Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 10/2021

28-06-2021

A Review on the Effect of Impact Toughness and Fracture Toughness on Impact-Abrasion Wear

Author: O. A. Zambrano

Published in: Journal of Materials Engineering and Performance | Issue 10/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the mining and related industries, the abrasion and impact phenomena operate among the chain of ore processing. While abrasion-corrosion and/or erosion-corrosion phenomena in ore processing are relatively well understood, the concurrent operation of abrasion and impact wear is not well comprehended. The distinctive mechanisms and features of abrasion-impact wear and the synergy, if one exists, between impact and abrasion have not been either explored or discussed systematically in the literature. Furthermore, their economic impact on mining cannot be underestimated especially as past research focused mainly on improving the hardness even at the expense of toughness. Understanding the complex relation between abrasion and impact can efficiently mitigate countless wear problems in mining. The purpose of this paper is to discuss critically the topic, stimulating new questions, and propose some general ideas that might be used as basic guidelines.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ma. Qian and W. Chaochang, Impact-Abrasion Behavior of Low Alloy White Cast Irons, Wear, 1997, 209(1), p 308–315.CrossRef Ma. Qian and W. Chaochang, Impact-Abrasion Behavior of Low Alloy White Cast Irons, Wear, 1997, 209(1), p 308–315.CrossRef
2.
go back to reference J.D. Gates, G.J. Gore, M.J.P. Hermand, M.J.P. Guerineau, P.B. Martin and J. Saad, The Meaning of High Stress Abrasion and Its Application in White Cast Irons, Wear, 2007, 263(1), p 6–35.CrossRef J.D. Gates, G.J. Gore, M.J.P. Hermand, M.J.P. Guerineau, P.B. Martin and J. Saad, The Meaning of High Stress Abrasion and Its Application in White Cast Irons, Wear, 2007, 263(1), p 6–35.CrossRef
3.
go back to reference N. Ojala, K. Valtonen, V. Heino, M. Kallio, J. Aaltonen, P. Siitonen and V.-T. Kuokkala, Effects of Composition and Microstructure on the Abrasive Wear Performance of Quenched Wear Resistant Steels, Wear, 2014, 317(1), p 225–232.CrossRef N. Ojala, K. Valtonen, V. Heino, M. Kallio, J. Aaltonen, P. Siitonen and V.-T. Kuokkala, Effects of Composition and Microstructure on the Abrasive Wear Performance of Quenched Wear Resistant Steels, Wear, 2014, 317(1), p 225–232.CrossRef
4.
go back to reference D.L. Albright and D.J. Dunn, Wear Behavior of Iron and Steel Castings for the Mining Industry, JOM, 1983, 35(11), p 23–29.CrossRef D.L. Albright and D.J. Dunn, Wear Behavior of Iron and Steel Castings for the Mining Industry, JOM, 1983, 35(11), p 23–29.CrossRef
5.
go back to reference A. Kootsookos, J.D. Gates and R.A. Eaton, Development of a White Cast Iron of Fracture Toughness 40 MPa√m, Cast Met., 1995, 7(4), p 239–246.CrossRef A. Kootsookos, J.D. Gates and R.A. Eaton, Development of a White Cast Iron of Fracture Toughness 40 MPa√m, Cast Met., 1995, 7(4), p 239–246.CrossRef
6.
go back to reference D. Medlin and H. Kuhn, Fracture Toughness and Fracture Mechanics, Mechanical Testing and Evaluation, Vol 8, ASM Handbook. H. Kuhn et al., Ed., ASM International, Novelty, 2000, p 563–575 D. Medlin and H. Kuhn, Fracture Toughness and Fracture Mechanics, Mechanical Testing and Evaluation, Vol 8, ASM Handbook. H. Kuhn et al., Ed., ASM International, Novelty, 2000, p 563–575
7.
go back to reference S. Zhang, D. Sun, Fu. Yongqing and D. Hejun, Toughness Measurement of Thin Films: A Critical Review, Surf. Coat. Technol., 2005, 198(1), p 74–84.CrossRef S. Zhang, D. Sun, Fu. Yongqing and D. Hejun, Toughness Measurement of Thin Films: A Critical Review, Surf. Coat. Technol., 2005, 198(1), p 74–84.CrossRef
9.
go back to reference ISO. 12135:2016(E) Metallic Materials–Unified Method of Test for the Determination of Quasistatic Fracture Toughness 2007. CH-1214 Vernier, Geneva, Switzerland. ISO. 12135:2016(E) Metallic Materials–Unified Method of Test for the Determination of Quasistatic Fracture Toughness 2007. CH-1214 Vernier, Geneva, Switzerland.
11.
go back to reference X.-K. Zhu and J.A. Joyce, Review of Fracture Toughness (G, K, J, CTOD, CTOA) Testing and Standardization, Eng. Fract. Mech., 2012, 85, p 1–46.CrossRef X.-K. Zhu and J.A. Joyce, Review of Fracture Toughness (G, K, J, CTOD, CTOA) Testing and Standardization, Eng. Fract. Mech., 2012, 85, p 1–46.CrossRef
12.
go back to reference T. Noguchi, K. Shimizu, N. Takahashi and N. Takashi, Strength Evaluation of Cast Iron Grinding Balls by Repeated Drop Tests, Wear, 1999, 231(2), p 301–309.CrossRef T. Noguchi, K. Shimizu, N. Takahashi and N. Takashi, Strength Evaluation of Cast Iron Grinding Balls by Repeated Drop Tests, Wear, 1999, 231(2), p 301–309.CrossRef
13.
go back to reference S.T. Rolfe and J.M. Barsom, Fracture and Fatigue Control in Structures: Applications of Fracture Mechanics, 3rd ed. ASTM International, Novelty, 1999. S.T. Rolfe and J.M. Barsom, Fracture and Fatigue Control in Structures: Applications of Fracture Mechanics, 3rd ed. ASTM International, Novelty, 1999.
14.
go back to reference C.-H. Hsu, S.-C. Lee, Y.-H. Shy and W.-T. Chiou, Relationship Between Dynamic and Static Toughness of Flake and Compacted Graphite Cast Irons, Mater. Sci. Eng. A, 2000, 282(1), p 115–122.CrossRef C.-H. Hsu, S.-C. Lee, Y.-H. Shy and W.-T. Chiou, Relationship Between Dynamic and Static Toughness of Flake and Compacted Graphite Cast Irons, Mater. Sci. Eng. A, 2000, 282(1), p 115–122.CrossRef
15.
go back to reference A. Rossoll, C. Berdin and C. Prioul, Determination of the Fracture Toughness of a Low Alloy Steel by the Instrumented Charpy Impact Test, Int. J. Fract., 2002, 115(3), p 205–226.CrossRef A. Rossoll, C. Berdin and C. Prioul, Determination of the Fracture Toughness of a Low Alloy Steel by the Instrumented Charpy Impact Test, Int. J. Fract., 2002, 115(3), p 205–226.CrossRef
16.
go back to reference M.J. Barsom, Development of the AASHTO Fracture-Toughness Requirements for Bridge Steels, Eng. Fract. Mech., 1975, 7(3), p 605–618.CrossRef M.J. Barsom, Development of the AASHTO Fracture-Toughness Requirements for Bridge Steels, Eng. Fract. Mech., 1975, 7(3), p 605–618.CrossRef
17.
go back to reference H.F. Li, Q.Q. Duan, P. Zhang, X.H. Zhou, B. Wang and Z.F. Zhang, The Quantitative Relationship Between Fracture Toughness and Impact Toughness in High-Strength Steels, Eng. Fract. Mech., 2019, 211, p 362–370.CrossRef H.F. Li, Q.Q. Duan, P. Zhang, X.H. Zhou, B. Wang and Z.F. Zhang, The Quantitative Relationship Between Fracture Toughness and Impact Toughness in High-Strength Steels, Eng. Fract. Mech., 2019, 211, p 362–370.CrossRef
18.
go back to reference Y.J. Chao, J.D. Ward and R.G. Sands, Charpy Impact Energy, Fracture Toughness and Ductile–Brittle Transition Temperature of Dual-Phase 590 Steel, Mater. Des., 2007, 28(2), p 551–557.CrossRef Y.J. Chao, J.D. Ward and R.G. Sands, Charpy Impact Energy, Fracture Toughness and Ductile–Brittle Transition Temperature of Dual-Phase 590 Steel, Mater. Des., 2007, 28(2), p 551–557.CrossRef
19.
go back to reference X. Wen, M. Wan, C. Huang, Y. Tan, M. Lei, Y. Liang and X. Cai, Effect of Microstructure on Tensile Properties, Impact Toughness and Fracture Toughness of TC21 Alloy, Mater. Des., 2019, 180, p 107898.CrossRef X. Wen, M. Wan, C. Huang, Y. Tan, M. Lei, Y. Liang and X. Cai, Effect of Microstructure on Tensile Properties, Impact Toughness and Fracture Toughness of TC21 Alloy, Mater. Des., 2019, 180, p 107898.CrossRef
20.
go back to reference R.O. Ritchie and R.M. Horn, Further Considerations on the Inconsistency in Toughness Evaluation of AISI 4340 Steel Austenitized at Increasing Temperatures, Metall. Trans. A, 1978, 9(3), p 331–341.CrossRef R.O. Ritchie and R.M. Horn, Further Considerations on the Inconsistency in Toughness Evaluation of AISI 4340 Steel Austenitized at Increasing Temperatures, Metall. Trans. A, 1978, 9(3), p 331–341.CrossRef
21.
go back to reference H. Kim, M. Kang, H.J. Jung, H.S. Kim, C.M. Bae and S. Lee, Mechanisms of Toughness Improvement in Charpy Impact And Fracture Toughness Tests of Non-Heat-Treating Cold-Drawn Steel Bar, Mater. Sci. Eng. A, 2013, 571, p 38–48.CrossRef H. Kim, M. Kang, H.J. Jung, H.S. Kim, C.M. Bae and S. Lee, Mechanisms of Toughness Improvement in Charpy Impact And Fracture Toughness Tests of Non-Heat-Treating Cold-Drawn Steel Bar, Mater. Sci. Eng. A, 2013, 571, p 38–48.CrossRef
22.
go back to reference Q. Wang, L. Xiao, W. Liu, H. Zhang, W. Cui, Z. Li and W. Guohua, Effect of Heat Treatment on Tensile Properties, Impact Toughness and Plane-Strain Fracture Toughness of Sand-Cast Mg-6Gd-3Y-05Zr Magnesium Alloy, Mater. Sci. Eng. A, 2017, 705, p 402–410.CrossRef Q. Wang, L. Xiao, W. Liu, H. Zhang, W. Cui, Z. Li and W. Guohua, Effect of Heat Treatment on Tensile Properties, Impact Toughness and Plane-Strain Fracture Toughness of Sand-Cast Mg-6Gd-3Y-05Zr Magnesium Alloy, Mater. Sci. Eng. A, 2017, 705, p 402–410.CrossRef
23.
go back to reference H.-F. Li, Q.-Q. Duan, P. Zhang and Z.-F. Zhang, The Relationship Between Strength and Toughness in Tempered Steel: Trade-Off or Invariable?, Adv. Eng. Mater., 2019, 21(4), p 1801116.CrossRef H.-F. Li, Q.-Q. Duan, P. Zhang and Z.-F. Zhang, The Relationship Between Strength and Toughness in Tempered Steel: Trade-Off or Invariable?, Adv. Eng. Mater., 2019, 21(4), p 1801116.CrossRef
24.
go back to reference R. Tomášek, V. Mareš, L. Horsák, Fracture Toughness and Charpy Impact Test of MIM Steels and Correlation of Results by KIC-CVN Relationships, in Key Engineering Materials. 2019. Trans Tech Publ. R. Tomášek, V. Mareš, L. Horsák, Fracture Toughness and Charpy Impact Test of MIM Steels and Correlation of Results by KIC-CVN Relationships, in Key Engineering Materials. 2019. Trans Tech Publ.
25.
go back to reference T.M.F. Ronald, J.A. Hall and C.M. Pierce, Usefulness of Precracked Charpy Specimens for Fracture Toughness Screening Tests of Titanium Alloys, Metall. Mater. Trans. B, 1972, 3(4), p 813–818.CrossRef T.M.F. Ronald, J.A. Hall and C.M. Pierce, Usefulness of Precracked Charpy Specimens for Fracture Toughness Screening Tests of Titanium Alloys, Metall. Mater. Trans. B, 1972, 3(4), p 813–818.CrossRef
27.
go back to reference J.R. Rice and G.F. Rosengren, Plane Strain Deformation Near a Crack Tip in a Power-Law Hardening Material, J. Mech. Phys. Solids, 1968, 16(1), p 1–12.CrossRef J.R. Rice and G.F. Rosengren, Plane Strain Deformation Near a Crack Tip in a Power-Law Hardening Material, J. Mech. Phys. Solids, 1968, 16(1), p 1–12.CrossRef
28.
go back to reference M.-L. Zhu and F.-Z. Xuan, Correlation Between Microstructure, Hardness and Strength in HAZ of Dissimilar Welds of Rotor Steels, Mater. Sci. Eng. A, 2010, 527(16), p 4035–4042.CrossRef M.-L. Zhu and F.-Z. Xuan, Correlation Between Microstructure, Hardness and Strength in HAZ of Dissimilar Welds of Rotor Steels, Mater. Sci. Eng. A, 2010, 527(16), p 4035–4042.CrossRef
29.
go back to reference K.-H. Zum Gahr and W.G. Scholz, Fracture Toughness of White Cast Irons, JOM, 1980, 32(10), p 38–44.CrossRef K.-H. Zum Gahr and W.G. Scholz, Fracture Toughness of White Cast Irons, JOM, 1980, 32(10), p 38–44.CrossRef
30.
go back to reference M.-X. Zhang and P.M. Kelly, Stress-Induced Martensitic Transformation and Impact Toughness of Cast Irons and High-Carbon Fe-Ni-C Steel, Metall. Mater. Trans. A., 2001, 32(11), p 2695–2708.CrossRef M.-X. Zhang and P.M. Kelly, Stress-Induced Martensitic Transformation and Impact Toughness of Cast Irons and High-Carbon Fe-Ni-C Steel, Metall. Mater. Trans. A., 2001, 32(11), p 2695–2708.CrossRef
32.
go back to reference A. Kootsookos and J.D. Gates, The Role of Secondary Carbide Precipitation on the Fracture Toughness of a Reduced Carbon White Iron, Mater. Sci. Eng. A, 2008, 490(1), p 313–318.CrossRef A. Kootsookos and J.D. Gates, The Role of Secondary Carbide Precipitation on the Fracture Toughness of a Reduced Carbon White Iron, Mater. Sci. Eng. A, 2008, 490(1), p 313–318.CrossRef
33.
go back to reference I.R. Sare and B.K. Arnold, The Influence of Heat Treatment on the High-Stress Abrasion Resistance and Fracture Toughness of Alloy White Cast Irons, Metall. Mater. Trans. A., 1995, 26(7), p 1785–1793.CrossRef I.R. Sare and B.K. Arnold, The Influence of Heat Treatment on the High-Stress Abrasion Resistance and Fracture Toughness of Alloy White Cast Irons, Metall. Mater. Trans. A., 1995, 26(7), p 1785–1793.CrossRef
34.
go back to reference W.L. Bradley and M.N. Srinivasan, Fracture and Fracture Toughness of Cast Irons, Int. Mater. Rev., 1990, 35(1), p 129–161.CrossRef W.L. Bradley and M.N. Srinivasan, Fracture and Fracture Toughness of Cast Irons, Int. Mater. Rev., 1990, 35(1), p 129–161.CrossRef
35.
go back to reference S.B. Biner, The Role of Eutectic Carbide Morphology on the Fracture Behaviour of High-Chromium Cast Irons—I. Austenitic Alloys, Can. Metall. Q., 1985, 24(2), p 155–162.CrossRef S.B. Biner, The Role of Eutectic Carbide Morphology on the Fracture Behaviour of High-Chromium Cast Irons—I. Austenitic Alloys, Can. Metall. Q., 1985, 24(2), p 155–162.CrossRef
36.
go back to reference S.B. Biner, The Role of Eutectic Carbide Morphology on the Fracture Behaviour of High-Chromium Cast Irons—II. Martensitic Alloys , Can. Metall. Q., 1985, 24(2), p 163–167.CrossRef S.B. Biner, The Role of Eutectic Carbide Morphology on the Fracture Behaviour of High-Chromium Cast Irons—II. Martensitic Alloys , Can. Metall. Q., 1985, 24(2), p 163–167.CrossRef
37.
go back to reference M. Filipovic, Z. Kamberovic, M. Korac and M. Gavrilovski, Microstructure and Mechanical Properties of Fe-Cr-C-Nb White Cast Irons, Mater. Des., 2013, 47, p 41–48.CrossRef M. Filipovic, Z. Kamberovic, M. Korac and M. Gavrilovski, Microstructure and Mechanical Properties of Fe-Cr-C-Nb White Cast Irons, Mater. Des., 2013, 47, p 41–48.CrossRef
38.
go back to reference Y. Uematsu, K. Tokaji, T. Horie and K. Nishigaki, Fracture Toughness and Fatigue Crack Propagation in Cast Irons with Spheroidal Vanadium Carbides Dispersed Within Martensitic Matrix Microstructure, Mater. Sci. Eng. A, 2007, 471(1), p 15–21.CrossRef Y. Uematsu, K. Tokaji, T. Horie and K. Nishigaki, Fracture Toughness and Fatigue Crack Propagation in Cast Irons with Spheroidal Vanadium Carbides Dispersed Within Martensitic Matrix Microstructure, Mater. Sci. Eng. A, 2007, 471(1), p 15–21.CrossRef
39.
go back to reference L. Hao, C. Ouyang, X. Yan, J. Wang, G. Hua, R. Chung and D.Y. Li, Potential Application of Electron Work Function in Analyzing Fracture Toughness of Materials, J. Mater. Sci. Technol., 2017, 33(10), p 1128–1133.CrossRef L. Hao, C. Ouyang, X. Yan, J. Wang, G. Hua, R. Chung and D.Y. Li, Potential Application of Electron Work Function in Analyzing Fracture Toughness of Materials, J. Mater. Sci. Technol., 2017, 33(10), p 1128–1133.CrossRef
40.
go back to reference J.J. Coronado, Effect of (Fe, Cr)7C3 Carbide Orientation on Abrasion Wear Resistance and Fracture Toughness, Wear, 2011, 270(3), p 287–293.CrossRef J.J. Coronado, Effect of (Fe, Cr)7C3 Carbide Orientation on Abrasion Wear Resistance and Fracture Toughness, Wear, 2011, 270(3), p 287–293.CrossRef
41.
go back to reference A.H. Elsayed, M.M. Megahed, A.A. Sadek and K.M. Abouelela, Fracture Toughness Characterization of Austempered Ductile Iron Produced Using Both Conventional and Two-Step Austempering Processes, Mater. Des., 2009, 30(6), p 1866–1877.CrossRef A.H. Elsayed, M.M. Megahed, A.A. Sadek and K.M. Abouelela, Fracture Toughness Characterization of Austempered Ductile Iron Produced Using Both Conventional and Two-Step Austempering Processes, Mater. Des., 2009, 30(6), p 1866–1877.CrossRef
42.
go back to reference G. Toktaş and A. Toktaş, Estimating Fracture Toughness of Various Matrix Structured Ductile Iron Using Circumferentially Notched Tensile Bars, Eng. Fract. Mech., 2018, 194, p 1–8.CrossRef G. Toktaş and A. Toktaş, Estimating Fracture Toughness of Various Matrix Structured Ductile Iron Using Circumferentially Notched Tensile Bars, Eng. Fract. Mech., 2018, 194, p 1–8.CrossRef
43.
go back to reference A. Hohenwarter, A. Taylor, R. Stock and R. Pippan, Effect of Large Shear Deformations on the Fracture Behavior of a Fully Pearlitic Steel, Metall. Mater. Trans. A, 2011, 42(6), p 1609–1618.CrossRef A. Hohenwarter, A. Taylor, R. Stock and R. Pippan, Effect of Large Shear Deformations on the Fracture Behavior of a Fully Pearlitic Steel, Metall. Mater. Trans. A, 2011, 42(6), p 1609–1618.CrossRef
44.
go back to reference A.R. Chintha, K. Valtonen, V.T. Kuokkala, S. Kundu, M.J. Peet and H.K.D.H. Bhadeshia, Role of Fracture Toughness in Impact-Abrasion Wear, Wear, 2019, 428–429, p 430–437.CrossRef A.R. Chintha, K. Valtonen, V.T. Kuokkala, S. Kundu, M.J. Peet and H.K.D.H. Bhadeshia, Role of Fracture Toughness in Impact-Abrasion Wear, Wear, 2019, 428–429, p 430–437.CrossRef
45.
go back to reference A.K. Saxena, A. Kumar, M. Herbig, S. Brinckmann, G. Dehm and C. Kirchlechner, Micro Fracture Investigations of White Etching Layers, Mater. Des., 2019, 180, p 107892.CrossRef A.K. Saxena, A. Kumar, M. Herbig, S. Brinckmann, G. Dehm and C. Kirchlechner, Micro Fracture Investigations of White Etching Layers, Mater. Des., 2019, 180, p 107892.CrossRef
46.
go back to reference M.N. Yoozbashi, S. Yazdani and T.S. Wang, Design of a New Nanostructured, High-Si Bainitic Steel with Lower Cost Production, Mater. Des., 2011, 32(6), p 3248–3253.CrossRef M.N. Yoozbashi, S. Yazdani and T.S. Wang, Design of a New Nanostructured, High-Si Bainitic Steel with Lower Cost Production, Mater. Des., 2011, 32(6), p 3248–3253.CrossRef
47.
go back to reference P. Valizadeh Moghaddam, M. Rinaudo, J. Hardell, E. Vuorinen and B. Prakash, Influence of Fracture Toughness on Two-Body Abrasive Wear of Nanostructured Carbide-Free Bainitic Steels, Wear, 2020, 460–461, p 203484.CrossRef P. Valizadeh Moghaddam, M. Rinaudo, J. Hardell, E. Vuorinen and B. Prakash, Influence of Fracture Toughness on Two-Body Abrasive Wear of Nanostructured Carbide-Free Bainitic Steels, Wear, 2020, 460–461, p 203484.CrossRef
48.
go back to reference A. Hohenwarter and R. Pippan, Fracture and Fracture Toughness of Nanopolycrystalline Metals Produced by Severe Plastic Deformation, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 2015, 373(2038), p 20140366.CrossRef A. Hohenwarter and R. Pippan, Fracture and Fracture Toughness of Nanopolycrystalline Metals Produced by Severe Plastic Deformation, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 2015, 373(2038), p 20140366.CrossRef
49.
go back to reference O.A. Zambrano, A General Perspective of Fe-Mn-Al-C Steels, J. Mater. Sci., 2018, 53(20), p 14003–14062.CrossRef O.A. Zambrano, A General Perspective of Fe-Mn-Al-C Steels, J. Mater. Sci., 2018, 53(20), p 14003–14062.CrossRef
51.
go back to reference S. Ge, Q. Wang and J. Wang, The Impact Wear-Resistance Enhancement Mechanism of Medium Manganese Steel and Its Applications in Mining Machines, Wear, 2017, 376–377, p 1097–1104.CrossRef S. Ge, Q. Wang and J. Wang, The Impact Wear-Resistance Enhancement Mechanism of Medium Manganese Steel and Its Applications in Mining Machines, Wear, 2017, 376–377, p 1097–1104.CrossRef
52.
go back to reference H.K.D.H. Bhadeshia, The First Bulk Nanostructured Metal, Sci. Technol. Adv. Mater., 2013, 14(1), p 014202.CrossRef H.K.D.H. Bhadeshia, The First Bulk Nanostructured Metal, Sci. Technol. Adv. Mater., 2013, 14(1), p 014202.CrossRef
53.
go back to reference L.C. Chang, Microstructures and Reaction Kinetics of Bainite Transformation in Si-Rich Steels, Mater. Sci. Eng. A, 2004, 368(1), p 175–182.CrossRef L.C. Chang, Microstructures and Reaction Kinetics of Bainite Transformation in Si-Rich Steels, Mater. Sci. Eng. A, 2004, 368(1), p 175–182.CrossRef
54.
go back to reference I. Konyashin, M. Antonov and B. Ries, Wear Behaviour and Wear Mechanisms of Different Hardmetal Grades in Comparison With Polycrystalline Diamond in a New Impact-Abrasion Test, Int. J. Refract. Met. Hard Mater., 2020, 92, p 105286.CrossRef I. Konyashin, M. Antonov and B. Ries, Wear Behaviour and Wear Mechanisms of Different Hardmetal Grades in Comparison With Polycrystalline Diamond in a New Impact-Abrasion Test, Int. J. Refract. Met. Hard Mater., 2020, 92, p 105286.CrossRef
55.
go back to reference A. Vornberger, J. Pötschke, T. Gestrich, M. Herrmann and A. Michaelis, Influence of Microstructure on Hardness and Thermal Conductivity of Hardmetals, Int. J. Refract. Met. Hard Mater., 2020, 88, p 105170.CrossRef A. Vornberger, J. Pötschke, T. Gestrich, M. Herrmann and A. Michaelis, Influence of Microstructure on Hardness and Thermal Conductivity of Hardmetals, Int. J. Refract. Met. Hard Mater., 2020, 88, p 105170.CrossRef
56.
go back to reference G.-S. Zhang, J.-D. Xing and Y.-M. Gao, Impact Wear Resistance of WC/Hadfield Steel Composite and Its Interfacial Characteristics, Wear, 2006, 260(7), p 728–734.CrossRef G.-S. Zhang, J.-D. Xing and Y.-M. Gao, Impact Wear Resistance of WC/Hadfield Steel Composite and Its Interfacial Characteristics, Wear, 2006, 260(7), p 728–734.CrossRef
57.
go back to reference V. Jankauskas, M. Antonov, E. Katinas and I. Gedzevicius, Effect of Alloying Additives on Impact-Abrasive Wear of Manual Arc Welded Hadfield Steel Hardfacings, J. Frict. Wear, 2016, 37(2), p 170–178.CrossRef V. Jankauskas, M. Antonov, E. Katinas and I. Gedzevicius, Effect of Alloying Additives on Impact-Abrasive Wear of Manual Arc Welded Hadfield Steel Hardfacings, J. Frict. Wear, 2016, 37(2), p 170–178.CrossRef
58.
go back to reference J.J. Coronado and A. Sinatora, Effect of Abrasive Size on Wear of Metallic Materials and Its Relationship with Microchips Morphology and Wear Micromechanisms: Part 1, Wear, 2011, 271(9), p 1794–1803.CrossRef J.J. Coronado and A. Sinatora, Effect of Abrasive Size on Wear of Metallic Materials and Its Relationship with Microchips Morphology and Wear Micromechanisms: Part 1, Wear, 2011, 271(9), p 1794–1803.CrossRef
59.
go back to reference K.-H. Zum Gahr, Microstructure and Wear of Materials, Vol 10 Elsevier, Amsredam, 1987. K.-H. Zum Gahr, Microstructure and Wear of Materials, Vol 10 Elsevier, Amsredam, 1987.
60.
go back to reference K. Hokkirigawa and K. Kato, An Experimental and Theoretical Investigation of Ploughing, Cutting and Wedge Formation During Abrasive Wear, Tribol. Int., 1988, 21(1), p 51–57.CrossRef K. Hokkirigawa and K. Kato, An Experimental and Theoretical Investigation of Ploughing, Cutting and Wedge Formation During Abrasive Wear, Tribol. Int., 1988, 21(1), p 51–57.CrossRef
61.
go back to reference E. Hornbogen, The Role of Fracture Toughness in the Wear of Metals, Wear, 1975, 33(2), p 251–259.CrossRef E. Hornbogen, The Role of Fracture Toughness in the Wear of Metals, Wear, 1975, 33(2), p 251–259.CrossRef
62.
go back to reference A.G. Atkins, Toughness in Wear and Grinding, Wear, 1980, 61(1), p 183–190.CrossRef A.G. Atkins, Toughness in Wear and Grinding, Wear, 1980, 61(1), p 183–190.CrossRef
63.
go back to reference J.R. Fleming and N.P. Suh, The Relationship Between Crack Propagation Rates and Wear Rates, Wear, 1977, 44(1), p 57–64.CrossRef J.R. Fleming and N.P. Suh, The Relationship Between Crack Propagation Rates and Wear Rates, Wear, 1977, 44(1), p 57–64.CrossRef
64.
go back to reference D.A. Hills and D.W. Ashelby, On the Application of Fracture Mechanics to Wear, Wear, 1979, 54(2), p 321–330.CrossRef D.A. Hills and D.W. Ashelby, On the Application of Fracture Mechanics to Wear, Wear, 1979, 54(2), p 321–330.CrossRef
65.
go back to reference T. Atkins, The Importance of Toughness in Manufacturing, J. Mater. Process. Technol., 2018, 261, p 280–294.CrossRef T. Atkins, The Importance of Toughness in Manufacturing, J. Mater. Process. Technol., 2018, 261, p 280–294.CrossRef
66.
go back to reference A.G. Atkins and J.H. Liu, Toughness and the Transition Between Cutting and Rubbing in Abrasive Contacts, Wear, 2007, 262(1), p 146–159.CrossRef A.G. Atkins and J.H. Liu, Toughness and the Transition Between Cutting and Rubbing in Abrasive Contacts, Wear, 2007, 262(1), p 146–159.CrossRef
67.
go back to reference I. Sevim and I.B. Eryurek, Effect of Fracture Toughness on Abrasive Wear Resistance of Steels, Mater. Des., 2006, 27(10), p 911–919.CrossRef I. Sevim and I.B. Eryurek, Effect of Fracture Toughness on Abrasive Wear Resistance of Steels, Mater. Des., 2006, 27(10), p 911–919.CrossRef
68.
go back to reference W.J. Salesky and G. Thomas, Medium Carbon Steel Alloy Design for Wear Applications, Wear, 1982, 75(1), p 21–40.CrossRef W.J. Salesky and G. Thomas, Medium Carbon Steel Alloy Design for Wear Applications, Wear, 1982, 75(1), p 21–40.CrossRef
69.
go back to reference K.-H. Zum Gahr and D.V. Doane, Optimizing Fracture Toughness and Abrasion Resistance In White Cast Irons, Metall. Trans. A, 1980, 11(4), p 613–620.CrossRef K.-H. Zum Gahr and D.V. Doane, Optimizing Fracture Toughness and Abrasion Resistance In White Cast Irons, Metall. Trans. A, 1980, 11(4), p 613–620.CrossRef
70.
go back to reference M. Radulovic, M. Fiset, K. Peev and M. Tomovic, The Influence of Vanadium on Fracture Toughness and Abrasion Resistance in High Chromium White Cast Irons, J. Mater. Sci., 1994, 29(19), p 5085–5094.CrossRef M. Radulovic, M. Fiset, K. Peev and M. Tomovic, The Influence of Vanadium on Fracture Toughness and Abrasion Resistance in High Chromium White Cast Irons, J. Mater. Sci., 1994, 29(19), p 5085–5094.CrossRef
71.
go back to reference M. Filipovic, Z. Kamberovic, M. Korac and M. Gavrilovski, Correlation of Microstructure with the Wear Resistance and Fracture Toughness of White Cast Iron Alloys, Met. Mater. Int., 2013, 19(3), p 473–481.CrossRef M. Filipovic, Z. Kamberovic, M. Korac and M. Gavrilovski, Correlation of Microstructure with the Wear Resistance and Fracture Toughness of White Cast Iron Alloys, Met. Mater. Int., 2013, 19(3), p 473–481.CrossRef
72.
go back to reference J.D. Gates and R. Eaton, Real Life Wear Processes, Mater. Forum, 1993, 17(4), p 369–381. J.D. Gates and R. Eaton, Real Life Wear Processes, Mater. Forum, 1993, 17(4), p 369–381.
73.
go back to reference G.J. Gore and J.D. Gates, Effect of Hardness on Three Very Different Forms of Wear, Wear, 1997, 203–204, p 544–563.CrossRef G.J. Gore and J.D. Gates, Effect of Hardness on Three Very Different Forms of Wear, Wear, 1997, 203–204, p 544–563.CrossRef
74.
go back to reference G.J. Gore and J.D. Gates, Impact-Abrasion: Has Its Time Come... and Gone, Mater. Aust., 2000, 32, p 13–15. G.J. Gore and J.D. Gates, Impact-Abrasion: Has Its Time Come... and Gone, Mater. Aust., 2000, 32, p 13–15.
75.
go back to reference O.R. Ritchie, The Conflicts Between Strength and Toughness, Nat. Mater., 2011, 10(11), p 817–822.CrossRef O.R. Ritchie, The Conflicts Between Strength and Toughness, Nat. Mater., 2011, 10(11), p 817–822.CrossRef
76.
go back to reference N.-V. Nguyen, T.-H. Pham and S.-E. Kim, Strain Rate-Dependent Behaviors of Mechanical Properties of Structural Steel Investigated Using Indentation and Finite Element Analysis, Mech. Mater., 2019, 137, p 103089.CrossRef N.-V. Nguyen, T.-H. Pham and S.-E. Kim, Strain Rate-Dependent Behaviors of Mechanical Properties of Structural Steel Investigated Using Indentation and Finite Element Analysis, Mech. Mater., 2019, 137, p 103089.CrossRef
77.
go back to reference M. Hassani, D. Veysset, K.A. Nelson and C.A. Schuh, Material Hardness at Strain Rates Beyond 106 s−1 Via High Velocity Microparticle Impact Indentation, Scr. Mater., 2020, 177, p 198–202.CrossRef M. Hassani, D. Veysset, K.A. Nelson and C.A. Schuh, Material Hardness at Strain Rates Beyond 106 s−1 Via High Velocity Microparticle Impact Indentation, Scr. Mater., 2020, 177, p 198–202.CrossRef
78.
go back to reference Z. Wang, Z.-B. Cai, Z.-Q. Chen, Y. Sun and M.-H. Zhu, Low-Velocity Impact Wear Behavior of Ball-to-Flat Contact Under Constant Kinetic Energy, J. Mater. Eng. Perform., 2017, 26(11), p 5669–5679.CrossRef Z. Wang, Z.-B. Cai, Z.-Q. Chen, Y. Sun and M.-H. Zhu, Low-Velocity Impact Wear Behavior of Ball-to-Flat Contact Under Constant Kinetic Energy, J. Mater. Eng. Perform., 2017, 26(11), p 5669–5679.CrossRef
79.
go back to reference H.A. Sherif and F.A. Almufadi, Analysis of Elastic and Plastic Impact Models, Wear, 2018, 412–413, p 127–135.CrossRef H.A. Sherif and F.A. Almufadi, Analysis of Elastic and Plastic Impact Models, Wear, 2018, 412–413, p 127–135.CrossRef
80.
go back to reference O. Haiko, K. Valtonen, A. Kaijalainen, S. Uusikallio, J. Hannula, T. Liimatainen and J. Kömi, Effect of Tempering on the Impact-Abrasive and Abrasive Wear Resistance of Ultra-High Strength Steels, Wear, 2019, 440–441, p 203098.CrossRef O. Haiko, K. Valtonen, A. Kaijalainen, S. Uusikallio, J. Hannula, T. Liimatainen and J. Kömi, Effect of Tempering on the Impact-Abrasive and Abrasive Wear Resistance of Ultra-High Strength Steels, Wear, 2019, 440–441, p 203098.CrossRef
81.
go back to reference J.H. Tylczak, J.A. Hawk and R.D. Wilson, A Comparison of Laboratory Abrasion and Field Wear Results, Wear, 1999, 225–229, p 1059–1069.CrossRef J.H. Tylczak, J.A. Hawk and R.D. Wilson, A Comparison of Laboratory Abrasion and Field Wear Results, Wear, 1999, 225–229, p 1059–1069.CrossRef
82.
go back to reference I.R. Sare, B.K. Arnold, G.A. Dunlop and P.G. Lloyd, Repeated Impact-Abrasion Testing of Alloy White Cast Irons, Wear, 1993, 162–164, p 790–801.CrossRef I.R. Sare, B.K. Arnold, G.A. Dunlop and P.G. Lloyd, Repeated Impact-Abrasion Testing of Alloy White Cast Irons, Wear, 1993, 162–164, p 790–801.CrossRef
83.
go back to reference A. Sundström, J. Rendón and M. Olsson, Wear Behaviour of Some Low Alloyed Steels Under Combined Impact/Abrasion Contact Conditions, Wear, 2001, 250(1), p 744–754.CrossRef A. Sundström, J. Rendón and M. Olsson, Wear Behaviour of Some Low Alloyed Steels Under Combined Impact/Abrasion Contact Conditions, Wear, 2001, 250(1), p 744–754.CrossRef
84.
go back to reference M. Varga, High Temperature Abrasive Wear of Metallic Materials, Wear, 2017, 376–377, p 443–451.CrossRef M. Varga, High Temperature Abrasive Wear of Metallic Materials, Wear, 2017, 376–377, p 443–451.CrossRef
85.
go back to reference V. Ratia, K. Valtonen and V.-T. Kuokkala, Impact-Abrasion Wear of Wear-Resistant Steels at Perpendicular and Tilted Angles, Proc. Inst. Mech. Eng. Part J J. Eng. Tribol., 2013, 227(8), p 868–877.CrossRef V. Ratia, K. Valtonen and V.-T. Kuokkala, Impact-Abrasion Wear of Wear-Resistant Steels at Perpendicular and Tilted Angles, Proc. Inst. Mech. Eng. Part J J. Eng. Tribol., 2013, 227(8), p 868–877.CrossRef
86.
go back to reference V. Ratia, I. Miettunen and V.-T. Kuokkala, Surface Deformation of Steels in Impact-Abrasion: The Effect of Sample Angle and Test Duration, Wear, 2013, 301(1), p 94–101.CrossRef V. Ratia, I. Miettunen and V.-T. Kuokkala, Surface Deformation of Steels in Impact-Abrasion: The Effect of Sample Angle and Test Duration, Wear, 2013, 301(1), p 94–101.CrossRef
87.
go back to reference J.A. Hawk, R.D. Wilson, J.H. Tylczak and Ö.N. Doğan, Laboratory Abrasive Wear Tests: Investigation of Test Methods and Alloy Correlation, Wear, 1999, 225–229, p 1031–1042.CrossRef J.A. Hawk, R.D. Wilson, J.H. Tylczak and Ö.N. Doğan, Laboratory Abrasive Wear Tests: Investigation of Test Methods and Alloy Correlation, Wear, 1999, 225–229, p 1031–1042.CrossRef
88.
go back to reference G. Saha, K. Valtonen, A. Saastamoinen, P. Peura and V.-T. Kuokkala, Impact-Abrasive and Abrasive Wear Behavior of Low Carbon Steels With a Range of Hardness-Toughness Properties, Wear, 2020, 450–451, p 203263.CrossRef G. Saha, K. Valtonen, A. Saastamoinen, P. Peura and V.-T. Kuokkala, Impact-Abrasive and Abrasive Wear Behavior of Low Carbon Steels With a Range of Hardness-Toughness Properties, Wear, 2020, 450–451, p 203263.CrossRef
89.
go back to reference R.D. Wilson and J.A. Hawk, Impeller Wear Impact-Abrasive Wear Test, Wear, 1999, 225–229, p 1248–1257.CrossRef R.D. Wilson and J.A. Hawk, Impeller Wear Impact-Abrasive Wear Test, Wear, 1999, 225–229, p 1248–1257.CrossRef
90.
go back to reference S.F. Scieszka, Wear Transition as a Means of Fracture Toughness Evaluation of Hardmetals, Tribol. Lett., 2001, 11(3), p 185–194.CrossRef S.F. Scieszka, Wear Transition as a Means of Fracture Toughness Evaluation of Hardmetals, Tribol. Lett., 2001, 11(3), p 185–194.CrossRef
91.
go back to reference B. Liu, W. Li, L. Xianwen, X. Jia and X. Jin, An Integrated Model of Impact-Abrasive Wear in Bainitic Steels Containing Retained Austenite, Wear, 2019, 440–441, p 203088.CrossRef B. Liu, W. Li, L. Xianwen, X. Jia and X. Jin, An Integrated Model of Impact-Abrasive Wear in Bainitic Steels Containing Retained Austenite, Wear, 2019, 440–441, p 203088.CrossRef
92.
go back to reference T. Teeri, V.-T. Kuokkala, P. Siitonen, P. Kivikytö-Reponen and J. Liimatainen, Impact Wear in Mineral Crushing, Proc. Eston. Acad. Sci. Eng. Eston. Acad. Publ., 2006, 12, p 408–418. T. Teeri, V.-T. Kuokkala, P. Siitonen, P. Kivikytö-Reponen and J. Liimatainen, Impact Wear in Mineral Crushing, Proc. Eston. Acad. Sci. Eng. Eston. Acad. Publ., 2006, 12, p 408–418.
93.
go back to reference Z. Pei, R. Song, Q. Ba and Y. Feng, Dimensionality Wear Analysis: Three-Body Impact Abrasive Wear Behavior of a Martensitic Steel in Comparison with Mn13Cr2, Wear, 2018, 414–415, p 341–351.CrossRef Z. Pei, R. Song, Q. Ba and Y. Feng, Dimensionality Wear Analysis: Three-Body Impact Abrasive Wear Behavior of a Martensitic Steel in Comparison with Mn13Cr2, Wear, 2018, 414–415, p 341–351.CrossRef
94.
go back to reference E. Wen, R. Song and W. Xiong, Effect of Tempering Temperature on Microstructures and Wear Behavior of a 500 HB Grade Wear-Resistant Steel, Metals, 2019, 9(1), p 45.CrossRef E. Wen, R. Song and W. Xiong, Effect of Tempering Temperature on Microstructures and Wear Behavior of a 500 HB Grade Wear-Resistant Steel, Metals, 2019, 9(1), p 45.CrossRef
95.
go back to reference R. Dalai, S. Das and K. Das, Effect of Thermo-Mechanical Processing on the Low Impact Abrasion and Low Stress Sliding Wear Resistance of Austenitic High Manganese Steels, Wear, 2019, 420–421, p 176–183.CrossRef R. Dalai, S. Das and K. Das, Effect of Thermo-Mechanical Processing on the Low Impact Abrasion and Low Stress Sliding Wear Resistance of Austenitic High Manganese Steels, Wear, 2019, 420–421, p 176–183.CrossRef
96.
go back to reference K. Valtonen, N. Ojala, O. Haiko and V.-T. Kuokkala, Comparison of Various High-Stress Wear Conditions and Wear Performance of Martensitic Steels, Wear, 2019, 426–427, p 3–13.CrossRef K. Valtonen, N. Ojala, O. Haiko and V.-T. Kuokkala, Comparison of Various High-Stress Wear Conditions and Wear Performance of Martensitic Steels, Wear, 2019, 426–427, p 3–13.CrossRef
97.
go back to reference A.G. Kostryzhev, C.R. Killmore, D. Yu and E.V. Pereloma, Martensitic Wear Resistant Steels Alloyed with Titanium, Wear, 2020, 446–447, p 203203.CrossRef A.G. Kostryzhev, C.R. Killmore, D. Yu and E.V. Pereloma, Martensitic Wear Resistant Steels Alloyed with Titanium, Wear, 2020, 446–447, p 203203.CrossRef
98.
go back to reference M. Fiset, G. Huard and J. Masounave, Effect of the Abrasive Nature on the Impact and Impact-Abrasion Wear Rate of a Martensitic Cast Iron, J. Mater. Sci. Lett., 1990, 9(12), p 1456–1458.CrossRef M. Fiset, G. Huard and J. Masounave, Effect of the Abrasive Nature on the Impact and Impact-Abrasion Wear Rate of a Martensitic Cast Iron, J. Mater. Sci. Lett., 1990, 9(12), p 1456–1458.CrossRef
99.
go back to reference O.A. Zambrano, D.S. García, S.A. Rodríguez and J.J. Coronado, The Mild-Severe Wear Transition in Erosion Wear, Tribol. Lett., 2018, 66(3), p 95.CrossRef O.A. Zambrano, D.S. García, S.A. Rodríguez and J.J. Coronado, The Mild-Severe Wear Transition in Erosion Wear, Tribol. Lett., 2018, 66(3), p 95.CrossRef
100.
go back to reference Y. Ali, C.D. Garcia-Mendoza and J.D. Gates, Effects of ‘Impact’ and Abrasive Particle Size on the Performance of White Cast Irons Relative to Low-Alloy Steels in Laboratory Ball Mills, Wear, 2019, 426–427, p 83–100.CrossRef Y. Ali, C.D. Garcia-Mendoza and J.D. Gates, Effects of ‘Impact’ and Abrasive Particle Size on the Performance of White Cast Irons Relative to Low-Alloy Steels in Laboratory Ball Mills, Wear, 2019, 426–427, p 83–100.CrossRef
101.
go back to reference M. Kallel, F. Zouch, Z. Antar, A. Bahri and K. Elleuch, Hammer Premature Wear in Mineral Crushing Process, Tribol. Int., 2017, 115, p 493–505.CrossRef M. Kallel, F. Zouch, Z. Antar, A. Bahri and K. Elleuch, Hammer Premature Wear in Mineral Crushing Process, Tribol. Int., 2017, 115, p 493–505.CrossRef
102.
go back to reference W. Wang, R. Song, S. Peng and Z. Pei, Multiphase Steel with Improved Impact-Abrasive Wear Resistance in Comparison with Conventional Hadfield Steel, Mater. Des., 2016, 105, p 96–105.CrossRef W. Wang, R. Song, S. Peng and Z. Pei, Multiphase Steel with Improved Impact-Abrasive Wear Resistance in Comparison with Conventional Hadfield Steel, Mater. Des., 2016, 105, p 96–105.CrossRef
103.
go back to reference Lu. Jun, Yu. Hao, P. Kang, X. Duan and C. Song, Study of Microstructure, Mechanical Properties and Impact-Abrasive Wear Behavior of Medium-Carbon Steel Treated by Quenching and Partitioning (Q&P) Process, Wear, 2018, 414–415, p 21–30. Lu. Jun, Yu. Hao, P. Kang, X. Duan and C. Song, Study of Microstructure, Mechanical Properties and Impact-Abrasive Wear Behavior of Medium-Carbon Steel Treated by Quenching and Partitioning (Q&P) Process, Wear, 2018, 414–415, p 21–30.
105.
go back to reference L.B. Varela, G. Tressia, M. Masoumi, E.M. Bortoleto, C. Regattieri and A. Sinatora, Roller Crushers in Iron Mining, How Does the Degradation of Hadfield Steel Components Occur?, Eng. Fail. Anal., 2021, 122, p 105295.CrossRef L.B. Varela, G. Tressia, M. Masoumi, E.M. Bortoleto, C. Regattieri and A. Sinatora, Roller Crushers in Iron Mining, How Does the Degradation of Hadfield Steel Components Occur?, Eng. Fail. Anal., 2021, 122, p 105295.CrossRef
106.
go back to reference P. Radziszewski, Exploring Total Media Wear, Miner. Eng., 2002, 15(12), p 1073–1087.CrossRef P. Radziszewski, Exploring Total Media Wear, Miner. Eng., 2002, 15(12), p 1073–1087.CrossRef
Metadata
Title
A Review on the Effect of Impact Toughness and Fracture Toughness on Impact-Abrasion Wear
Author
O. A. Zambrano
Publication date
28-06-2021
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 10/2021
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-05960-5

Other articles of this Issue 10/2021

Journal of Materials Engineering and Performance 10/2021 Go to the issue

Premium Partners