 9th international conference on wireless communications and signal processing (WCSP) (pp. 1–6). IEEE, 2017.
28.
go back to reference Broyles, D., Jabbar, A., & Sterbenz, J. P. G. (2010). Design and analysis of a 3–D Gauss–Markov mobility model for highly-dynamic airborne networks. In Proceedings of the international telemetering conference (ITC), (San Diego, CA). 2010. Broyles, D., Jabbar, A., & Sterbenz, J. P. G. (2010). Design and analysis of a 3–D Gauss–Markov mobility model for highly-dynamic airborne networks. In Proceedings of the international telemetering conference (ITC), (San Diego, CA). 2010.
29.
go back to reference Li, X., Zhang, T., & Li, J. (2017). A particle swarm mobility model for flying ad hoc networks. In GLOBECOM 2017–2017 IEEE global communications conference (pp. 1–6). IEEE, 2017. Li, X., Zhang, T., & Li, J. (2017). A particle swarm mobility model for flying ad hoc networks. In GLOBECOM 20172017 IEEE global communications conference (pp. 1–6). IEEE, 2017.
30.
go back to reference Li, X., & Zhang, T. (2016). STGM: A spatiotemporally correlated group mobility model for flying ad hoc networks. In International conference on communications and networking in China (pp. 391–400). Cham: Springer, 2016. Li, X., & Zhang, T. (2016). STGM: A spatiotemporally correlated group mobility model for flying ad hoc networks. In International conference on communications and networking in China (pp. 391–400). Cham: Springer, 2016.
31.
go back to reference Bouachir, O., Abrassart, A., Garcia, F., & Larrieu, N. (2014). A mobility model for UAV ad hoc network. In 2014 international conference on unmanned aircraft systems (ICUAS) (pp. 383–388). IEEE, 2014. Bouachir, O., Abrassart, A., Garcia, F., & Larrieu, N. (2014). A mobility model for UAV ad hoc network. In 2014 international conference on unmanned aircraft systems (ICUAS) (pp. 383–388). IEEE, 2014.
32.
go back to reference Radu, D., Cretu, A., Parrein, B., Yi, J., Avram, C., & Aştilean, A. (2018). Flying ad hoc network for emergency applications connected to a fog system. In International conference on emerging internetworking, data & web technologies (pp. 675–686). Cham: Springer, 2018. Radu, D., Cretu, A., Parrein, B., Yi, J., Avram, C., & Aştilean, A. (2018). Flying ad hoc network for emergency applications connected to a fog system. In International conference on emerging internetworking, data & web technologies (pp. 675–686). Cham: Springer, 2018.
33.
go back to reference Rosati, S., Krużelecki, K., Heitz, G., Floreano, D., & Rimoldi, B. (2016). Dynamic routing for flying ad hoc networks. IEEE Transactions on Vehicular Technology, 65(3), 1690–1700.CrossRef Rosati, S., Krużelecki, K., Heitz, G., Floreano, D., & Rimoldi, B. (2016). Dynamic routing for flying ad hoc networks. IEEE Transactions on Vehicular Technology, 65(3), 1690–1700.CrossRef
34.
go back to reference Le, M., Park, J.-S., & Gerla, M. (2006). UAV assisted disruption tolerant routing. In Military communications conference, 2006. MILCOM 2006. IEEE (pp. 1–5). IEEE, 2006. Le, M., Park, J.-S., & Gerla, M. (2006). UAV assisted disruption tolerant routing. In Military communications conference, 2006. MILCOM 2006. IEEE (pp. 1–5). IEEE, 2006.
35.
go back to reference Messous, M.-A., Senouci, S.-M., & Sedjelmaci, H. (2016). Network connectivity and area coverage for UAV fleet mobility model with energy constraint. In Wireless communications and networking conference (WCNC), 2016 IEEE (pp. 1–6). IEEE, 2016. Messous, M.-A., Senouci, S.-M., & Sedjelmaci, H. (2016). Network connectivity and area coverage for UAV fleet mobility model with energy constraint. In Wireless communications and networking conference (WCNC), 2016 IEEE (pp. 1–6). IEEE, 2016.
36.
go back to reference Zacarias, I., Gaspary, L. P., Kohl, A., Fernandes, R. Q., Stocchero, J. M., & de Freitas, E. P. (2017). Combining software-defined and delay-tolerant approaches in last-mile tactical edge networking. IEEE Communications Magazine, 55(10), 22–29.CrossRef Zacarias, I., Gaspary, L. P., Kohl, A., Fernandes, R. Q., Stocchero, J. M., & de Freitas, E. P. (2017). Combining software-defined and delay-tolerant approaches in last-mile tactical edge networking. IEEE Communications Magazine, 55(10), 22–29.CrossRef
37.
go back to reference Sánchez-García, J., Reina, D. G., & Toral, S. L. (2019). A distributed PSO-based exploration algorithm for a UAV network assisting a disaster scenario. Future Generation Computer Systems, 90, 129–148.CrossRef Sánchez-García, J., Reina, D. G., & Toral, S. L. (2019). A distributed PSO-based exploration algorithm for a UAV network assisting a disaster scenario. Future Generation Computer Systems, 90, 129–148.CrossRef
38.
go back to reference Karmakar, G., Kamruzzaman, J., & Nowsheen, N. (2018). An efficient data delivery mechanism for AUV-based Ad hoc UASNs. Future Generation Computer Systems, 86, 1193–1208.CrossRef Karmakar, G., Kamruzzaman, J., & Nowsheen, N. (2018). An efficient data delivery mechanism for AUV-based Ad hoc UASNs. Future Generation Computer Systems, 86, 1193–1208.CrossRef
39.
go back to reference Kerrache, C. A., Barka, E., Lagraa, N., & Lakas, A. (2017). Reputation-aware energy-efficient solution for FANET monitoring. In Wireless and mobile networking conference (WMNC), 2017 10th IFIP (pp. 1–6). IEEE, 2017. Kerrache, C. A., Barka, E., Lagraa, N., & Lakas, A. (2017). Reputation-aware energy-efficient solution for FANET monitoring. In Wireless and mobile networking conference (WMNC), 2017 10th IFIP (pp. 1–6). IEEE, 2017.
40.
go back to reference De Vit, A. R. D., Marcon, C., Nunes, R. C., Webber, T., Sanchez, G., & Rolim, C. O. (2018). Energy saving on DTN using trajectory inference model. In Proceedings of the 33rd annual ACM symposium on applied computing (pp. 2132–2135). ACM, 2018. De Vit, A. R. D., Marcon, C., Nunes, R. C., Webber, T., Sanchez, G., & Rolim, C. O. (2018). Energy saving on DTN using trajectory inference model. In Proceedings of the 33rd annual ACM symposium on applied computing (pp. 2132–2135). ACM, 2018.
41.
go back to reference Zhou, H., Leung, V. C., Zhu, C., Xu, S., & Fan, J. (2017). Predicting temporal social contact patterns for data forwarding in opportunistic mobile networks. IEEE Transactions on Vehicular Technology, 66(11), 10372–10383.CrossRef Zhou, H., Leung, V. C., Zhu, C., Xu, S., & Fan, J. (2017). Predicting temporal social contact patterns for data forwarding in opportunistic mobile networks. IEEE Transactions on Vehicular Technology, 66(11), 10372–10383.CrossRef
42.
go back to reference Guo, S., He, L., Gu, Y., Jiang, B., & He, T. (2014). Opportunistic flooding in low-duty-cycle wireless sensor networks with unreliable links. IEEE Transactions on Computers, 63(11), 2787–2802.MathSciNetMATHCrossRef Guo, S., He, L., Gu, Y., Jiang, B., & He, T. (2014). Opportunistic flooding in low-duty-cycle wireless sensor networks with unreliable links. IEEE Transactions on Computers, 63(11), 2787–2802.MathSciNetMATHCrossRef
43.
go back to reference Zhang, X., Neglia, G., Kurose, J., & Towsley, D. (2007). Performance modeling of epidemic routing. Computer Networks, 51(10), 2867–2891.MATHCrossRef Zhang, X., Neglia, G., Kurose, J., & Towsley, D. (2007). Performance modeling of epidemic routing. Computer Networks, 51(10), 2867–2891.MATHCrossRef
44.
go back to reference Lindgren, A., Doria, A., Davies, E., & Grasic, S. (2012). Probabilistic routing protocol for intermittently connected networks. No. RFC 6693. 2012. Lindgren, A., Doria, A., Davies, E., & Grasic, S. (2012). Probabilistic routing protocol for intermittently connected networks. No. RFC 6693. 2012.
45.
go back to reference Spyropoulos, T., Psounis, K., & Raghavendra, C. S. (2005). Spray and wait: An efficient routing scheme for intermittently connected mobile networks. In Proceedings of the 2005 ACM SIGCOMM workshop on delay-tolerant networking (pp. 252–259). ACM, 2005. Spyropoulos, T., Psounis, K., & Raghavendra, C. S. (2005). Spray and wait: An efficient routing scheme for intermittently connected mobile networks. In Proceedings of the 2005 ACM SIGCOMM workshop on delay-tolerant networking (pp. 252–259). ACM, 2005.
46.
go back to reference Burgess, J., Gallagher, B., Jensen, D. D., & Levine, B. N. (2006). Maxprop: Routing for vehicle-based disruption-tolerant networks. In INFOCOM 2006. 25th IEEE international conference on computer communications. proceedings (pp. 1–11). IEEE, 2006. Burgess, J., Gallagher, B., Jensen, D. D., & Levine, B. N. (2006). Maxprop: Routing for vehicle-based disruption-tolerant networks. In INFOCOM 2006. 25th IEEE international conference on computer communications. proceedings (pp. 1–11). IEEE, 2006.
47.
go back to reference Camp, T., Boleng, J., & Davies, V. (2002). A survey of mobility models for ad hoc network research. Wireless Communications and Mobile Computing, 2(5), 483–502.CrossRef Camp, T., Boleng, J., & Davies, V. (2002). A survey of mobility models for ad hoc network research. Wireless Communications and Mobile Computing, 2(5), 483–502.CrossRef
48.
go back to reference González, R., Jayakumar, P., & Iagnemma, K. (2017). Stochastic mobility prediction of ground vehicles over large spatial regions: A geostatistical approach. Autonomous Robots, 41(2), 311–331.CrossRef González, R., Jayakumar, P., & Iagnemma, K. (2017). Stochastic mobility prediction of ground vehicles over large spatial regions: A geostatistical approach. Autonomous Robots, 41(2), 311–331.CrossRef
49.
go back to reference Keränen, A., Ott, J., & Kärkkäinen, T. (2009). The ONE simulator for DTN protocol evaluation. In Proceedings of the 2nd international conference on simulation tools and techniques (p. 55). ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), 2009. Keränen, A., Ott, J., & Kärkkäinen, T. (2009). The ONE simulator for DTN protocol evaluation. In Proceedings of the 2nd international conference on simulation tools and techniques (p. 55). ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), 2009.
50.
go back to reference Abdelkader, T., Naik, K., Nayak, A., Goel, N., & Srivastava, V. (2016). A performance comparison of delay-tolerant network routing protocols. IEEE Network, 30(2), 46–53.CrossRef Abdelkader, T., Naik, K., Nayak, A., Goel, N., & Srivastava, V. (2016). A performance comparison of delay-tolerant network routing protocols. IEEE Network, 30(2), 46–53.CrossRef
51.
go back to reference Cabacas, R. A., Nakamura, H., & Ra, I.-H. (2014). Energy consumption analysis of delay tolerant network routing protocols. International Journal of Software Engineering and Its Applications, 8(2), 1–10. Cabacas, R. A., Nakamura, H., & Ra, I.-H. (2014). Energy consumption analysis of delay tolerant network routing protocols. International Journal of Software Engineering and Its Applications, 8(2), 1–10.
52.
go back to reference Ahmad, K., Fathima, M., Jain, V., & Fathima, A. (2017). FUZZY-Prophet: A novel routing protocol for opportunistic network. International Journal of Information Technology, 9(2), 121–127.CrossRef Ahmad, K., Fathima, M., Jain, V., & Fathima, A. (2017). FUZZY-Prophet: A novel routing protocol for opportunistic network. International Journal of Information Technology, 9(2), 121–127.CrossRef
53.
go back to reference Ferreira, D. L., Nunes, B. A. A., & Obraczka, K. (2018). Scale-free properties of human mobility and applications to intelligent transportation systems. IEEE Transactions on Intelligent Transportation Systems, 19(11), 3736–3748.CrossRef Ferreira, D. L., Nunes, B. A. A., & Obraczka, K. (2018). Scale-free properties of human mobility and applications to intelligent transportation systems. IEEE Transactions on Intelligent Transportation Systems, 19(11), 3736–3748.CrossRef
54.
go back to reference Basta, N., ElNahas, A., Grossmann, H. P., & Abdennadher, S. (2018). Guess where I go?: A mobility predictor for smart vehicles. In Proceedings of the 17th international conference on mobile and ubiquitous multimedia (pp. 93–102). ACM, 2018. Basta, N., ElNahas, A., Grossmann, H. P., & Abdennadher, S. (2018). Guess where I go?: A mobility predictor for smart vehicles. In Proceedings of the 17th international conference on mobile and ubiquitous multimedia (pp. 93–102). ACM, 2018.
55.
go back to reference Ghouti, L. (2016). Mobility prediction in mobile ad hoc networks using neural learning machines. Simulation Modelling Practice and Theory, 66, 104–121.CrossRef Ghouti, L. (2016). Mobility prediction in mobile ad hoc networks using neural learning machines. Simulation Modelling Practice and Theory, 66, 104–121.CrossRef
Metadata
Title
Delay Tolerant Network assisted flying Ad-Hoc network scenario: modeling and analytical perspective
Authors
Amartya Mukherjee
Nilanjan Dey
Rajesh Kumar
B. K. Panigrahi
Aboul Ella Hassanien
João Manuel R. S. Tavares
Publication date
10-04-2019
Publisher
Springer US
Published in
Wireless Networks / Issue 5/2019
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-019-01987-8

Other articles of this Issue 5/2019

Wireless Networks 5/2019 Go to the issue