Skip to main content
Top
Published in: Journal of Elasticity 1/2019

11-12-2018

A Comparison Between Active Strain and Active Stress in Transversely Isotropic Hyperelastic Materials

Authors: Giulia Giantesio, Alessandro Musesti, Davide Riccobelli

Published in: Journal of Elasticity | Issue 1/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Active materials are media for which deformations can occur in absence of loads, given an external stimulus. Two approaches to the modeling of such materials are mainly used in literature, both based on the introduction of a new tensor: an additive stress \(\mathsf{P}_{\text{act}}\) in the active stress case and a multiplicative strain \(\mathsf{F}_{a}\) in the active strain one. Aim of this paper is the comparison between the two approaches on simple shears.
Considering an incompressible and transversely isotropic material, we design constitutive relations for \(\mathsf{P}_{\text{act}}\) and \(\mathsf{F}_{a}\) so that they produce the same results for a uniaxial deformation along the symmetry axis. We then study the two approaches in the case of a simple shear deformation. In a hyperelastic setting, we show that the two approaches produce different stress components along a simple shear, unless some necessary conditions on the strain energy density are fulfilled. However, such conditions are very restrictive and rule out the usual elastic strain energy functionals. Active stress and active strain therefore produce different results in shear, even if they both fit uniaxial data.
Our results show that experimental data on the stress-stretch response on uniaxial deformations are not enough to establish which activation approach can capture better the mechanics of active materials. We conclude that other types of deformations, beyond the uniaxial one, should be taken into consideration in the modeling of such materials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference Ambrosi, D., Arioli, G., Nobile, F., Quarteroni, A.: Electromechanical coupling in cardiac dynamics: the active strain approach. SIAM J. Appl. Math. 71(2), 605–621 (2011) MathSciNetMATHCrossRef Ambrosi, D., Arioli, G., Nobile, F., Quarteroni, A.: Electromechanical coupling in cardiac dynamics: the active strain approach. SIAM J. Appl. Math. 71(2), 605–621 (2011) MathSciNetMATHCrossRef
3.
go back to reference Blemker, S.S., Pinsky, P.M., Delp, S.L.: A 3D model of muscle reveals the causes of nonuniform strains in the biceps brachii. J. Biomech. 38(4), 657–665 (2005) CrossRef Blemker, S.S., Pinsky, P.M., Delp, S.L.: A 3D model of muscle reveals the causes of nonuniform strains in the biceps brachii. J. Biomech. 38(4), 657–665 (2005) CrossRef
4.
go back to reference Ehret, A.E., Böl, M., Itskov, M.: A continuum constitutive model for the active behaviour of skeletal muscle. J. Mech. Phys. Solids 59(3), 625–636 (2011) ADSMathSciNetMATHCrossRef Ehret, A.E., Böl, M., Itskov, M.: A continuum constitutive model for the active behaviour of skeletal muscle. J. Mech. Phys. Solids 59(3), 625–636 (2011) ADSMathSciNetMATHCrossRef
5.
go back to reference Giantesio, G., Musesti, A.: A continuum model of skeletal muscle tissue with loss of activation. In: Gerisch, A., Penta, R., Lang, J. (eds.) Multiscale Models in Mechano and Tumor Biology: Modeling, Homogenization, and Applications. Lecture Notes in Computational Science and Engineering, vol. 122, pp. 139–159. Springer, Berlin (2017) CrossRef Giantesio, G., Musesti, A.: A continuum model of skeletal muscle tissue with loss of activation. In: Gerisch, A., Penta, R., Lang, J. (eds.) Multiscale Models in Mechano and Tumor Biology: Modeling, Homogenization, and Applications. Lecture Notes in Computational Science and Engineering, vol. 122, pp. 139–159. Springer, Berlin (2017) CrossRef
6.
go back to reference Giantesio, G., Musesti, A.: Strain-dependent internal parameters in hyperelastic biological materials. Int. J. Non-Linear Mech. 95, 162–167 (2017) ADSCrossRef Giantesio, G., Musesti, A.: Strain-dependent internal parameters in hyperelastic biological materials. Int. J. Non-Linear Mech. 95, 162–167 (2017) ADSCrossRef
7.
go back to reference Giantesio, G., Marzocchi, A., Musesti, A.: Loss of mass and performance in skeletal muscle tissue: a continuum model. Commun. Appl. Ind. Math. 9(1), 1–19 (2018) MathSciNetMATH Giantesio, G., Marzocchi, A., Musesti, A.: Loss of mass and performance in skeletal muscle tissue: a continuum model. Commun. Appl. Ind. Math. 9(1), 1–19 (2018) MathSciNetMATH
8.
go back to reference Hawkins, D., Bey, M.: A comprehensive approach for studying muscle-tendon mechanics. ASME J. Biomech. Eng. 116, 51–55 (1994) CrossRef Hawkins, D., Bey, M.: A comprehensive approach for studying muscle-tendon mechanics. ASME J. Biomech. Eng. 116, 51–55 (1994) CrossRef
9.
go back to reference Heidlauf, T., Röhrle, O.: Modeling the chemoelectromechanical behavior of skeletal muscle using the parallel open-source software library OpenCMISS. Comput. Math. Methods Med. 2013, 1–14 (2013) MATHCrossRef Heidlauf, T., Röhrle, O.: Modeling the chemoelectromechanical behavior of skeletal muscle using the parallel open-source software library OpenCMISS. Comput. Math. Methods Med. 2013, 1–14 (2013) MATHCrossRef
10.
go back to reference Heidlauf, T., Röhrle, O.: On the treatment of active behaviour in continuum muscle mechanics. PAMM 13(1), 71–72 (2013) MATHCrossRef Heidlauf, T., Röhrle, O.: On the treatment of active behaviour in continuum muscle mechanics. PAMM 13(1), 71–72 (2013) MATHCrossRef
11.
go back to reference Heidlauf, T., Röhrle, O.: A multiscale chemo-electro-mechanical skeletal muscle model to analyze muscle contraction and force generation for different muscle fiber arrangements. Front. Physiol. 5, 498 (2014) CrossRef Heidlauf, T., Röhrle, O.: A multiscale chemo-electro-mechanical skeletal muscle model to analyze muscle contraction and force generation for different muscle fiber arrangements. Front. Physiol. 5, 498 (2014) CrossRef
12.
go back to reference Hernández-Gascón, B., Grasa, J., Calvo, B., Rodríguez, J.: A 3D electro-mechanical continuum model for simulating skeletal muscle contraction. J. Theor. Biol. 335, 108–118 (2013) MATHCrossRef Hernández-Gascón, B., Grasa, J., Calvo, B., Rodríguez, J.: A 3D electro-mechanical continuum model for simulating skeletal muscle contraction. J. Theor. Biol. 335, 108–118 (2013) MATHCrossRef
13.
14.
15.
go back to reference Martins, J., Pires, E., Salvado, R., Dinis, P.: A numerical model of passive and active behavior of skeletal muscles. Comput. Methods Appl. Mech. Eng. 151(3–4), 419–433 (1998) ADSMATHCrossRef Martins, J., Pires, E., Salvado, R., Dinis, P.: A numerical model of passive and active behavior of skeletal muscles. Comput. Methods Appl. Mech. Eng. 151(3–4), 419–433 (1998) ADSMATHCrossRef
16.
go back to reference Morrow, D.A., Donahue, T.L.H., Odegard, G.M., Kaufman, K.R.: Transversely isotropic tensile material properties of skeletal muscle tissue. J. Mech. Behav. Biomed. Mater. 3(1), 124–129 (2010) CrossRef Morrow, D.A., Donahue, T.L.H., Odegard, G.M., Kaufman, K.R.: Transversely isotropic tensile material properties of skeletal muscle tissue. J. Mech. Behav. Biomed. Mater. 3(1), 124–129 (2010) CrossRef
18.
go back to reference Neff, P.: Some results concerning the mathematical treatment of finite plasticity. In: Deformation and Failure in Metallic Materials, pp. 251–274. Springer, Berlin (2003) CrossRef Neff, P.: Some results concerning the mathematical treatment of finite plasticity. In: Deformation and Failure in Metallic Materials, pp. 251–274. Springer, Berlin (2003) CrossRef
19.
go back to reference Odegard, G.M., Haut Donahue, T.L., Morrow, D.A., Kaufman, K.R.: Constitutive modeling of skeletal muscle tissue with an explicit strain-energy function. J. Biomech. Eng. 130, 061017 (2008) CrossRef Odegard, G.M., Haut Donahue, T.L., Morrow, D.A., Kaufman, K.R.: Constitutive modeling of skeletal muscle tissue with an explicit strain-energy function. J. Biomech. Eng. 130, 061017 (2008) CrossRef
21.
go back to reference Pathmanathan, P., Chapman, S.J., Gavaghan, D.J., Whiteley, J.P.: Cardiac electromechanics: the effect of contraction model on the mathematical problem and accuracy of the numerical scheme. Q. J. Mech. Appl. Math. 63(3), 375 (2010) MathSciNetMATHCrossRef Pathmanathan, P., Chapman, S.J., Gavaghan, D.J., Whiteley, J.P.: Cardiac electromechanics: the effect of contraction model on the mathematical problem and accuracy of the numerical scheme. Q. J. Mech. Appl. Math. 63(3), 375 (2010) MathSciNetMATHCrossRef
22.
go back to reference Pezzuto, S., Ambrosi, D., Quarteroni, A.: An orthotropic active-strain model for the myocardium mechanics and its numerical approximation. Eur. J. Mech. A, Solids 48, 83–96 (2014) ADSMathSciNetMATHCrossRef Pezzuto, S., Ambrosi, D., Quarteroni, A.: An orthotropic active-strain model for the myocardium mechanics and its numerical approximation. Eur. J. Mech. A, Solids 48, 83–96 (2014) ADSMathSciNetMATHCrossRef
23.
go back to reference Rossi, S., Ruiz-Baier, R., Pavarino, L.F., Quarteroni, A.: Orthotropic active strain models for the numerical simulation of cardiac biomechanics. Int. J. Numer. Methods Biomed. Eng. 28(6–7), 761–788 (2012) MathSciNetCrossRef Rossi, S., Ruiz-Baier, R., Pavarino, L.F., Quarteroni, A.: Orthotropic active strain models for the numerical simulation of cardiac biomechanics. Int. J. Numer. Methods Biomed. Eng. 28(6–7), 761–788 (2012) MathSciNetCrossRef
25.
go back to reference Weickenmeier, J., Itskov, M., Mazza, E., Jabareen, M.: A physically motivated constitutive model for 3D numerical simulation of skeletal muscles. Int. J. Numer. Methods Biomed. Eng. 30(5), 545–562 (2014) MathSciNetCrossRef Weickenmeier, J., Itskov, M., Mazza, E., Jabareen, M.: A physically motivated constitutive model for 3D numerical simulation of skeletal muscles. Int. J. Numer. Methods Biomed. Eng. 30(5), 545–562 (2014) MathSciNetCrossRef
26.
go back to reference Wilkie, D.R.: The mechanical properties of muscle. Br. Med. Bull. 12(3), 177–182 (1956) CrossRef Wilkie, D.R.: The mechanical properties of muscle. Br. Med. Bull. 12(3), 177–182 (1956) CrossRef
Metadata
Title
A Comparison Between Active Strain and Active Stress in Transversely Isotropic Hyperelastic Materials
Authors
Giulia Giantesio
Alessandro Musesti
Davide Riccobelli
Publication date
11-12-2018
Publisher
Springer Netherlands
Published in
Journal of Elasticity / Issue 1/2019
Print ISSN: 0374-3535
Electronic ISSN: 1573-2681
DOI
https://doi.org/10.1007/s10659-018-9708-z

Other articles of this Issue 1/2019

Journal of Elasticity 1/2019 Go to the issue

Premium Partners