Skip to main content
Top
Published in: Microsystem Technologies 7/2018

03-02-2018 | Technical Paper

A generic model for diffusive dynamics of the substrate and fluorescein tagged enzyme in microfluidic platform

Authors: Ece Yildiz-Ozturk, Mesut Yucel, Ozlem Yesil-Celiktas

Published in: Microsystem Technologies | Issue 7/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The aim of this study was to develop a model that describes enzymatic conversion in a microfluidic system along with convective and diffusive transport of substrate/product within the microchannels. Hence, a 1-D partial differential equation model based on Fick’s Law was employed in order to describe the substrate/product concentration distributions within the system. Enzyme immobilized in PEO-inclusive/non-inclusive TEOS-based hydrogels were tagged with fluorescein and examined under confocal laser scanning microscopy to evaluate the distribution of the enzyme. The image processing analysis demonstrated that 88.2 ± 5.9% of the PEO-inclusive gel fragment surface (pixelated) area was occupied by the enzyme-dye complex with an emission density of 29.92 ± 1.07. Subsequent to ensuring the homogeneity throughout the microchannel, the effects of flow rate and the distance for a range of inlet substrate concentrations were considered in regards to various substrate concentrations and conversion rates. The developed model provided a quantification for the conversion of substrate into products and enhanced understanding of the transport phenomena in the hydrogel.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Asanomi Y, Yamaguchi H, Miyazaki M, Maeda H (2011) Enzyme-immobilized microfluidic process reactors. Molecules 16:6041–6059CrossRef Asanomi Y, Yamaguchi H, Miyazaki M, Maeda H (2011) Enzyme-immobilized microfluidic process reactors. Molecules 16:6041–6059CrossRef
go back to reference Atalay YT, Witters D, Vermeir S, Vergauwe N, Verboven P, Nicolaï B, Lammertyn J (2009) Design and optimization of a double-enzyme glucose assay in microfluidic lab-on-a-chip. Biomicrofluidics 3:044103CrossRef Atalay YT, Witters D, Vermeir S, Vergauwe N, Verboven P, Nicolaï B, Lammertyn J (2009) Design and optimization of a double-enzyme glucose assay in microfluidic lab-on-a-chip. Biomicrofluidics 3:044103CrossRef
go back to reference Bartolo D, Aarts DGAL (2012) Microfluidics and soft matter: small is useful. Soft Matter 8:10530–10535CrossRef Bartolo D, Aarts DGAL (2012) Microfluidics and soft matter: small is useful. Soft Matter 8:10530–10535CrossRef
go back to reference Bettinger CJ, Borenstein JT (2010) Biomaterials-based microfluidics for engineered tissue constructs. Soft Matter 6:4999–5015CrossRef Bettinger CJ, Borenstein JT (2010) Biomaterials-based microfluidics for engineered tissue constructs. Soft Matter 6:4999–5015CrossRef
go back to reference Bodla VK, Seerup R, Krühne U, Woodley JM, Gernaey KV (2013) Microreactors and CFD as tools for biocatalysis reactor design: a case study. Chem Eng Technol 36(6):1017–1026CrossRef Bodla VK, Seerup R, Krühne U, Woodley JM, Gernaey KV (2013) Microreactors and CFD as tools for biocatalysis reactor design: a case study. Chem Eng Technol 36(6):1017–1026CrossRef
go back to reference Bossler F, Koos E (2016) Structure of particle networks in capillary suspensions with wetting and nonwetting fluids. Langmuir 32:1489–1501CrossRef Bossler F, Koos E (2016) Structure of particle networks in capillary suspensions with wetting and nonwetting fluids. Langmuir 32:1489–1501CrossRef
go back to reference Buchegger W, Haller A, van den Driesche S, Kraft M, Lendl B, Vellekoop M (2012) Studying enzymatic bioreactions in a millisecond microfluidic flow mixer. Biomicrofluidics 6:012803CrossRef Buchegger W, Haller A, van den Driesche S, Kraft M, Lendl B, Vellekoop M (2012) Studying enzymatic bioreactions in a millisecond microfluidic flow mixer. Biomicrofluidics 6:012803CrossRef
go back to reference Camara MA, Tian M, Guo L, Yang L (2015) Application of capillary enzyme micro-reactor in enzyme activity and inhibitors studies of glucose-6-phosphate dehydrogenase. J Chromatogr B 990:174–180CrossRef Camara MA, Tian M, Guo L, Yang L (2015) Application of capillary enzyme micro-reactor in enzyme activity and inhibitors studies of glucose-6-phosphate dehydrogenase. J Chromatogr B 990:174–180CrossRef
go back to reference Carvalhoa F, Fernandes P (2015) Packed bed enzyme microreactor: application in sucrose hydrolys is as proof-of-concept. Biochem Eng J 104:74–81CrossRef Carvalhoa F, Fernandes P (2015) Packed bed enzyme microreactor: application in sucrose hydrolys is as proof-of-concept. Biochem Eng J 104:74–81CrossRef
go back to reference Cetin B, Asık MD, Taze S (2013) Design and fabrication of a microfluidic device for synthesis of chitosan nanoparticles. J Nanotechnol Eng Med 4(3):031004CrossRef Cetin B, Asık MD, Taze S (2013) Design and fabrication of a microfluidic device for synthesis of chitosan nanoparticles. J Nanotechnol Eng Med 4(3):031004CrossRef
go back to reference Chován T, Guttman A (2002) Microfabricated devices in biotechnology and biochemical processing. Trends Biotechnol 20:116–122CrossRef Chován T, Guttman A (2002) Microfabricated devices in biotechnology and biochemical processing. Trends Biotechnol 20:116–122CrossRef
go back to reference Cullen CJ, Wootton RC, De Mello AJ (2004) Microfluidic systems for high-throughput and combinatorial chemistry. Curr Opin Drug Discov Dev 7:798–806 Cullen CJ, Wootton RC, De Mello AJ (2004) Microfluidic systems for high-throughput and combinatorial chemistry. Curr Opin Drug Discov Dev 7:798–806
go back to reference Fürjes P, Holczer EG, Tóth E, Iván K, Fekete Z, Bernier D, Dortu F, Giannone D (2015) PDMS microfluidics developed for polymer based photonic Biosensors. Microsyst Technol 21:581–590CrossRef Fürjes P, Holczer EG, Tóth E, Iván K, Fekete Z, Bernier D, Dortu F, Giannone D (2015) PDMS microfluidics developed for polymer based photonic Biosensors. Microsyst Technol 21:581–590CrossRef
go back to reference García-Junceda E, García-García JF, Bastida A, Fernández-Mayoralas A (2004) Enzymes in the synthesis of bioactive compounds: the prodigious decades. Bioorg Med Chem 12:1817–1834CrossRef García-Junceda E, García-García JF, Bastida A, Fernández-Mayoralas A (2004) Enzymes in the synthesis of bioactive compounds: the prodigious decades. Bioorg Med Chem 12:1817–1834CrossRef
go back to reference Gunda NSK, Mitra SK (2010) Modeling of dielectrophoretic transport of myoglobin molecules in microchannels. Biomicrofluidics 4:014105CrossRef Gunda NSK, Mitra SK (2010) Modeling of dielectrophoretic transport of myoglobin molecules in microchannels. Biomicrofluidics 4:014105CrossRef
go back to reference He P, Greenway G, Haswell SJ (2010) Development of enzyme immobilized monolith micro-reactors integrated with microfluidic electrochemical cell for the evaluation of enzyme kinetics. Microfluid Nanofluid 8:565–573CrossRef He P, Greenway G, Haswell SJ (2010) Development of enzyme immobilized monolith micro-reactors integrated with microfluidic electrochemical cell for the evaluation of enzyme kinetics. Microfluid Nanofluid 8:565–573CrossRef
go back to reference Kandimalla VB, Tripathi VS, Ju H (2006) Immobilization of biomolecules in sol–gels: biological and analytical applications. Crit Rev Anal Chem 36:73–106CrossRef Kandimalla VB, Tripathi VS, Ju H (2006) Immobilization of biomolecules in sol–gels: biological and analytical applications. Crit Rev Anal Chem 36:73–106CrossRef
go back to reference Knob R, Sahore V, Sonker M, Woolley AT (2016) Advances in monoliths and related porous materials for microfluidics. Biomicrofluidics 10:032901CrossRef Knob R, Sahore V, Sonker M, Woolley AT (2016) Advances in monoliths and related porous materials for microfluidics. Biomicrofluidics 10:032901CrossRef
go back to reference Koh WG, Pishko M (2005) Immobilization of multi-enzyme microreactors inside microfluidic devices. Sens Actuat B 106:335–342CrossRef Koh WG, Pishko M (2005) Immobilization of multi-enzyme microreactors inside microfluidic devices. Sens Actuat B 106:335–342CrossRef
go back to reference Krenkova J, Foret F (2004) Immobilized microfluidic enzymatic reactors. Electrophoresis 25:3550–3563CrossRef Krenkova J, Foret F (2004) Immobilized microfluidic enzymatic reactors. Electrophoresis 25:3550–3563CrossRef
go back to reference Laiwattanapaisal W, Yakovleva J, Bengtsson M, Laurell T, Wiyakrutta S, Meevootisom V, Chailapakul O, Emnéus J (2009) On-chip microfluidic systems for determination of L-glutamate based on enzymatic recycling of substrate. Biomicrofluidics 3:014104CrossRef Laiwattanapaisal W, Yakovleva J, Bengtsson M, Laurell T, Wiyakrutta S, Meevootisom V, Chailapakul O, Emnéus J (2009) On-chip microfluidic systems for determination of L-glutamate based on enzymatic recycling of substrate. Biomicrofluidics 3:014104CrossRef
go back to reference Laurenti E, dos Vianna SA Jr (2015) Enzymatic microreactors in biocatalysis: history, features, and future perspectives. Biocatalysis 1:148–165 Laurenti E, dos Vianna SA Jr (2015) Enzymatic microreactors in biocatalysis: history, features, and future perspectives. Biocatalysis 1:148–165
go back to reference Miyazaki M, Maeda H (2006) Microchannel enzyme reactors and their applications for processing. Trends in Biotechnol 24(10):463–470CrossRef Miyazaki M, Maeda H (2006) Microchannel enzyme reactors and their applications for processing. Trends in Biotechnol 24(10):463–470CrossRef
go back to reference Miyazaki M, Honda T, Yamaguchi H, Briones MPP, Maeda H (2008) Enzymatic processing in microfluidic reactors. Biotechnol Genet Eng Rev 25:405–428CrossRef Miyazaki M, Honda T, Yamaguchi H, Briones MPP, Maeda H (2008) Enzymatic processing in microfluidic reactors. Biotechnol Genet Eng Rev 25:405–428CrossRef
go back to reference Power M, Hosticka B, Black E, Daitch C, Norris P (2001) Aerogels as biosensors: viral particle detection by bacteria immobilized on large pore aerogel. J Non Crystall Solids 285(1–3):303–308CrossRef Power M, Hosticka B, Black E, Daitch C, Norris P (2001) Aerogels as biosensors: viral particle detection by bacteria immobilized on large pore aerogel. J Non Crystall Solids 285(1–3):303–308CrossRef
go back to reference Ren L, Sinton D, Li D (2003) Numerical simulation of microfluidic injection processes in crossing microchannels. J Micromech Microeng 13:739–747CrossRef Ren L, Sinton D, Li D (2003) Numerical simulation of microfluidic injection processes in crossing microchannels. J Micromech Microeng 13:739–747CrossRef
go back to reference Salic A, Tusek A, Zelić B (2012) Application of microreactors in medicine and biomedicine. J Appl Biomed 10:137–153CrossRef Salic A, Tusek A, Zelić B (2012) Application of microreactors in medicine and biomedicine. J Appl Biomed 10:137–153CrossRef
go back to reference Sato S, Murakata T, Suzuki T, Ohgawara T (1990) Control of pore size distribution of silica gel through sol–gel process using water soluble polymers as additives. J Mater Sci 25:4880–4885CrossRef Sato S, Murakata T, Suzuki T, Ohgawara T (1990) Control of pore size distribution of silica gel through sol–gel process using water soluble polymers as additives. J Mater Sci 25:4880–4885CrossRef
go back to reference Schoemaker HE, Mink D, Wubbolts MG (2003) Dispelling the myths-biocatalysis in industrial synthesis. Science 299:1694–1697CrossRef Schoemaker HE, Mink D, Wubbolts MG (2003) Dispelling the myths-biocatalysis in industrial synthesis. Science 299:1694–1697CrossRef
go back to reference Shih TR, Chung CK (2008) A high-efficiency planar micromixer with convection and diffusion mixing over a wide Reynolds number range. Microfluid Nanofluid 5:175–183CrossRef Shih TR, Chung CK (2008) A high-efficiency planar micromixer with convection and diffusion mixing over a wide Reynolds number range. Microfluid Nanofluid 5:175–183CrossRef
go back to reference Toh AGG, Wang ZP, Yang C, Nguyen NT (2014) Engineering microfluidic concentration gradient generators for biological applications. Microfluid Nanofluid 16:1–18CrossRef Toh AGG, Wang ZP, Yang C, Nguyen NT (2014) Engineering microfluidic concentration gradient generators for biological applications. Microfluid Nanofluid 16:1–18CrossRef
go back to reference Tsai CT, Meyer AS (2014) Enzymatic cellulose hydrolysis: enzyme reusability and visualization of β-glucosidase immobilized in calcium alginate. Molecules 19:19390–19406CrossRef Tsai CT, Meyer AS (2014) Enzymatic cellulose hydrolysis: enzyme reusability and visualization of β-glucosidase immobilized in calcium alginate. Molecules 19:19390–19406CrossRef
go back to reference Ungerböck B, Pohar A, Mayr T, Plazl I (2013) Online oxygen measurements inside a microreactor with modeling of transport phenomena. Microfluid Nanofluid 14:565–574CrossRef Ungerböck B, Pohar A, Mayr T, Plazl I (2013) Online oxygen measurements inside a microreactor with modeling of transport phenomena. Microfluid Nanofluid 14:565–574CrossRef
go back to reference Urban PL, Goodall DM, Bruce NC (2006) Enzymatic microreactors in chemical analysis and kinetic studies. Biotechnol Adv 24(1):42–57CrossRef Urban PL, Goodall DM, Bruce NC (2006) Enzymatic microreactors in chemical analysis and kinetic studies. Biotechnol Adv 24(1):42–57CrossRef
go back to reference Vong MSW, Bazin N, Sermon PA (1997) Chemical modification of silica gels. J Sol Gel Sci Technol 8(1):499–505 Vong MSW, Bazin N, Sermon PA (1997) Chemical modification of silica gels. J Sol Gel Sci Technol 8(1):499–505
go back to reference Watts P, Haswell SJ (2005) The application of micro reactors for organic synthesis. Chem Soc Rev 34:235–246CrossRef Watts P, Haswell SJ (2005) The application of micro reactors for organic synthesis. Chem Soc Rev 34:235–246CrossRef
go back to reference Wörz O, Jäckel KP, Wolf Th R (2001) A microreactors, a new efficient tool for optimum reactor design. Chem Eng Sci 56(3):1029–1033CrossRef Wörz O, Jäckel KP, Wolf Th R (2001) A microreactors, a new efficient tool for optimum reactor design. Chem Eng Sci 56(3):1029–1033CrossRef
go back to reference Xue X, Patel MK, Kersaudy-Kerhoas M, Desmulliez MPY, Bailey C, Topham D (2012) Analysis of fluid separation in microfluidic T-channels. Appl Math Model 36:743–755MathSciNetCrossRefMATH Xue X, Patel MK, Kersaudy-Kerhoas M, Desmulliez MPY, Bailey C, Topham D (2012) Analysis of fluid separation in microfluidic T-channels. Appl Math Model 36:743–755MathSciNetCrossRefMATH
go back to reference Yesil-Celiktas O, Cumana S, Smirnova I (2013) Silica-based monoliths for enzyme catalyzed reactions in microfluidic systems with an emphasis on glucose 6-phosphate dehydrogenase and cellulose. Chem Eng J 234:166–172CrossRef Yesil-Celiktas O, Cumana S, Smirnova I (2013) Silica-based monoliths for enzyme catalyzed reactions in microfluidic systems with an emphasis on glucose 6-phosphate dehydrogenase and cellulose. Chem Eng J 234:166–172CrossRef
go back to reference Zhou J, Khodakov DA, Ellis AV, Voelcker NH (2012) Surface modification for PDMS-based microfluidic devices. Electrophoresis 33(1):89–104CrossRef Zhou J, Khodakov DA, Ellis AV, Voelcker NH (2012) Surface modification for PDMS-based microfluidic devices. Electrophoresis 33(1):89–104CrossRef
go back to reference Žnidaršič-Plazl P (2014) Enzymatic microreactors utilizing non-aqueous media. Chem Today 32(1):54–60 Žnidaršič-Plazl P (2014) Enzymatic microreactors utilizing non-aqueous media. Chem Today 32(1):54–60
Metadata
Title
A generic model for diffusive dynamics of the substrate and fluorescein tagged enzyme in microfluidic platform
Authors
Ece Yildiz-Ozturk
Mesut Yucel
Ozlem Yesil-Celiktas
Publication date
03-02-2018
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 7/2018
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-018-3746-0

Other articles of this Issue 7/2018

Microsystem Technologies 7/2018 Go to the issue