Skip to main content
Top
Published in: Microsystem Technologies 3/2022

12-08-2019 | Technical Paper

A fully CMOS RF down-converter with 81.88 dB SFDR for IEEE 802.15.4 based wireless systems

Authors: S. Chrisben Gladson, K. Alekhya, M. Bhaskar

Published in: Microsystem Technologies | Issue 3/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, the challenges of dense integration, low power, low-cost, low-noise and high spurious free dynamic range (SFDR) required by the RF front-end (RFE) circuits for low-rate wireless personal area networks are addressed. The proposed RF down-converter circuit utilizes a low-noise transconductance amplifier stage to improve the noise performance of the highly noisy switching stage of the down-converter. The nonlinearity of the low-noise stage is compensated by employing post-distortion based harmonic cancellation for dynamic range improvement of the RF front-end circuit. The proposed RFE is designed and realised in UMC 180 nm CMOS process technology. The post-layout characterization of the circuit shows an third-order intercept point with reference to the input (IIP3) of 11.83 dBm, double-sideband noise figure of 5.9 dB, conversion gain of 17.87 dB and offers a SFDR of 81.88 dB while consuming 5 mA current from 1.8 V. The proposed circuit consumes an area of 0.1 mm2. The proposed RF down-converter boasts a 17 dB improvement in SFDR over the recently proposed RFE in the literature. The proposed RFE is also correlated with the other existing state-of-art RFE circuits recorded in the literature for Zigbee applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abidi AA (1995) Direct-conversion radio transceivers for digital communications. IEEE J Solid State Circuits 30(12):1399–1410CrossRef Abidi AA (1995) Direct-conversion radio transceivers for digital communications. IEEE J Solid State Circuits 30(12):1399–1410CrossRef
go back to reference Abidi AA (2003) General relations between IP2, IP3, and offsets in differential circuits and the effects of feedback. IEEE Trans Microw Theory Tech 51(5):1610–1612CrossRef Abidi AA (2003) General relations between IP2, IP3, and offsets in differential circuits and the effects of feedback. IEEE Trans Microw Theory Tech 51(5):1610–1612CrossRef
go back to reference Aparin V, Larson LE (2005) Modified derivative superposition method for linearizing FET low-noise amplifiers. IEEE Trans Microw Theory Tech 53(2):571–581CrossRef Aparin V, Larson LE (2005) Modified derivative superposition method for linearizing FET low-noise amplifiers. IEEE Trans Microw Theory Tech 53(2):571–581CrossRef
go back to reference Aparin V, Brown G, Larson LE (2004) Linearization of CMOS LNAs via optimum gate biasing. Proc IEEE Circuits Syst Symp 4:748–751 Aparin V, Brown G, Larson LE (2004) Linearization of CMOS LNAs via optimum gate biasing. Proc IEEE Circuits Syst Symp 4:748–751
go back to reference Baki RA, Tsang TKK, El-Gamal MN (2006) Distortion in RF CMOS short-channel low-noise amplifiers. IEEE Trans Microw Theory Tech 54(1):46–56CrossRef Baki RA, Tsang TKK, El-Gamal MN (2006) Distortion in RF CMOS short-channel low-noise amplifiers. IEEE Trans Microw Theory Tech 54(1):46–56CrossRef
go back to reference Banerjee H (1962) Analysis of sine-type non-linearity in control systems. Proc IEE Part B Electron Commun Eng 109(44):155–156CrossRef Banerjee H (1962) Analysis of sine-type non-linearity in control systems. Proc IEE Part B Electron Commun Eng 109(44):155–156CrossRef
go back to reference Barnes JA, Allan DW (1966) A statistical model of flicker noise. Proc IEEE 54(2):176–178CrossRef Barnes JA, Allan DW (1966) A statistical model of flicker noise. Proc IEEE 54(2):176–178CrossRef
go back to reference Bautista EE, Bastani B, Heck J (2000) A high IIP2 downconverting mixer using dynamic matching. IEEE J Solid State Circuits 35(12):1934–1941CrossRef Bautista EE, Bastani B, Heck J (2000) A high IIP2 downconverting mixer using dynamic matching. IEEE J Solid State Circuits 35(12):1934–1941CrossRef
go back to reference Blaakmeer SC, Klumperink EAM, Leenaerts DMW, Nauta B (2000) Wideband balun-LNA with simultaneous output balancing, noise-canceling and distortion-canceling. IEEE J Solid State Circuits 43(60):1341–1350 Blaakmeer SC, Klumperink EAM, Leenaerts DMW, Nauta B (2000) Wideband balun-LNA with simultaneous output balancing, noise-canceling and distortion-canceling. IEEE J Solid State Circuits 43(60):1341–1350
go back to reference Blaakmeer SC, Klumperink EAM, Leenaerts DMW, Nauta B (2008) Wideband balund-LNA with simultaneous output balancing, noise-canceling and distortion-canceling. IEEE J Solid State Circuits 43(6):1341–1350CrossRef Blaakmeer SC, Klumperink EAM, Leenaerts DMW, Nauta B (2008) Wideband balund-LNA with simultaneous output balancing, noise-canceling and distortion-canceling. IEEE J Solid State Circuits 43(6):1341–1350CrossRef
go back to reference Bruccoleri F, Klumperink EAM, Nauta B (2004) Wide-band CMOS low-noise amplifier exploiting thermal noise canceling. IEEE J Solid State Circuits 39(2):275–282CrossRef Bruccoleri F, Klumperink EAM, Nauta B (2004) Wide-band CMOS low-noise amplifier exploiting thermal noise canceling. IEEE J Solid State Circuits 39(2):275–282CrossRef
go back to reference Chen W, Liu G, Zdarvko B, Niknejad AM (2008) A highly linear broadband CMOS LNA employing noise and distortion cancellation. IEEE J Solid State Circuits 43(5):1164–1176CrossRef Chen W, Liu G, Zdarvko B, Niknejad AM (2008) A highly linear broadband CMOS LNA employing noise and distortion cancellation. IEEE J Solid State Circuits 43(5):1164–1176CrossRef
go back to reference Choi CH, Yu Z, Dutton RW (2003) Impact of poly-gate depletion on MOS RF linearity. IEEE Electron Device Lett 24(5):330–332CrossRef Choi CH, Yu Z, Dutton RW (2003) Impact of poly-gate depletion on MOS RF linearity. IEEE Electron Device Lett 24(5):330–332CrossRef
go back to reference Crolls J, Steyaert MSJ (1998) Low-IF topologies for high-performance analog front ends of fully integrated receivers. IEEE Trans Circuits Syst II Analog Digit Signal Process 45:269–282CrossRef Crolls J, Steyaert MSJ (1998) Low-IF topologies for high-performance analog front ends of fully integrated receivers. IEEE Trans Circuits Syst II Analog Digit Signal Process 45:269–282CrossRef
go back to reference Darabi H, Abidi AA (2000) Noise in RF-CMOS mixers: a simple physical model. IEEE Trans Solid State Circuits 35(1):15–25CrossRef Darabi H, Abidi AA (2000) Noise in RF-CMOS mixers: a simple physical model. IEEE Trans Solid State Circuits 35(1):15–25CrossRef
go back to reference Do AV, Boon CC, Do MA, Yeo KS, Cabuk A (2010) An energy-aware CMOS receiver front end for low-power 2.4 GHz applications. IEEE Trans Circuits Syst I Regul Pap 57(10):2675–2684MathSciNetCrossRef Do AV, Boon CC, Do MA, Yeo KS, Cabuk A (2010) An energy-aware CMOS receiver front end for low-power 2.4 GHz applications. IEEE Trans Circuits Syst I Regul Pap 57(10):2675–2684MathSciNetCrossRef
go back to reference Fong KL, Meyer RG (1998) High-frequency nonlinearity analysis of common-emitter and differential-pair transconductance stages. IEEE J Solid State Circuits 33(4):548–555CrossRef Fong KL, Meyer RG (1998) High-frequency nonlinearity analysis of common-emitter and differential-pair transconductance stages. IEEE J Solid State Circuits 33(4):548–555CrossRef
go back to reference Geddada HM, Park JW, Silva-Martinez J (2009) Robust derivative superposition method for linearizing broadband LNAs. IEEE Electron Lett 45(9):435–436CrossRef Geddada HM, Park JW, Silva-Martinez J (2009) Robust derivative superposition method for linearizing broadband LNAs. IEEE Electron Lett 45(9):435–436CrossRef
go back to reference Gladson SC, Bhaskar M (2017) A fully CMOS inductor-less folded cascode double-balanced mixer with high conversion gain for 2.4 GHz WPAN applications. In: International conference on recent innovations in electrical, electronics and communication systems Gladson SC, Bhaskar M (2017) A fully CMOS inductor-less folded cascode double-balanced mixer with high conversion gain for 2.4 GHz WPAN applications. In: International conference on recent innovations in electrical, electronics and communication systems
go back to reference Gladson SC, Bhaskar M (2018) A low power high-performance area efficient RF front-end exploiting body effect for 2.4 GHz IEEE 802.15.4 applications. Int J Electron Commun 96:81–92CrossRef Gladson SC, Bhaskar M (2018) A low power high-performance area efficient RF front-end exploiting body effect for 2.4 GHz IEEE 802.15.4 applications. Int J Electron Commun 96:81–92CrossRef
go back to reference Himmelfarb M, Belostotski L (2016) Noise parameters of gilbert cell mixers. IEEE Trans Microw Theory Tech 64(10):3163–3174CrossRef Himmelfarb M, Belostotski L (2016) Noise parameters of gilbert cell mixers. IEEE Trans Microw Theory Tech 64(10):3163–3174CrossRef
go back to reference Hull CD, Meyer RG (1993) A systematic approach to the analysis of noise in CMOS mixers. IEEE Trans Circuits Syst I Fundam Theory Appl 40(12):909–919CrossRef Hull CD, Meyer RG (1993) A systematic approach to the analysis of noise in CMOS mixers. IEEE Trans Circuits Syst I Fundam Theory Appl 40(12):909–919CrossRef
go back to reference IEEE 802.15.4TM (2006) Wireless medium access control and physical layer specifications for low-rate wireless personal area networks IEEE 802.15.4TM (2006) Wireless medium access control and physical layer specifications for low-rate wireless personal area networks
go back to reference Jafarnejad R, Jannesari A, Sobhi J (2017) Pre-distortion technique to improve linearity of low noise amplifier. Microelectron J 61:95–105CrossRef Jafarnejad R, Jannesari A, Sobhi J (2017) Pre-distortion technique to improve linearity of low noise amplifier. Microelectron J 61:95–105CrossRef
go back to reference Jussila J, Sivonen P (2008) A 1.2-V highly linear balanced noise-cancelling LNA in 0.13- CMOS. IEEE J Solid State Circuits 43(3):579–587CrossRef Jussila J, Sivonen P (2008) A 1.2-V highly linear balanced noise-cancelling LNA in 0.13- CMOS. IEEE J Solid State Circuits 43(3):579–587CrossRef
go back to reference Kang S, Choi B, Kim B (2003) Linearity analysis of CMOS for RF application. IEEE Trans Microw Theory Tech 51(3):972–977CrossRef Kang S, Choi B, Kim B (2003) Linearity analysis of CMOS for RF application. IEEE Trans Microw Theory Tech 51(3):972–977CrossRef
go back to reference Kar SK, Sen S (2013) Linearity improvement of source degenerated transconductance amplifers. Analog Integr Circuits Signal Process 74(2):399–407CrossRef Kar SK, Sen S (2013) Linearity improvement of source degenerated transconductance amplifers. Analog Integr Circuits Signal Process 74(2):399–407CrossRef
go back to reference Kim TW, Kim B (2006a) A 13-dB IIP3 improved low-power CMOS RF programmable gain amplifier using differential circuit transconductance linearization for various terrestrial mobile D-TV applications. IEEE Trans Circuits Syst I Regul Pap 41(4):945–953 Kim TW, Kim B (2006a) A 13-dB IIP3 improved low-power CMOS RF programmable gain amplifier using differential circuit transconductance linearization for various terrestrial mobile D-TV applications. IEEE Trans Circuits Syst I Regul Pap 41(4):945–953
go back to reference Kim T-S, Kim B-S (2006b) Post-linearization of cascode CMOS LNA using folded PMOS IMD sinker. IEEE Microw Wirel Compon Lett 16(4):182–184CrossRef Kim T-S, Kim B-S (2006b) Post-linearization of cascode CMOS LNA using folded PMOS IMD sinker. IEEE Microw Wirel Compon Lett 16(4):182–184CrossRef
go back to reference Kim N, Aparin V, Barnett K, Persico C (2006) A cellular-band CDMA 0.25 µm CMOS LNA linearized using active post-distortion. IEEE J Solid State Circuits 41(7):1530–1534CrossRef Kim N, Aparin V, Barnett K, Persico C (2006) A cellular-band CDMA 0.25 µm CMOS LNA linearized using active post-distortion. IEEE J Solid State Circuits 41(7):1530–1534CrossRef
go back to reference Kluge W, Poegel F, Roller H, Lange M, Ferchland T, Dathe L, Eggert D (2006) A fully integrated 2.4 GHz IEEE 802.15.4 compliant transceiver for ZigBee applications. IEEE ISSCC Digit Tech Pap 41:1470–1479 Kluge W, Poegel F, Roller H, Lange M, Ferchland T, Dathe L, Eggert D (2006) A fully integrated 2.4 GHz IEEE 802.15.4 compliant transceiver for ZigBee applications. IEEE ISSCC Digit Tech Pap 41:1470–1479
go back to reference Kwon I, Lee K (2007) An accurate behavioral model for RF MOSFET linearity analysis. IEEE Microw Wirel Compon Lett 17(12):897–899CrossRef Kwon I, Lee K (2007) An accurate behavioral model for RF MOSFET linearity analysis. IEEE Microw Wirel Compon Lett 17(12):897–899CrossRef
go back to reference Lee T-Y, Cheng Y (2004) High-frequency characterization and modeling of distortion behavior of MOSFETs for RF IC design. IEEE J Solid State Circuits 39(9):1407–1414CrossRef Lee T-Y, Cheng Y (2004) High-frequency characterization and modeling of distortion behavior of MOSFETs for RF IC design. IEEE J Solid State Circuits 39(9):1407–1414CrossRef
go back to reference Leung B (2002) VLSI for wireless communications. Prentice Hall Electronics and VLSI Series Leung B (2002) VLSI for wireless communications. Prentice Hall Electronics and VLSI Series
go back to reference Li H, Saavedra CE (2019) Linearization of active downconversion mixers at the IF using feedforward cancellation. IEEE Trans Circuits Syst I Regul Pap 66(4):1620–1631CrossRef Li H, Saavedra CE (2019) Linearization of active downconversion mixers at the IF using feedforward cancellation. IEEE Trans Circuits Syst I Regul Pap 66(4):1620–1631CrossRef
go back to reference Li Z, Cheng G, Wang Z (2018a) A 0.1–1 GHz low power RF receiver front-end with noise cancellation technique for WSN applications. AEU Int J Electron Commun 83:288–294CrossRef Li Z, Cheng G, Wang Z (2018a) A 0.1–1 GHz low power RF receiver front-end with noise cancellation technique for WSN applications. AEU Int J Electron Commun 83:288–294CrossRef
go back to reference Li Z, Yao Y, Wang Z, Cheng G, Luo L (2018b) A 1 V 1.4 mW multi-band ZigBee receiver with 64 dB SFDR. Microelectron J 76:43–51CrossRef Li Z, Yao Y, Wang Z, Cheng G, Luo L (2018b) A 1 V 1.4 mW multi-band ZigBee receiver with 64 dB SFDR. Microelectron J 76:43–51CrossRef
go back to reference Liang Q, Andrews JM, Cressler JD, Niu G (2005) Systematic linearity analysis of RFICs using a two-port lumped-nonlinear-source model. IEEE Trans Microw Theory Tech 53(5):1745–1755CrossRef Liang Q, Andrews JM, Cressler JD, Niu G (2005) Systematic linearity analysis of RFICs using a two-port lumped-nonlinear-source model. IEEE Trans Microw Theory Tech 53(5):1745–1755CrossRef
go back to reference Manstretta D, Castello R, Svelto F (2001) Low 1/f noise CMOS active mixers for direct conversion. IEEE Trans Circuits Syst II Analog Digit Signal Process 48(9):846–850CrossRef Manstretta D, Castello R, Svelto F (2001) Low 1/f noise CMOS active mixers for direct conversion. IEEE Trans Circuits Syst II Analog Digit Signal Process 48(9):846–850CrossRef
go back to reference Manstretta D, Brandolini M, Svelto F (2003) Second-order intermodulation mechanisms in CMOS downconverters. IEEE J Solid State Circuits 38(3):394–406CrossRef Manstretta D, Brandolini M, Svelto F (2003) Second-order intermodulation mechanisms in CMOS downconverters. IEEE J Solid State Circuits 38(3):394–406CrossRef
go back to reference Meyer RG (1986) Intermodulation in higher-frequency bipolar transistor integrated-circuit mixers. IEEE J Solid State Circuits 21(4):534–537CrossRef Meyer RG (1986) Intermodulation in higher-frequency bipolar transistor integrated-circuit mixers. IEEE J Solid State Circuits 21(4):534–537CrossRef
go back to reference Nedungadi A, Viswanathan TR (1984) Design of linear CMOS transconductance elements. IEEE Trans Circuits Syst 31(10):891–894CrossRef Nedungadi A, Viswanathan TR (1984) Design of linear CMOS transconductance elements. IEEE Trans Circuits Syst 31(10):891–894CrossRef
go back to reference Oh NJ, Lee SG (2006) Building a 2.4-GHz radio transceiver using IEEE 802.15.4. IEEE Circ Dev Mag 21:43–51 Oh NJ, Lee SG (2006) Building a 2.4-GHz radio transceiver using IEEE 802.15.4. IEEE Circ Dev Mag 21:43–51
go back to reference Razavi B (1997) Design considerations for direct conversion receivers. IEEE Trans Circuits Syst II Analog Digit Signal Process 44(6):428–435CrossRef Razavi B (1997) Design considerations for direct conversion receivers. IEEE Trans Circuits Syst II Analog Digit Signal Process 44(6):428–435CrossRef
go back to reference Razavi B (2012) RF microelectronics. Pearson Education, London Razavi B (2012) RF microelectronics. Pearson Education, London
go back to reference Roy AS, Kim S, Mudanai SP (2017) An improved flicker noise model for circuit simulations. IEEE Trans Electron Devices 64(4):1689–1694CrossRef Roy AS, Kim S, Mudanai SP (2017) An improved flicker noise model for circuit simulations. IEEE Trans Electron Devices 64(4):1689–1694CrossRef
go back to reference Sansen W (1999) Distortion in elementary transistor circuits. IEEE Trans Circuits Syst II Analog Digit Signal Process 46(3):3115–3325CrossRef Sansen W (1999) Distortion in elementary transistor circuits. IEEE Trans Circuits Syst II Analog Digit Signal Process 46(3):3115–3325CrossRef
go back to reference Seevinck E, Wassenaar RF, van den Berg MC (1986) Realization of linear high-frequency transconductance in CMOS-technology. In: ESSCIRC '86: twelfth European solid-state circuits conference. IEEE, Delft, The Netherlands Seevinck E, Wassenaar RF, van den Berg MC (1986) Realization of linear high-frequency transconductance in CMOS-technology. In: ESSCIRC '86: twelfth European solid-state circuits conference. IEEE, Delft, The Netherlands
go back to reference Tedja S, Van der Spiegel J, Williams HH (1994) Analytical and experimental studies of thermal noise in MOSFET’s. IEEE Trans Electron Devices 41(11):2069–2075CrossRef Tedja S, Van der Spiegel J, Williams HH (1994) Analytical and experimental studies of thermal noise in MOSFET’s. IEEE Trans Electron Devices 41(11):2069–2075CrossRef
go back to reference Terrovitis MT, Meyer RG (1999) Noise in current commutating CMOS mixers. IEEE J Solid State Circuits 34(6):772–783CrossRef Terrovitis MT, Meyer RG (1999) Noise in current commutating CMOS mixers. IEEE J Solid State Circuits 34(6):772–783CrossRef
go back to reference Terrovitis MT, Meyer RG (2000) Intermodulation distortion in current-commutating CMOS mixers. IEEE J Solid State Circuits 35(10):1461–1473CrossRef Terrovitis MT, Meyer RG (2000) Intermodulation distortion in current-commutating CMOS mixers. IEEE J Solid State Circuits 35(10):1461–1473CrossRef
go back to reference Terrovitis MT, Kundert KS, Meyer RG (2002) Cyclostationary noise in radio-frequency communication systems. IEEE Trans Circuits Syst I Fundam Theory Appl 49(11):1666–1671CrossRef Terrovitis MT, Kundert KS, Meyer RG (2002) Cyclostationary noise in radio-frequency communication systems. IEEE Trans Circuits Syst I Fundam Theory Appl 49(11):1666–1671CrossRef
go back to reference Toole B, Plett C, Cloutier M (2004) RF circuit implications of moderate inversion enhanced linear region in MOSFETS. IEEE Trans Circuits Syst I Regul Pap 51(2):319–328MATHCrossRef Toole B, Plett C, Cloutier M (2004) RF circuit implications of moderate inversion enhanced linear region in MOSFETS. IEEE Trans Circuits Syst I Regul Pap 51(2):319–328MATHCrossRef
go back to reference Triantis DP, Birbas A, Kondis D (1996) Thermal noise modeling for short-channel MOSFET’s. IEEE Trans Electron Devices 43(11):1950–1955CrossRef Triantis DP, Birbas A, Kondis D (1996) Thermal noise modeling for short-channel MOSFET’s. IEEE Trans Electron Devices 43(11):1950–1955CrossRef
go back to reference van Langevelde R, Tiemeijier LF, Havens RJ, Knitel MJ, Mores RF, Woerlee P, Klaassen DBM (2000) RF-distortion in deep-submicron CMOS technologies. International electron devices meeting 2000. Technical digest. IEDM (Cat. No.00CH37138), pp 807–810. IEEE, San Francisco, CA, USA. https://doi.org/10.1109/IEDM.2000.904440 van Langevelde R, Tiemeijier LF, Havens RJ, Knitel MJ, Mores RF, Woerlee P, Klaassen DBM (2000) RF-distortion in deep-submicron CMOS technologies. International electron devices meeting 2000. Technical digest. IEDM (Cat. No.00CH37138), pp 807–810. IEEE, San Francisco, CA, USA. https://​doi.​org/​10.​1109/​IEDM.​2000.​904440
go back to reference Wan Q, Xu D, Zho H, Dong J (2018) A complementary current-mirror-based bulk-driven down-conversion mixer for wideband applications. Circuits Syst Signal Process 37(9):3671–3684CrossRef Wan Q, Xu D, Zho H, Dong J (2018) A complementary current-mirror-based bulk-driven down-conversion mixer for wideband applications. Circuits Syst Signal Process 37(9):3671–3684CrossRef
go back to reference Wang B, Hellums JR, Sodini CG (1994) MOSFET thermal noise modeling for analog integrated circuits. IEEE J Solid State Circuits 29(7):833–835CrossRef Wang B, Hellums JR, Sodini CG (1994) MOSFET thermal noise modeling for analog integrated circuits. IEEE J Solid State Circuits 29(7):833–835CrossRef
go back to reference Zhang H, Fan X, Sanchez-Sinencio E (2009) A low-power linearized ultra-wideband LNA design technique. IEEE J Solid State Circuits 44(2):320–330CrossRef Zhang H, Fan X, Sanchez-Sinencio E (2009) A low-power linearized ultra-wideband LNA design technique. IEEE J Solid State Circuits 44(2):320–330CrossRef
Metadata
Title
A fully CMOS RF down-converter with 81.88 dB SFDR for IEEE 802.15.4 based wireless systems
Authors
S. Chrisben Gladson
K. Alekhya
M. Bhaskar
Publication date
12-08-2019
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 3/2022
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-019-04576-z

Other articles of this Issue 3/2022

Microsystem Technologies 3/2022 Go to the issue