Skip to main content
Top
Published in: Metallurgical and Materials Transactions B 4/2015

01-08-2015

A Comprehensive 3D Mathematical Model of the Electroslag Remelting Process

Authors: Xiaohua Wang, Ying Li

Published in: Metallurgical and Materials Transactions B | Issue 4/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A comprehensive 3D mathematical model was proposed to predict the electromagnetic field, the multiphase flow field, the temperature field, and the pool profile of an industrial electroslag remelting (ESR) system. Especially, the metal droplets formation and falling in the slag pool during the ESR process are taken into account using the volume of fluid method. In addition, the electromagnetic and solidification phenomena are modeled using the magnetic vector potential method and the enthalpy-porosity method, respectively. The predicted results were found to be in good agreement with experimental measurements, regarding the magnetic flux density, the pool profile, the energy consumption, and the melt rate. And the model developed in the present work has been proved to be a powerful tool to provide a useful insight into the multi-physical phenomena in the ESR system. The results show that the Joule heating is mainly distributed in the slag pool due to the lower electrical conductivity of slag, and provides the thermal energy for melting the electrode. The molten metal on the conical electrode surface is washed away by the Lorentz force and the gravity force and gradually accumulates at the electrode tip. When the drop at the electrode tip reaches the critical size, the small droplets form due to the necking effect and depart from the conical electrode tip. In the slag pool, there are two axisymmetric vortexes with downward flows under the conical electrode tip, where the Lorentz force and the falling droplets are dominant, and another two axisymmetric vortexes with downward flows near the mold surface, where the thermal buoyancy is dominant. However, in the metal pool, there are only two vortexes with downward flows at the solidification front, where a high thermal gradient exists. The slag is significantly hotter and more uniform than the metal, because of an abundant of Joule heating and intensive turbulence in the slag pool. The molten metal is directionally solidified in the water cooling copper mold and the pool profile is a shallow U-shape for the industrial scale ESR process with the ingot diameter of 360 mm, when the applied current density and frequency are 8000 A and 50 Hz, respectively.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference B. Hernandez-Morales and A. Mitchell: Ironmaking and Steelmaking, 1999, vol. 26, pp. 423–38.CrossRef B. Hernandez-Morales and A. Mitchell: Ironmaking and Steelmaking, 1999, vol. 26, pp. 423–38.CrossRef
3.
go back to reference A. H. Dilawari and J. Szekely: Metall. Trans. B, 1977, vol. 8B, pp. 227-36.CrossRef A. H. Dilawari and J. Szekely: Metall. Trans. B, 1977, vol. 8B, pp. 227-36.CrossRef
4.
5.
6.
go back to reference M. Choudhary and J. Szekely: Ironmaking and Steelmaking, 1981, vol. 7, pp.225-32. M. Choudhary and J. Szekely: Ironmaking and Steelmaking, 1981, vol. 7, pp.225-32.
7.
go back to reference M. Choudhary, J. Szekely, B. I. Medovar and Y. G. Emelyanenko: Metall. Trans. B, 1982, vol. 13B, pp. 35-43.CrossRef M. Choudhary, J. Szekely, B. I. Medovar and Y. G. Emelyanenko: Metall. Trans. B, 1982, vol. 13B, pp. 35-43.CrossRef
8.
go back to reference Y. M. Ferng, C. C. Chieng and C. Pan: Numer. Heat Tr. A, 1989, vol. 16A, pp. 429-49.CrossRef Y. M. Ferng, C. C. Chieng and C. Pan: Numer. Heat Tr. A, 1989, vol. 16A, pp. 429-49.CrossRef
9.
go back to reference K. M. Kelkar, J. Mok, S. V. Patankar and A. Mitchell: J. Phys. IV France, 2004, vol. 120, pp.421-428. K. M. Kelkar, J. Mok, S. V. Patankar and A. Mitchell: J. Phys. IV France, 2004, vol. 120, pp.421-428.
10.
go back to reference K. M. Kelkar, S. V. Patankar and A. Mitchell: LMPC 2005, Santa Fe, NM, 2005, pp. 137-144. K. M. Kelkar, S. V. Patankar and A. Mitchell: LMPC 2005, Santa Fe, NM, 2005, pp. 137-144.
11.
go back to reference K.M. Kelkar, S.V. Patankar, S.K. Srivatsa, R.S. Minisandram, D.G. Evans, J.J. de Barbadillo, and R.H. Smith: LMPC 2013, Austin 2013, pp. 3–12. K.M. Kelkar, S.V. Patankar, S.K. Srivatsa, R.S. Minisandram, D.G. Evans, J.J. de Barbadillo, and R.H. Smith: LMPC 2013, Austin 2013, pp. 3–12.
12.
go back to reference V. Weber, A. Jardy, B. Dussoubs, D. Ablitzer, S. Rybéron, V. Schmitt, S. Hans, and H. Poisson: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 271-79.CrossRef V. Weber, A. Jardy, B. Dussoubs, D. Ablitzer, S. Rybéron, V. Schmitt, S. Hans, and H. Poisson: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 271-79.CrossRef
13.
go back to reference Y. W. Dong, Z. H. Jiang, H. Liu, R. Chen and Z. W. Song: ISIJ Int., 2012, vol. 52, pp. 2226-34.CrossRef Y. W. Dong, Z. H. Jiang, H. Liu, R. Chen and Z. W. Song: ISIJ Int., 2012, vol. 52, pp. 2226-34.CrossRef
14.
go back to reference B. K. Li, F. Wang and F. Tsukihashi: ISIJ Int., 2012, vol. 52, pp. 1289-95.CrossRef B. K. Li, F. Wang and F. Tsukihashi: ISIJ Int., 2012, vol. 52, pp. 1289-95.CrossRef
15.
go back to reference B. K. Li, B. Wang and F. Tsukihashi: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1122-32.CrossRef B. K. Li, B. Wang and F. Tsukihashi: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1122-32.CrossRef
16.
go back to reference J. Yanke, K. Fezi, M. Fahrmann, and M.J.M. Krane: LMPC 2013, Austin, 2013, pp. 47–55. J. Yanke, K. Fezi, M. Fahrmann, and M.J.M. Krane: LMPC 2013, Austin, 2013, pp. 47–55.
17.
go back to reference J. Yanke and M.J.M. Krane: LMPC 2013, Austin, 2013, pp. 71–78. J. Yanke and M.J.M. Krane: LMPC 2013, Austin, 2013, pp. 71–78.
18.
go back to reference B.K. Li, R.N. Li, and B. Wang: TMS 2013, San Antonio, 2013, pp. 39–44. B.K. Li, R.N. Li, and B. Wang: TMS 2013, San Antonio, 2013, pp. 39–44.
19.
go back to reference Q. Wang, Z. He, B. K. Li and F. Tsukihashi: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 2425-41.CrossRef Q. Wang, Z. He, B. K. Li and F. Tsukihashi: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 2425-41.CrossRef
20.
go back to reference A. Rückert and H. Pfeifer: Metal 2007, Hradec nad Moravicí, Czech Republic, 2007, pp. 1–9. A. Rückert and H. Pfeifer: Metal 2007, Hradec nad Moravicí, Czech Republic, 2007, pp. 1–9.
21.
go back to reference N. Giesselmann, A. Rückert, and H. Pfeifer: 7th ECCC, Düsseldorf, 2011, Session 5. N. Giesselmann, A. Rückert, and H. Pfeifer: 7th ECCC, Düsseldorf, 2011, Session 5.
22.
go back to reference N. Giesselmann, A. Rückert, H. Pfeifer, J. Tewes, and J. Klöwer: 2nd ICRF, Milan, 2014. N. Giesselmann, A. Rückert, H. Pfeifer, J. Tewes, and J. Klöwer: 2nd ICRF, Milan, 2014.
23.
go back to reference A. Kharicha and A. Ludwig: ICMF 2010, Tampa, 2010, pp. 1–5. A. Kharicha and A. Ludwig: ICMF 2010, Tampa, 2010, pp. 1–5.
24.
go back to reference A. Kharicha, A. Ludwing, and M. Wu: LMPC 2011, Nancy, 2011, pp. 41–48. A. Kharicha, A. Ludwing, and M. Wu: LMPC 2011, Nancy, 2011, pp. 41–48.
25.
go back to reference J. U. Brackbill, D. B. Kothe and C. Zemach: J.Comput. Phys., 1992, vol. 100, pp. 335-54.CrossRef J. U. Brackbill, D. B. Kothe and C. Zemach: J.Comput. Phys., 1992, vol. 100, pp. 335-54.CrossRef
26.
go back to reference B. E. Launder and D. B. Spalding: Comp. Method. Appl. Mech. Eng., 1974, vol. 3, pp. 269-89.CrossRef B. E. Launder and D. B. Spalding: Comp. Method. Appl. Mech. Eng., 1974, vol. 3, pp. 269-89.CrossRef
27.
go back to reference B. K. Li, Q. Wang, F. Wang and M. Q. Chen: JOM, 2014, vol. 66, pp. 1153-65.CrossRef B. K. Li, Q. Wang, F. Wang and M. Q. Chen: JOM, 2014, vol. 66, pp. 1153-65.CrossRef
28.
go back to reference X. H. Wang and Y. Li: Metall. Mater. Trans. B, 2015, vol. 46, pp. 800–12.CrossRef X. H. Wang and Y. Li: Metall. Mater. Trans. B, 2015, vol. 46, pp. 800–12.CrossRef
29.
go back to reference J. Campbell: J. Met., 1970, vol. 22, pp. 23-35. J. Campbell: J. Met., 1970, vol. 22, pp. 23-35.
30.
31.
go back to reference W. Z. Li, W. Y. Wang, Y. C. Hu and Y. X. Chen: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 276-88.CrossRef W. Z. Li, W. Y. Wang, Y. C. Hu and Y. X. Chen: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 276-88.CrossRef
32.
go back to reference J. Kreyenberg and K. Schwerdtfeger: Arch. Eisenhüttenwes., 1979, vol. 1, pp. 1-6. J. Kreyenberg and K. Schwerdtfeger: Arch. Eisenhüttenwes., 1979, vol. 1, pp. 1-6.
33.
go back to reference X.H. Wang and Y. Li: J. Northeastern Uni. (Nat. Sci.), 2014, vol. 6, pp. 813–18. X.H. Wang and Y. Li: J. Northeastern Uni. (Nat. Sci.), 2014, vol. 6, pp. 813–18.
Metadata
Title
A Comprehensive 3D Mathematical Model of the Electroslag Remelting Process
Authors
Xiaohua Wang
Ying Li
Publication date
01-08-2015
Publisher
Springer US
Published in
Metallurgical and Materials Transactions B / Issue 4/2015
Print ISSN: 1073-5615
Electronic ISSN: 1543-1916
DOI
https://doi.org/10.1007/s11663-015-0342-x

Other articles of this Issue 4/2015

Metallurgical and Materials Transactions B 4/2015 Go to the issue

Premium Partners