Skip to main content
Top
Published in: Journal of Elasticity 1/2019

18-12-2018

Experimental Study of Elastic Constants of a Dense Foam with Weak Cosserat Coupling

Authors: Z. Rueger, R. S. Lakes

Published in: Journal of Elasticity | Issue 1/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A dense closed cell foam is studied to determine which continuum theory of elasticity is applicable. Size effects inconsistent with classical elasticity are observed. The material exhibits a characteristic length scale considerably larger, by more than a factor 6, than the largest observable structure size. The Cosserat coupling number \(N\) is shown to be small, via measurements of size effects in square section bars, comparison with size effects in round section bars, and determination of warp of a square section bar in torsion. For this material, the couple stress theory is excluded and the modified couple stress theory is excluded. Theories that force constants to their thermodynamic limits do not apply to this foam. The role of other generalized continuum theories is considered.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Cosserat, E., Cosserat, F.: Theorie des Corps Deformables. Hermann et Fils, Paris (1909) MATH Cosserat, E., Cosserat, F.: Theorie des Corps Deformables. Hermann et Fils, Paris (1909) MATH
2.
go back to reference Mindlin, R.D.: Stress functions for a Cosserat continuum. Int. J. Solids Struct. 1, 265–271 (1965) CrossRef Mindlin, R.D.: Stress functions for a Cosserat continuum. Int. J. Solids Struct. 1, 265–271 (1965) CrossRef
3.
go back to reference Eringen, A.C.: Theory of micropolar elasticity. In: Liebowitz, H. (ed.) Fracture, vol. 1, pp. 621–729. Academic Press, New York (1968) Eringen, A.C.: Theory of micropolar elasticity. In: Liebowitz, H. (ed.) Fracture, vol. 1, pp. 621–729. Academic Press, New York (1968)
4.
go back to reference Gauthier, R.D., Jahsman, W.E.: A quest for micropolar elastic constants. J. Appl. Mech. 42, 369–374 (1975) ADSCrossRef Gauthier, R.D., Jahsman, W.E.: A quest for micropolar elastic constants. J. Appl. Mech. 42, 369–374 (1975) ADSCrossRef
5.
go back to reference Krishna Reddy, G.V., Venkatasubramanian, N.K.: On the flexural rigidity of a micropolar elastic circular cylinder. J. Appl. Mech. 45, 429–431 (1978) ADSCrossRef Krishna Reddy, G.V., Venkatasubramanian, N.K.: On the flexural rigidity of a micropolar elastic circular cylinder. J. Appl. Mech. 45, 429–431 (1978) ADSCrossRef
6.
go back to reference Lakes, R.S., Drugan, W.J.: Bending of a Cosserat elastic bar of square cross section—theory and experiment. J. Appl. Mech. 82(9), 091002 (2015) (8 pages) ADSCrossRef Lakes, R.S., Drugan, W.J.: Bending of a Cosserat elastic bar of square cross section—theory and experiment. J. Appl. Mech. 82(9), 091002 (2015) (8 pages) ADSCrossRef
7.
go back to reference Drugan, W.J., Lakes, R.S.: Torsion of a Cosserat elastic bar with square cross section: theory and experiment. Z. Angew. Math. Phys. 69(2), 24 (2018) MathSciNetCrossRef Drugan, W.J., Lakes, R.S.: Torsion of a Cosserat elastic bar with square cross section: theory and experiment. Z. Angew. Math. Phys. 69(2), 24 (2018) MathSciNetCrossRef
8.
go back to reference Mindlin, R.D.: Effect of couple stresses on stress concentrations. Exp. Mech. 3, 1–7 (1963) CrossRef Mindlin, R.D.: Effect of couple stresses on stress concentrations. Exp. Mech. 3, 1–7 (1963) CrossRef
9.
go back to reference Koiter, W.T.: Couple-Stresses in the theory of elasticity, Parts I and II. Proc. K. Ned. Akad. Wet. 67, 17–44 (1964) MathSciNetMATH Koiter, W.T.: Couple-Stresses in the theory of elasticity, Parts I and II. Proc. K. Ned. Akad. Wet. 67, 17–44 (1964) MathSciNetMATH
10.
go back to reference Hadjesfandiari, A.R., Dargush, G.F.: Couple stress theory for solids. Int. J. Solids Struct. 48, 2496–2510 (2011) CrossRef Hadjesfandiari, A.R., Dargush, G.F.: Couple stress theory for solids. Int. J. Solids Struct. 48, 2496–2510 (2011) CrossRef
11.
go back to reference Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002) CrossRef Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002) CrossRef
12.
go back to reference Neff, P., Jeong, J., Fischle, A.: Stable identification of linear isotropic Cosserat parameters: bounded stiffness in bending and torsion implies conformal invariance of curvature. Acta Mech. 211(3–4), 237–249 (2010) CrossRef Neff, P., Jeong, J., Fischle, A.: Stable identification of linear isotropic Cosserat parameters: bounded stiffness in bending and torsion implies conformal invariance of curvature. Acta Mech. 211(3–4), 237–249 (2010) CrossRef
13.
go back to reference Lakes, R.S.: Experimental microelasticity of two porous solids. Int. J. Solids Struct. 22, 55–63 (1986) CrossRef Lakes, R.S.: Experimental microelasticity of two porous solids. Int. J. Solids Struct. 22, 55–63 (1986) CrossRef
14.
go back to reference Rueger, Z., Lakes, R.S.: Experimental Cosserat elasticity in open cell polymer foam. Philos. Mag. 96, 93–111 (2016) ADSCrossRef Rueger, Z., Lakes, R.S.: Experimental Cosserat elasticity in open cell polymer foam. Philos. Mag. 96, 93–111 (2016) ADSCrossRef
15.
go back to reference Rueger, Z., Lakes, R.S.: Cosserat elasticity of negative Poisson’s ratio foam: experiment. Smart Mater. Struct. 25, 054004 (2016), 8 pp. ADSCrossRef Rueger, Z., Lakes, R.S.: Cosserat elasticity of negative Poisson’s ratio foam: experiment. Smart Mater. Struct. 25, 054004 (2016), 8 pp. ADSCrossRef
16.
go back to reference Rueger, Z., Lakes, R.S.: Strong Cosserat elasticity in a transversely isotropic polymer lattice. Phys. Rev. Lett. 120, 065501 (2018) ADSCrossRef Rueger, Z., Lakes, R.S.: Strong Cosserat elasticity in a transversely isotropic polymer lattice. Phys. Rev. Lett. 120, 065501 (2018) ADSCrossRef
17.
go back to reference Merkel, A., Tournat, V.: Experimental evidence of rotational elastic waves in granular phononic crystals. Phys. Rev. Lett. 107(22), 225502 (2011) ADSCrossRef Merkel, A., Tournat, V.: Experimental evidence of rotational elastic waves in granular phononic crystals. Phys. Rev. Lett. 107(22), 225502 (2011) ADSCrossRef
18.
go back to reference Spadoni, A., Ruzzene, M.: Elasto-static micropolar behavior of a chiral auxetic lattice. J. Mech. Phys. Solids 60, 156–171 (2012) ADSCrossRef Spadoni, A., Ruzzene, M.: Elasto-static micropolar behavior of a chiral auxetic lattice. J. Mech. Phys. Solids 60, 156–171 (2012) ADSCrossRef
19.
go back to reference Beveridge, A.J., Wheel, M.A., Nash, D.H.: The micropolar elastic behaviour of model macroscopically heterogeneous materials. Int. J. Solids Struct. 50, 246–255 (2013) CrossRef Beveridge, A.J., Wheel, M.A., Nash, D.H.: The micropolar elastic behaviour of model macroscopically heterogeneous materials. Int. J. Solids Struct. 50, 246–255 (2013) CrossRef
21.
go back to reference Bigoni, D., Drugan, W.J.: Analytical derivation of Cosserat moduli via homogenization of heterogeneous elastic materials. J. Appl. Mech. 74, 741–753 (2007) ADSMathSciNetCrossRef Bigoni, D., Drugan, W.J.: Analytical derivation of Cosserat moduli via homogenization of heterogeneous elastic materials. J. Appl. Mech. 74, 741–753 (2007) ADSMathSciNetCrossRef
22.
go back to reference Gibson, L.J., Ashby, M.F.: Cellular Solids, 2nd edn. Pergamon, Oxford, Cambridge (1997) CrossRef Gibson, L.J., Ashby, M.F.: Cellular Solids, 2nd edn. Pergamon, Oxford, Cambridge (1997) CrossRef
23.
go back to reference Sokolnikoff, I.S.: Theory of Elasticity. Krieger, Malabar (1983) MATH Sokolnikoff, I.S.: Theory of Elasticity. Krieger, Malabar (1983) MATH
24.
go back to reference Weiner, J.H.: Statistical Mechanics of Elasticity. Wiley, New York (1983) MATH Weiner, J.H.: Statistical Mechanics of Elasticity. Wiley, New York (1983) MATH
25.
go back to reference Timoshenko, S.P.: History of Strength of Materials. Dover, New York (1983) Timoshenko, S.P.: History of Strength of Materials. Dover, New York (1983)
26.
go back to reference Drumheller, D.S., Sutherland, H.J.: A lattice model for stress wave propagation in composite materials. J. Appl. Mech. 40(1), 149–154 (1973) ADSCrossRef Drumheller, D.S., Sutherland, H.J.: A lattice model for stress wave propagation in composite materials. J. Appl. Mech. 40(1), 149–154 (1973) ADSCrossRef
27.
go back to reference Cowin, S.C., Nunziato, J.W.: Linear elastic materials with voids. J. Elast. 13, 125–147 (1983) CrossRef Cowin, S.C., Nunziato, J.W.: Linear elastic materials with voids. J. Elast. 13, 125–147 (1983) CrossRef
28.
go back to reference Hütter, G., Mülich, U., Kuna, M.: Micromorphic homogenizationn of a porous medium: elastic behavior and quasi-brittle damage. Contin. Mech. Thermodyn. 27, 1059–1072 (2015) ADSMathSciNetCrossRef Hütter, G., Mülich, U., Kuna, M.: Micromorphic homogenizationn of a porous medium: elastic behavior and quasi-brittle damage. Contin. Mech. Thermodyn. 27, 1059–1072 (2015) ADSMathSciNetCrossRef
29.
go back to reference Hütter, G.: Application of a microstrain continuum to size effects in bending and torsion of foams. Int. J. Eng. Sci. 101, 81–91 (2016) CrossRef Hütter, G.: Application of a microstrain continuum to size effects in bending and torsion of foams. Int. J. Eng. Sci. 101, 81–91 (2016) CrossRef
30.
go back to reference Anderson, W.B., Lakes, R.S.: Size effects due to Cosserat elasticity and surface damage in closed-cell polymethacrylimide foam. J. Mater. Sci. 29, 6413–6419 (1994) ADSCrossRef Anderson, W.B., Lakes, R.S.: Size effects due to Cosserat elasticity and surface damage in closed-cell polymethacrylimide foam. J. Mater. Sci. 29, 6413–6419 (1994) ADSCrossRef
31.
go back to reference Lakes, R.S., Gorman, D., Bonfield, W.: Holographic screening method for microelastic solids. J. Mater. Sci. 20, 2882–2888 (1985) ADSCrossRef Lakes, R.S., Gorman, D., Bonfield, W.: Holographic screening method for microelastic solids. J. Mater. Sci. 20, 2882–2888 (1985) ADSCrossRef
32.
go back to reference Eringen, A.C.: Theory of thermo-microstretch elastic solids. Int. J. Eng. Sci. 28(12), 1291–1301 (1990) CrossRef Eringen, A.C.: Theory of thermo-microstretch elastic solids. Int. J. Eng. Sci. 28(12), 1291–1301 (1990) CrossRef
34.
go back to reference Eringen, A.C., Suhubi, E.S.: Nonlinear theory of simple micro-elastic solids—I. Int. J. Eng. Sci. 2(2), 189–203 (1964) MathSciNetCrossRef Eringen, A.C., Suhubi, E.S.: Nonlinear theory of simple micro-elastic solids—I. Int. J. Eng. Sci. 2(2), 189–203 (1964) MathSciNetCrossRef
35.
go back to reference Kinra, V.K., Anand, A.: Wave propagation in a random particulate composite at long and short wavelengths. Int. J. Solids Struct. 18(5), 367–380 (1982) CrossRef Kinra, V.K., Anand, A.: Wave propagation in a random particulate composite at long and short wavelengths. Int. J. Solids Struct. 18(5), 367–380 (1982) CrossRef
36.
go back to reference Kinra, V.K., Ker, E.: An experimental investigation of pass bands and stop bands in two periodic particulate composites. Int. J. Solids Struct. 19(5), 393–410 (1983) CrossRef Kinra, V.K., Ker, E.: An experimental investigation of pass bands and stop bands in two periodic particulate composites. Int. J. Solids Struct. 19(5), 393–410 (1983) CrossRef
Metadata
Title
Experimental Study of Elastic Constants of a Dense Foam with Weak Cosserat Coupling
Authors
Z. Rueger
R. S. Lakes
Publication date
18-12-2018
Publisher
Springer Netherlands
Published in
Journal of Elasticity / Issue 1/2019
Print ISSN: 0374-3535
Electronic ISSN: 1573-2681
DOI
https://doi.org/10.1007/s10659-018-09714-8

Other articles of this Issue 1/2019

Journal of Elasticity 1/2019 Go to the issue

Premium Partners