Skip to main content
Top
Published in:

16-08-2018 | Methodologies and Application

A dynamic local cluster ratio-based band selection algorithm for hyperspectral images

Authors: Ronghua Shang, Yuyang Lan, Licheng Jiao, Rustam Stolkin

Published in: Soft Computing | Issue 17/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Hyperspectral band selection algorithms can save the computational costs during image restoration and analysis. This paper proposes a novel unsupervised band selection method, based on dynamic local cluster ratio (DLCR). The contributions of this paper can be summarized as follows. First, the similarity matrix is calculated in a novel way. Conventional approaches compute the matrix from the Euclidean distances between bands and are vulnerable to noise. Our proposed method can improve the robustness to such noise. Second, we propose an enhanced clustering strategy which clusters each band individually. Third, a dynamic ranking strategy is used to select bands iteratively. Bands that are highly correlated with each other will be prevented from being added to avoid redundancy. DLCR demonstrates improved performance on the Indian Pines and Pavia University data sets, when compared against other methods from the literature.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Chang CI (2007) Hyperspectral data exploitation: theory and applications. Wiley, Hoboken, p 2007CrossRef Chang CI (2007) Hyperspectral data exploitation: theory and applications. Wiley, Hoboken, p 2007CrossRef
go back to reference Chang CI, Wang S (2006) Constrained band selection for hyperspectral imagery. IEEE Trans Geosci Remote Sens 44(6):1575–1585CrossRef Chang CI, Wang S (2006) Constrained band selection for hyperspectral imagery. IEEE Trans Geosci Remote Sens 44(6):1575–1585CrossRef
go back to reference Chang CI, Du Q, Sun TL et al (1999) A joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification. IEEE Trans Geosci Remote Sens 37(6):2631–2641CrossRef Chang CI, Du Q, Sun TL et al (1999) A joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification. IEEE Trans Geosci Remote Sens 37(6):2631–2641CrossRef
go back to reference De Castro LN, Von Zuben FJ (2002) Learning and optimization using the clonal selection principle. IEEE Trans Evolut Comput 6(3):239–251CrossRef De Castro LN, Von Zuben FJ (2002) Learning and optimization using the clonal selection principle. IEEE Trans Evolut Comput 6(3):239–251CrossRef
go back to reference Du Q, Yang H (2008) Similarity-based unsupervised band selection for hyperspectral image analysis. IEEE Geosci Remote Sens Lett 5(4):564–568CrossRef Du Q, Yang H (2008) Similarity-based unsupervised band selection for hyperspectral image analysis. IEEE Geosci Remote Sens Lett 5(4):564–568CrossRef
go back to reference Du Q, Fowler JE, Zhu W (2009) On the impact of atmospheric correction on lossy compression of multispectral and hyperspectral imagery. IEEE Trans Geosci Remote Sens 47(1):130–132CrossRef Du Q, Fowler JE, Zhu W (2009) On the impact of atmospheric correction on lossy compression of multispectral and hyperspectral imagery. IEEE Trans Geosci Remote Sens 47(1):130–132CrossRef
go back to reference Feng L, Tan AH, Lim MH et al (2016) Band selection for hyperspectral images using probabilistic memetic algorithm. Soft Comput 20(12):4685–4693CrossRef Feng L, Tan AH, Lim MH et al (2016) Band selection for hyperspectral images using probabilistic memetic algorithm. Soft Comput 20(12):4685–4693CrossRef
go back to reference Guo B, Gunn SR, Damper RI et al (2006) Band selection for hyperspectral image classification using mutual information. IEEE Geosci Remote Sens Lett 3(4):522–526CrossRef Guo B, Gunn SR, Damper RI et al (2006) Band selection for hyperspectral image classification using mutual information. IEEE Geosci Remote Sens Lett 3(4):522–526CrossRef
go back to reference Jain AK (2010) Data clustering: 50 years beyond K-means. Pattern Recognit Lett 31(8):651–666CrossRef Jain AK (2010) Data clustering: 50 years beyond K-means. Pattern Recognit Lett 31(8):651–666CrossRef
go back to reference Jia S, Ji Z, Qian Y et al (2012) Unsupervised band selection for hyperspectral imagery classification without manual band removal. IEEE J Sel Top Appl Earth Obs Remote Sens 5(2):531–543CrossRef Jia S, Ji Z, Qian Y et al (2012) Unsupervised band selection for hyperspectral imagery classification without manual band removal. IEEE J Sel Top Appl Earth Obs Remote Sens 5(2):531–543CrossRef
go back to reference Jia S, Tang G, Zhu J et al (2016a) A novel ranking-based clustering approach for hyperspectral band selection. IEEE Trans Geosci Remote Sens 54(1):88–102CrossRef Jia S, Tang G, Zhu J et al (2016a) A novel ranking-based clustering approach for hyperspectral band selection. IEEE Trans Geosci Remote Sens 54(1):88–102CrossRef
go back to reference Jia S, Xie Y, Tang G et al (2016b) Spatial-spectral-combined sparse representation-based classification for hyperspectral imagery. Soft Comput 20(12):4659–4668CrossRef Jia S, Xie Y, Tang G et al (2016b) Spatial-spectral-combined sparse representation-based classification for hyperspectral imagery. Soft Comput 20(12):4659–4668CrossRef
go back to reference Jimenez LO, Landgrebe DA (1998) Supervised classification in high-dimensional space: geometrical, statistical, and asymptotical properties of multivariate data. IEEE Trans Syst Man Cybern Part C (Appl Rev) 28(1):39–54CrossRef Jimenez LO, Landgrebe DA (1998) Supervised classification in high-dimensional space: geometrical, statistical, and asymptotical properties of multivariate data. IEEE Trans Syst Man Cybern Part C (Appl Rev) 28(1):39–54CrossRef
go back to reference Li W, Prasad S, Fowler JE et al (2012) Locality-preserving dimensionality reduction and classification for hyperspectral image analysis. IEEE Trans Geosci Remote Sens 50(4):1185–1198CrossRef Li W, Prasad S, Fowler JE et al (2012) Locality-preserving dimensionality reduction and classification for hyperspectral image analysis. IEEE Trans Geosci Remote Sens 50(4):1185–1198CrossRef
go back to reference Liao W, Pizurica A, Scheunders P et al (2013) Semisupervised local discriminant analysis for feature extraction in hyperspectral images. IEEE Trans Geosci Remote Sens 51(1):184–198CrossRef Liao W, Pizurica A, Scheunders P et al (2013) Semisupervised local discriminant analysis for feature extraction in hyperspectral images. IEEE Trans Geosci Remote Sens 51(1):184–198CrossRef
go back to reference Pal M, Foody GM (2010) Feature selection for classification of hyperspectral data by SVM. IEEE Trans Geosci Remote Sens 48(5):2297–2307CrossRef Pal M, Foody GM (2010) Feature selection for classification of hyperspectral data by SVM. IEEE Trans Geosci Remote Sens 48(5):2297–2307CrossRef
go back to reference Rodriguez A, Laio A (2014) Clustering by fast search and find of density peaks. Science 344(6191):1492–1496CrossRef Rodriguez A, Laio A (2014) Clustering by fast search and find of density peaks. Science 344(6191):1492–1496CrossRef
go back to reference Wang Q, Lin J, Yuan Y (2016) Salient band selection for hyperspectral image classification via manifold ranking. IEEE Trans Neural Netw Learn Syst 27(6):1279–1289CrossRef Wang Q, Lin J, Yuan Y (2016) Salient band selection for hyperspectral image classification via manifold ranking. IEEE Trans Neural Netw Learn Syst 27(6):1279–1289CrossRef
go back to reference Wang L, Zhang J, Liu P et al (2017) Spectral–spatial multi-feature-based deep learning for hyperspectral remote sensing image classification. Soft Comput 21(1):213–221CrossRefMATH Wang L, Zhang J, Liu P et al (2017) Spectral–spatial multi-feature-based deep learning for hyperspectral remote sensing image classification. Soft Comput 21(1):213–221CrossRefMATH
go back to reference Yuan Y, Zheng X, Lu X (2017) Discovering diverse subset for unsupervised hyperspectral band selection. IEEE Trans Image Process 26(1):51–64MathSciNetCrossRefMATH Yuan Y, Zheng X, Lu X (2017) Discovering diverse subset for unsupervised hyperspectral band selection. IEEE Trans Image Process 26(1):51–64MathSciNetCrossRefMATH
go back to reference Zhao YQ, Zhang L, Kong SG (2011) Band-subset-based clustering and fusion for hyperspectral imagery classification. IEEE Trans Geosci Remote Sens 49(2):747–756CrossRef Zhao YQ, Zhang L, Kong SG (2011) Band-subset-based clustering and fusion for hyperspectral imagery classification. IEEE Trans Geosci Remote Sens 49(2):747–756CrossRef
Metadata
Title
A dynamic local cluster ratio-based band selection algorithm for hyperspectral images
Authors
Ronghua Shang
Yuyang Lan
Licheng Jiao
Rustam Stolkin
Publication date
16-08-2018
Publisher
Springer Berlin Heidelberg
Published in
Soft Computing / Issue 17/2019
Print ISSN: 1432-7643
Electronic ISSN: 1433-7479
DOI
https://doi.org/10.1007/s00500-018-3464-7

Other articles of this Issue 17/2019

Soft Computing 17/2019 Go to the issue

Premium Partner