Skip to main content
Top
Published in: Journal of Scientific Computing 1/2019

27-03-2019

A Positivity Preserving Moving Mesh Finite Element Method for the Keller–Segel Chemotaxis Model

Authors: M. Sulman, T. Nguyen

Published in: Journal of Scientific Computing | Issue 1/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we present an efficient adaptive moving mesh finite element method for the numerical solution of the Keller–Segel chemotaxis model. The mesh points are continuously redistributed by a coordinate transformation defined from the computational domain to the physical domain to concentrate the grid nodes in regions of large solution variations in the physical domain. The Keller–Segel equations are discretized using an implicit-explicit finite element method using piecewise polynomials defined on triangular meshes. The spatial discretization scheme is designed with a positivity preserving property, if the initial solutions of the physical model are positive then the computed solutions stay positive at all time levels. Several numerical experiments are presented to demonstrate the performance of the proposed method for solving Keller–Segel model. The numerical results show that the proposed method can reduce the computational cost while improving the overall accuracy of the computed solutions of the Keller–Segel model.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
2.
3.
go back to reference Keller, E.F., Segel, L.A.: Traveling bands of chemotactic bacteria: a theoretical analysis. J. Theor. Biol. 30, 235–248 (1971)MATHCrossRef Keller, E.F., Segel, L.A.: Traveling bands of chemotactic bacteria: a theoretical analysis. J. Theor. Biol. 30, 235–248 (1971)MATHCrossRef
4.
5.
go back to reference Bonner, J.T.: The Sellular Slime Molds. Princeton University Press, Princeton (1967)CrossRef Bonner, J.T.: The Sellular Slime Molds. Princeton University Press, Princeton (1967)CrossRef
6.
go back to reference Budrene, E.O., Berg, H.C.: Complex patterns formed by motile cells of escherichia coli. Nature 349, 630–633 (1991)CrossRef Budrene, E.O., Berg, H.C.: Complex patterns formed by motile cells of escherichia coli. Nature 349, 630–633 (1991)CrossRef
7.
go back to reference Budrene, E.O., Berg, H.C.: Dynamics of formation of symmetrical patterns by chemotactic bacteria. Nature 376, 49–53 (1995)CrossRef Budrene, E.O., Berg, H.C.: Dynamics of formation of symmetrical patterns by chemotactic bacteria. Nature 376, 49–53 (1995)CrossRef
9.
go back to reference Cohen, M.H., Robertson, A.: Wave propagation in the early stages of aggregation of cellular slime molds. J. Theor. Biol. 31, 101–118 (1971)CrossRef Cohen, M.H., Robertson, A.: Wave propagation in the early stages of aggregation of cellular slime molds. J. Theor. Biol. 31, 101–118 (1971)CrossRef
10.
go back to reference Herrero, M., Medina, E., VelÃzquez, J.: Finite-time aggregation into a single point in a reaction-diffusion system. Nonlinearity 10(6), 1739–1754 (1997)MathSciNetMATHCrossRef Herrero, M., Medina, E., VelÃzquez, J.: Finite-time aggregation into a single point in a reaction-diffusion system. Nonlinearity 10(6), 1739–1754 (1997)MathSciNetMATHCrossRef
11.
go back to reference Herrero, M., Velázquez, J.: A blow-up mechanism for a chemotaxis model. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 24, 633–683 (1997)MathSciNetMATH Herrero, M., Velázquez, J.: A blow-up mechanism for a chemotaxis model. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 24, 633–683 (1997)MathSciNetMATH
12.
go back to reference Marrocco, A.: Numerical simulation of chemotactic bacteria aggregation via mixed finite elements. ESIAM: Math. Model. Numer. Anal. 37(4), 617–630 (2003)MathSciNetMATHCrossRef Marrocco, A.: Numerical simulation of chemotactic bacteria aggregation via mixed finite elements. ESIAM: Math. Model. Numer. Anal. 37(4), 617–630 (2003)MathSciNetMATHCrossRef
16.
17.
go back to reference Li, X., Shu, C., Yang, Y.: Local discontinuous Galerkin method for the Keller–Segel chemotaxis model. J. Sci. Comput. 73, 943–967 (2017)MathSciNetMATHCrossRef Li, X., Shu, C., Yang, Y.: Local discontinuous Galerkin method for the Keller–Segel chemotaxis model. J. Sci. Comput. 73, 943–967 (2017)MathSciNetMATHCrossRef
18.
go back to reference Epshteyn, Y., Kurganov, A.: New interior penalty discontinuous Galerkin methods for the Keller–Segel chemotaxis model. SIAM J. Numer. Anal. 47, 368–408 (2008)MathSciNetMATH Epshteyn, Y., Kurganov, A.: New interior penalty discontinuous Galerkin methods for the Keller–Segel chemotaxis model. SIAM J. Numer. Anal. 47, 368–408 (2008)MathSciNetMATH
20.
go back to reference Thompson, J.F., Warsi, Z.U.A., Mastin, C.W.: Numerical Grid Generation: Foundations and Applications. North-Holland Publishing Co., New York (1985)MATH Thompson, J.F., Warsi, Z.U.A., Mastin, C.W.: Numerical Grid Generation: Foundations and Applications. North-Holland Publishing Co., New York (1985)MATH
22.
go back to reference Huang, W., Ren, Y., Russell, R.D.: Moving mesh partial differential equations (MMPDES) based on the equidistribution principle. SIAM J. Numer. Anal. 31(3), 709–730 (1994)MathSciNetMATHCrossRef Huang, W., Ren, Y., Russell, R.D.: Moving mesh partial differential equations (MMPDES) based on the equidistribution principle. SIAM J. Numer. Anal. 31(3), 709–730 (1994)MathSciNetMATHCrossRef
23.
go back to reference Huang, W., Russel, R.D.: Adaptive Moving Mesh Methods. Springer, New York (2011)CrossRef Huang, W., Russel, R.D.: Adaptive Moving Mesh Methods. Springer, New York (2011)CrossRef
24.
go back to reference Sulman, M., Williams, J.F., Russell, R.D.: Optimal mass transport for higher dimensional adaptive grid generation. J. Comput. Phys. 230(9), 3302–3330 (2011)MathSciNetMATHCrossRef Sulman, M., Williams, J.F., Russell, R.D.: Optimal mass transport for higher dimensional adaptive grid generation. J. Comput. Phys. 230(9), 3302–3330 (2011)MathSciNetMATHCrossRef
25.
go back to reference Strehl, R., Sokolov, A., Kuzmin, D., Horstmann, D., Turek, S.: A positivity-preserving finite element method for chemotaxis problems in 3D. J. Comp. Appl. Math. 239(1), 290–303 (2013)MathSciNetMATHCrossRef Strehl, R., Sokolov, A., Kuzmin, D., Horstmann, D., Turek, S.: A positivity-preserving finite element method for chemotaxis problems in 3D. J. Comp. Appl. Math. 239(1), 290–303 (2013)MathSciNetMATHCrossRef
26.
go back to reference de Boor, C.: Good approximation by splines with variable knots. II. In: Conference on the Numerical Solution of Differential Equations (Univ. Dundee, Dundee, 1973), pp. 12–20. Lecture Notes in Math., Vol. 363. Springer, Berlin (1974) de Boor, C.: Good approximation by splines with variable knots. II. In: Conference on the Numerical Solution of Differential Equations (Univ. Dundee, Dundee, 1973), pp. 12–20. Lecture Notes in Math., Vol. 363. Springer, Berlin (1974)
27.
go back to reference Huang, W.: Practical aspects of formulation and solution of moving mesh partial differential equations. J. Comput. Phys. 171(2), 753–775 (2001)MathSciNetMATHCrossRef Huang, W.: Practical aspects of formulation and solution of moving mesh partial differential equations. J. Comput. Phys. 171(2), 753–775 (2001)MathSciNetMATHCrossRef
28.
go back to reference Benamou, J.D., Brenier, Y.: A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem. Numer. Math. 84(3), 375–393 (2000)MathSciNetMATHCrossRef Benamou, J.D., Brenier, Y.: A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem. Numer. Math. 84(3), 375–393 (2000)MathSciNetMATHCrossRef
30.
go back to reference Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math. 44(4), 375–417 (1991)MathSciNetMATHCrossRef Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math. 44(4), 375–417 (1991)MathSciNetMATHCrossRef
31.
go back to reference Sulman, M., Williams, J., Russell, R.D.: An efficient approach for the numerical solution of the Monge–Ampère equation. Appl. Numer. Math. 61(3), 298–307 (2011)MathSciNetMATHCrossRef Sulman, M., Williams, J., Russell, R.D.: An efficient approach for the numerical solution of the Monge–Ampère equation. Appl. Numer. Math. 61(3), 298–307 (2011)MathSciNetMATHCrossRef
34.
go back to reference Horstmann, D.: From 1970 until present: the Keller–Segel model in chemotaxis and its consequences I. Jahresber. DMV 105, 103–165 (2003)MathSciNetMATH Horstmann, D.: From 1970 until present: the Keller–Segel model in chemotaxis and its consequences I. Jahresber. DMV 105, 103–165 (2003)MathSciNetMATH
35.
go back to reference Horstmann, D.: From 1970 until present: the Keller–Segel model in chemotaxis and its consequences II. Jahresber. DMV 106, 51–69 (2004)MathSciNetMATH Horstmann, D.: From 1970 until present: the Keller–Segel model in chemotaxis and its consequences II. Jahresber. DMV 106, 51–69 (2004)MathSciNetMATH
36.
go back to reference Epshteyn, Y., Kurganov, A.: Upwind-difference potentials method for Patlak–Keller–Segel chemotaxis model. J. Sci. Comput. 53, 689–713 (2012)MathSciNetMATHCrossRef Epshteyn, Y., Kurganov, A.: Upwind-difference potentials method for Patlak–Keller–Segel chemotaxis model. J. Sci. Comput. 53, 689–713 (2012)MathSciNetMATHCrossRef
37.
go back to reference Aida, M., Tsujikawa, T., Efendiev, M., Yagi, A., Mimura, M.: Lower estimate of the attractor dimension for a chemotaxis growth system. J. Lond. Math. Soc. 74(2), 453–474 (2006)MathSciNetMATHCrossRef Aida, M., Tsujikawa, T., Efendiev, M., Yagi, A., Mimura, M.: Lower estimate of the attractor dimension for a chemotaxis growth system. J. Lond. Math. Soc. 74(2), 453–474 (2006)MathSciNetMATHCrossRef
38.
go back to reference Strehl, R., Sokolov, A., Kuzmin, D., Horstmann, D., Turek, S.: A flux-corrected finite element method for chemotaxis problems. J. Comput. Appl. Math. 10(2), 219–232 (2010)MathSciNetMATH Strehl, R., Sokolov, A., Kuzmin, D., Horstmann, D., Turek, S.: A flux-corrected finite element method for chemotaxis problems. J. Comput. Appl. Math. 10(2), 219–232 (2010)MathSciNetMATH
Metadata
Title
A Positivity Preserving Moving Mesh Finite Element Method for the Keller–Segel Chemotaxis Model
Authors
M. Sulman
T. Nguyen
Publication date
27-03-2019
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 1/2019
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-019-00951-0

Other articles of this Issue 1/2019

Journal of Scientific Computing 1/2019 Go to the issue

Premium Partner