Skip to main content
Top
Published in: Journal of Elasticity 1/2019

11-12-2018

Helmholtz Decomposition and Boundary Element Method Applied to Dynamic Linear Elastic Problems

Authors: Evert Klaseboer, Qiang Sun, Derek Y. C. Chan

Published in: Journal of Elasticity | Issue 1/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The displacement field for three dimensional dynamic elasticity problems in the frequency domain can be decomposed into a sum of a longitudinal and a transversal part known as a Helmholtz decomposition. The Cartesian components of both the longitudinal and transverse fields satisfy scalar Helmholtz equations that can be solved using a desingularized boundary element method (BEM) framework. The curl free longitudinal and divergence free transversal conditions can also be cast as additional scalar Helmholtz equations. When compared to other BEM implementations, the current framework leads to smaller matrix dimensions and a simpler conceptual approach. The numerical implementation of this approach is benchmarked against the 3D elastic wave field generated by a rigid vibrating sphere embedded in an infinite linear elastic medium for which the analytical solution has been derived. Examples of focused 3D elastic waves generated by a vibrating bowl-shaped rigid object with convex and concave surfaces are also considered. In the static zero frequency limit, the Helmholtz decomposition becomes non-unique, and both the longitudinal and transverse components contain divergent terms that are proportional to the inverse square of the frequency. However, these divergences are equal and opposite so that their sum, that is the displacement field that reflects the physics of the problem, remains finite in the zero frequency limit.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Iturrarán-Viveros, U., Sánchez-Sesma, F.J., Luzón, F.: Boundary element simulation of scattering of elastic waves by 3-D cracks. J. Appl. Geophys. 64, 70–82 (2008) ADSCrossRef Iturrarán-Viveros, U., Sánchez-Sesma, F.J., Luzón, F.: Boundary element simulation of scattering of elastic waves by 3-D cracks. J. Appl. Geophys. 64, 70–82 (2008) ADSCrossRef
2.
go back to reference Beskos, D.E.: Boundary element methods in dynamic analysis. Appl. Mech. Rev. 40, 1–23 (1987) ADSCrossRef Beskos, D.E.: Boundary element methods in dynamic analysis. Appl. Mech. Rev. 40, 1–23 (1987) ADSCrossRef
3.
go back to reference Dual, J., Schwarz, T.: Acoustofluidics 3: continuum mechanics for ultrasonic particle manipulation. Lab Chip 12, 244–252 (2012) CrossRef Dual, J., Schwarz, T.: Acoustofluidics 3: continuum mechanics for ultrasonic particle manipulation. Lab Chip 12, 244–252 (2012) CrossRef
4.
go back to reference Sternberg, E.: On the integration of the equations of motion in the classical theory of elasticity. Arch. Ration. Mech. Anal. 6, 34–50 (1960) MathSciNetCrossRef Sternberg, E.: On the integration of the equations of motion in the classical theory of elasticity. Arch. Ration. Mech. Anal. 6, 34–50 (1960) MathSciNetCrossRef
5.
go back to reference Gurtin, M.E.: The Linear Theory of Elasticity. Springer, Berlin (1973) Gurtin, M.E.: The Linear Theory of Elasticity. Springer, Berlin (1973)
6.
go back to reference Cruse, T.A., Rizzo, F.J.: A direct formulation and numerical solution of the general transient elastodynamic problem. I. J. Math. Anal. Appl. 22, 244–259 (1968) CrossRef Cruse, T.A., Rizzo, F.J.: A direct formulation and numerical solution of the general transient elastodynamic problem. I. J. Math. Anal. Appl. 22, 244–259 (1968) CrossRef
7.
go back to reference Cruse, T.A.: A direct formulation and numerical solution of the general transient elastodynamic problem. II. J. Math. Anal. Appl. 22, 341–355 (1968) CrossRef Cruse, T.A.: A direct formulation and numerical solution of the general transient elastodynamic problem. II. J. Math. Anal. Appl. 22, 341–355 (1968) CrossRef
8.
go back to reference Rizzo, F.J., Shippy, D.J., Rezayat, M.: A boundary integral equation method for radiation and scattering of elastic waves in three dimensions. Int. J. Numer. Methods Eng. 21, 115–129 (1985) CrossRef Rizzo, F.J., Shippy, D.J., Rezayat, M.: A boundary integral equation method for radiation and scattering of elastic waves in three dimensions. Int. J. Numer. Methods Eng. 21, 115–129 (1985) CrossRef
9.
go back to reference Beskos, D.E.: Boundary element methods in dynamic analysis: part II (1986–1996). Appl. Mech. Rev. 50, 149–197 (1997) ADSCrossRef Beskos, D.E.: Boundary element methods in dynamic analysis: part II (1986–1996). Appl. Mech. Rev. 50, 149–197 (1997) ADSCrossRef
10.
go back to reference Bu, F., Lin, J., Reitich, F.: A fast and high-order method for the three-dimensional elastic wave scattering problem. J. Comput. Phys. 258, 856–870 (2014) ADSMathSciNetCrossRef Bu, F., Lin, J., Reitich, F.: A fast and high-order method for the three-dimensional elastic wave scattering problem. J. Comput. Phys. 258, 856–870 (2014) ADSMathSciNetCrossRef
11.
go back to reference Sun, Q., Klaseboer, E., Khoo, B.C., Chan, D.Y.C.: Boundary regularized integral equation formulation of the Helmholtz equation in acoustics. R. Soc. Open Sci. 2, 140520 (2015) ADSMathSciNetCrossRef Sun, Q., Klaseboer, E., Khoo, B.C., Chan, D.Y.C.: Boundary regularized integral equation formulation of the Helmholtz equation in acoustics. R. Soc. Open Sci. 2, 140520 (2015) ADSMathSciNetCrossRef
12.
go back to reference Landau, L.D., Lifshitz, E.M.: Theory of Elasticity. Pergamon Press Ltd., Oxford (1959) MATH Landau, L.D., Lifshitz, E.M.: Theory of Elasticity. Pergamon Press Ltd., Oxford (1959) MATH
13.
go back to reference Klaseboer, E., Rosalez-Fernandez, C., Khoo, B.C.: A note on true desingularization of boundary element methods for three-dimensional potential problems. Eng. Anal. Bound. Elem. 33, 796–801 (2009) MathSciNetCrossRef Klaseboer, E., Rosalez-Fernandez, C., Khoo, B.C.: A note on true desingularization of boundary element methods for three-dimensional potential problems. Eng. Anal. Bound. Elem. 33, 796–801 (2009) MathSciNetCrossRef
14.
go back to reference Harrington, R.F.: Time-Harmonic Electromagnetic Fields p. 38. John Wiley & Sons, Inc., New York (2001) CrossRef Harrington, R.F.: Time-Harmonic Electromagnetic Fields p. 38. John Wiley & Sons, Inc., New York (2001) CrossRef
15.
go back to reference Klaseboer, E., Sun, Q., Chan, D.Y.C.: Nonsingular field-only surface integral equations for electromagnetic scattering. IEEE Trans. Antennas Propag. 65, 972–977 (2017) ADSCrossRef Klaseboer, E., Sun, Q., Chan, D.Y.C.: Nonsingular field-only surface integral equations for electromagnetic scattering. IEEE Trans. Antennas Propag. 65, 972–977 (2017) ADSCrossRef
16.
go back to reference Sun, Q., Klaseboer, E., Chan, D.Y.C.: Robust multiscale field-only formulation of electromagnetic scattering. Phys. Rev. B 95, 045137 (2017) ADSCrossRef Sun, Q., Klaseboer, E., Chan, D.Y.C.: Robust multiscale field-only formulation of electromagnetic scattering. Phys. Rev. B 95, 045137 (2017) ADSCrossRef
17.
go back to reference Lautrup, B.: Physics of Continuous Matter, vol. 12, 2nd edn. p. 204. CRC Press/Taylor and Francis, Boca Raton (2011). Section 12.6 MATH Lautrup, B.: Physics of Continuous Matter, vol. 12, 2nd edn. p. 204. CRC Press/Taylor and Francis, Boca Raton (2011). Section 12.6 MATH
18.
go back to reference Klaseboer, E., Sun, Q., Chan, D.Y.C.: Non-singular boundary integral methods for fluid mechanics applications. J. Fluid Mech. 696, 468–478 (2012) ADSMathSciNetCrossRef Klaseboer, E., Sun, Q., Chan, D.Y.C.: Non-singular boundary integral methods for fluid mechanics applications. J. Fluid Mech. 696, 468–478 (2012) ADSMathSciNetCrossRef
19.
go back to reference Becker, A.A.: The Boundary Element Method in Engineering: A Complete Course. McGraw-Hill International (UK) Limited, London (1992) Becker, A.A.: The Boundary Element Method in Engineering: A Complete Course. McGraw-Hill International (UK) Limited, London (1992)
20.
go back to reference Kirkup, S.: The Boundary Element Method in Acoustics (1998). ISBN 0-953-4031-06 Kirkup, S.: The Boundary Element Method in Acoustics (1998). ISBN 0-953-4031-06
21.
go back to reference Klaseboer, E., Sun, Q., Chan, D.Y.C.: Field-only integral equation method for time domain scattering of electromagnetic pulses. Appl. Opt. 56, 9377–9383 (2017) ADSCrossRef Klaseboer, E., Sun, Q., Chan, D.Y.C.: Field-only integral equation method for time domain scattering of electromagnetic pulses. Appl. Opt. 56, 9377–9383 (2017) ADSCrossRef
22.
go back to reference Klaseboer, E., Sepehrirahnama, S., Chan, D.Y.C., Klaseboer, E.: Space-time domain solutions of the wave equation by a non-singular boundary integral method and Fourier transform. J. Acoust. Soc. Am. 142, 697–707 (2017) ADSCrossRef Klaseboer, E., Sepehrirahnama, S., Chan, D.Y.C., Klaseboer, E.: Space-time domain solutions of the wave equation by a non-singular boundary integral method and Fourier transform. J. Acoust. Soc. Am. 142, 697–707 (2017) ADSCrossRef
23.
go back to reference Chew, W.C., Tong, M.S., Hu, B.: Integral Equation Methods for Electromagnetic and Elastic Waves. Morgan & Claypool, San Rafael (2009) Chew, W.C., Tong, M.S., Hu, B.: Integral Equation Methods for Electromagnetic and Elastic Waves. Morgan & Claypool, San Rafael (2009)
Metadata
Title
Helmholtz Decomposition and Boundary Element Method Applied to Dynamic Linear Elastic Problems
Authors
Evert Klaseboer
Qiang Sun
Derek Y. C. Chan
Publication date
11-12-2018
Publisher
Springer Netherlands
Published in
Journal of Elasticity / Issue 1/2019
Print ISSN: 0374-3535
Electronic ISSN: 1573-2681
DOI
https://doi.org/10.1007/s10659-018-09710-y

Other articles of this Issue 1/2019

Journal of Elasticity 1/2019 Go to the issue

Premium Partners