Skip to main content
Top

2021 | OriginalPaper | Chapter

A Review on Solar PV Cell and Its Evolution

Authors : Devesh Jaiswal, Monika Mittal, Vikas Mittal

Published in: Latest Trends in Renewable Energy Technologies

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Solar energy is fast emerging as a very effective process of power generation from the domain of renewable energy. A solar PV cell is the most crucial part of a solar energy system. The power generated by a PV system relies on many aspects. One of the important factors is solar PV cell materials that have a major bearing on its conversion efficiency. Therefore, this paper presents a detailed review of these materials that have evolved over the years. Their classification into different generations is presented along with its basic structure to give the researchers a jump start into this domain. Also, a detailed comparison of their efficiencies, merits, demerits, cost etc. is showcased.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference IRENA: Future of Solar Photovoltaic: Deployment, investment, technology, grid integration and socio-economic aspects (A Global Energy Transformation: paper). In. International Renewable Energy Agency, Abu Dhabi, (2019) IRENA: Future of Solar Photovoltaic: Deployment, investment, technology, grid integration and socio-economic aspects (A Global Energy Transformation: paper). In. International Renewable Energy Agency, Abu Dhabi, (2019)
3.
go back to reference C.W. Tang, Two-layer organic photovoltaic cell. Appl. Phys. Lett. ((United States), Medium: X; Size:) 183–185 (1986) C.W. Tang, Two-layer organic photovoltaic cell. Appl. Phys. Lett. ((United States), Medium: X; Size:) 183–185 (1986)
5.
go back to reference M. Abdulkadir, A.S. Samosir, A.H. Yatim, modeling and simulation based approach of photovoltaic system in simulink model, 2012 M. Abdulkadir, A.S. Samosir, A.H. Yatim, modeling and simulation based approach of photovoltaic system in simulink model, 2012
10.
go back to reference P. Würfel, U. Würfel, Physics of Solar Cells: From Basic Principles to Advanced Concepts (Wiley, New York, 2016) P. Würfel, U. Würfel, Physics of Solar Cells: From Basic Principles to Advanced Concepts (Wiley, New York, 2016)
11.
go back to reference A. McEvoy, L. Castaner, T. Markvart, Solar Cells: Materials, Manufacture and Operation (Academic Press, 2012) A. McEvoy, L. Castaner, T. Markvart, Solar Cells: Materials, Manufacture and Operation (Academic Press, 2012)
13.
go back to reference Y. Weiwei, W. Xusheng, Z. Feng, Z. Lingjun, 19.6% cast mono-MWT solar cells and 268 W modules, in 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2, 3–8 June 2012 (2012), pp. 1–5 Y. Weiwei, W. Xusheng, Z. Feng, Z. Lingjun, 19.6% cast mono-MWT solar cells and 268 W modules, in 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2, 3–8 June 2012 (2012), pp. 1–5
16.
go back to reference P. Jayakumar, Resource assessment handbook. Asia and Pacific Center for Transfer of Technology of the United Nations (2009) P. Jayakumar, Resource assessment handbook. Asia and Pacific Center for Transfer of Technology of the United Nations (2009)
17.
go back to reference F. Schindler, J. Schön , B. Michl, S. Riepe, P. Krenckel, J. Benick, F. Feldmann, M. Hermle, S.W. Glunz, W. Warta, M.C. Schubert, High efficiency multicrystalline silicon solar cells: potential of n-type doping, in 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), 14–19 June 2015 (2015), pp. 1–3 F. Schindler, J. Schön , B. Michl, S. Riepe, P. Krenckel, J. Benick, F. Feldmann, M. Hermle, S.W. Glunz, W. Warta, M.C. Schubert, High efficiency multicrystalline silicon solar cells: potential of n-type doping, in 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), 14–19 June 2015 (2015), pp. 1–3
20.
go back to reference D. Shi, Z. Guo, N. Bedford, 10 - Nanoenergy Materials, in Nanomaterials and Devices. ed. by D. Shi, Z. Guo, N. Bedford (William Andrew Publishing, Oxford, 2015), pp. 255–291 D. Shi, Z. Guo, N. Bedford, 10 - Nanoenergy Materials, in Nanomaterials and Devices. ed. by D. Shi, Z. Guo, N. Bedford (William Andrew Publishing, Oxford, 2015), pp. 255–291
21.
go back to reference Y. Tawada, M. Kondo, H. Okamoto, Y. Hamakawa, Hydrogenated amorphous silicon carbide as a window material for high efficiency a-Si solar cells. Sol. Energy Mater.s 6(3), 299–315 (1982)CrossRef Y. Tawada, M. Kondo, H. Okamoto, Y. Hamakawa, Hydrogenated amorphous silicon carbide as a window material for high efficiency a-Si solar cells. Sol. Energy Mater.s 6(3), 299–315 (1982)CrossRef
23.
go back to reference B. Srinivas, S. Balaji, M. Nagendra Babu, Y. Reddy, Review on present and advance materials for solar cells. Int. J. Eng. Res.-Online 3, 178–182 (2015) B. Srinivas, S. Balaji, M. Nagendra Babu, Y. Reddy, Review on present and advance materials for solar cells. Int. J. Eng. Res.-Online 3, 178–182 (2015)
26.
go back to reference P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T. Magorian Friedlmeier, M. Powalla, Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7%. physica status solidi (RRL) - Rapid Res. Lett. 9999 (2014). doi:https://doi.org/10.1002/pssr.201409520 P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T. Magorian Friedlmeier, M. Powalla, Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7%. physica status solidi (RRL) - Rapid Res. Lett. 9999 (2014). doi:https://​doi.​org/​10.​1002/​pssr.​201409520
29.
go back to reference T. Baines, T.P. Shalvey, J.D. Major, 10 - CdTe solar cells, in A Comprehensive Guide to Solar Energy Systems, ed,. by Letcher, T.M., Fthenakis, V.M. (Academic Press, 2018), pp. 215–232 T. Baines, T.P. Shalvey, J.D. Major, 10 - CdTe solar cells, in A Comprehensive Guide to Solar Energy Systems, ed,. by Letcher, T.M., Fthenakis, V.M. (Academic Press, 2018), pp. 215–232
33.
go back to reference H. Yao, F. Bai, H. Hu, L. Arunagiri, J. Zhang, Y. Chen, H. Yu, S. Chen, T. Liu, J.Y.L. Lai, Y. Zou, H. Ade, H. Yan, Efficient all-polymer solar cells based on a new polymer acceptor achieving 10.3% power conversion efficiency. ACS Energy Lett. 4(2), 417–422 (2019). doi:https://doi.org/10.1021/acsenergylett.8b02114 H. Yao, F. Bai, H. Hu, L. Arunagiri, J. Zhang, Y. Chen, H. Yu, S. Chen, T. Liu, J.Y.L. Lai, Y. Zou, H. Ade, H. Yan, Efficient all-polymer solar cells based on a new polymer acceptor achieving 10.3% power conversion efficiency. ACS Energy Lett. 4(2), 417–422 (2019). doi:https://​doi.​org/​10.​1021/​acsenergylett.​8b02114
35.
go back to reference M. Liang, W. Xu, F. Cai, P. Chen, B. Peng, J. Chen, Z. Li, New triphenylamine-based organic dyes for efficient dye-sensitized solar cells. J. Phys. Chem. C 111(11), 4465–4472 (2007)CrossRef M. Liang, W. Xu, F. Cai, P. Chen, B. Peng, J. Chen, Z. Li, New triphenylamine-based organic dyes for efficient dye-sensitized solar cells. J. Phys. Chem. C 111(11), 4465–4472 (2007)CrossRef
36.
go back to reference M.H.K. Tafti, S.M. Sadeghzadeh, Dye sensitized solar cell efficiency improvement using TiO 2/nanodiamond nano composite. Sādhanā 43(7), 113 (2018)CrossRef M.H.K. Tafti, S.M. Sadeghzadeh, Dye sensitized solar cell efficiency improvement using TiO 2/nanodiamond nano composite. Sādhanā 43(7), 113 (2018)CrossRef
37.
go back to reference C. Ubani, M. Ibrahim, M. Teridi, Moving into the domain of perovskite sensitized solar cell. Renew. Sustain. Energy Rev. 72, 907–915 (2017)CrossRef C. Ubani, M. Ibrahim, M. Teridi, Moving into the domain of perovskite sensitized solar cell. Renew. Sustain. Energy Rev. 72, 907–915 (2017)CrossRef
38.
go back to reference D. Shi, Y. Zeng, W. Shen, Perovskite/c-Si tandem solar cell with inverted nanopyramids: realizing high efficiency by controllable light trapping. Sci. Rep. 5, 16504 (2015)CrossRef D. Shi, Y. Zeng, W. Shen, Perovskite/c-Si tandem solar cell with inverted nanopyramids: realizing high efficiency by controllable light trapping. Sci. Rep. 5, 16504 (2015)CrossRef
Metadata
Title
A Review on Solar PV Cell and Its Evolution
Authors
Devesh Jaiswal
Monika Mittal
Vikas Mittal
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-16-1186-5_26