Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 10/2021

28.06.2021

A Review on the Effect of Impact Toughness and Fracture Toughness on Impact-Abrasion Wear

verfasst von: O. A. Zambrano

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 10/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the mining and related industries, the abrasion and impact phenomena operate among the chain of ore processing. While abrasion-corrosion and/or erosion-corrosion phenomena in ore processing are relatively well understood, the concurrent operation of abrasion and impact wear is not well comprehended. The distinctive mechanisms and features of abrasion-impact wear and the synergy, if one exists, between impact and abrasion have not been either explored or discussed systematically in the literature. Furthermore, their economic impact on mining cannot be underestimated especially as past research focused mainly on improving the hardness even at the expense of toughness. Understanding the complex relation between abrasion and impact can efficiently mitigate countless wear problems in mining. The purpose of this paper is to discuss critically the topic, stimulating new questions, and propose some general ideas that might be used as basic guidelines.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ma. Qian and W. Chaochang, Impact-Abrasion Behavior of Low Alloy White Cast Irons, Wear, 1997, 209(1), p 308–315.CrossRef Ma. Qian and W. Chaochang, Impact-Abrasion Behavior of Low Alloy White Cast Irons, Wear, 1997, 209(1), p 308–315.CrossRef
2.
Zurück zum Zitat J.D. Gates, G.J. Gore, M.J.P. Hermand, M.J.P. Guerineau, P.B. Martin and J. Saad, The Meaning of High Stress Abrasion and Its Application in White Cast Irons, Wear, 2007, 263(1), p 6–35.CrossRef J.D. Gates, G.J. Gore, M.J.P. Hermand, M.J.P. Guerineau, P.B. Martin and J. Saad, The Meaning of High Stress Abrasion and Its Application in White Cast Irons, Wear, 2007, 263(1), p 6–35.CrossRef
3.
Zurück zum Zitat N. Ojala, K. Valtonen, V. Heino, M. Kallio, J. Aaltonen, P. Siitonen and V.-T. Kuokkala, Effects of Composition and Microstructure on the Abrasive Wear Performance of Quenched Wear Resistant Steels, Wear, 2014, 317(1), p 225–232.CrossRef N. Ojala, K. Valtonen, V. Heino, M. Kallio, J. Aaltonen, P. Siitonen and V.-T. Kuokkala, Effects of Composition and Microstructure on the Abrasive Wear Performance of Quenched Wear Resistant Steels, Wear, 2014, 317(1), p 225–232.CrossRef
4.
Zurück zum Zitat D.L. Albright and D.J. Dunn, Wear Behavior of Iron and Steel Castings for the Mining Industry, JOM, 1983, 35(11), p 23–29.CrossRef D.L. Albright and D.J. Dunn, Wear Behavior of Iron and Steel Castings for the Mining Industry, JOM, 1983, 35(11), p 23–29.CrossRef
5.
Zurück zum Zitat A. Kootsookos, J.D. Gates and R.A. Eaton, Development of a White Cast Iron of Fracture Toughness 40 MPa√m, Cast Met., 1995, 7(4), p 239–246.CrossRef A. Kootsookos, J.D. Gates and R.A. Eaton, Development of a White Cast Iron of Fracture Toughness 40 MPa√m, Cast Met., 1995, 7(4), p 239–246.CrossRef
6.
Zurück zum Zitat D. Medlin and H. Kuhn, Fracture Toughness and Fracture Mechanics, Mechanical Testing and Evaluation, Vol 8, ASM Handbook. H. Kuhn et al., Ed., ASM International, Novelty, 2000, p 563–575 D. Medlin and H. Kuhn, Fracture Toughness and Fracture Mechanics, Mechanical Testing and Evaluation, Vol 8, ASM Handbook. H. Kuhn et al., Ed., ASM International, Novelty, 2000, p 563–575
7.
Zurück zum Zitat S. Zhang, D. Sun, Fu. Yongqing and D. Hejun, Toughness Measurement of Thin Films: A Critical Review, Surf. Coat. Technol., 2005, 198(1), p 74–84.CrossRef S. Zhang, D. Sun, Fu. Yongqing and D. Hejun, Toughness Measurement of Thin Films: A Critical Review, Surf. Coat. Technol., 2005, 198(1), p 74–84.CrossRef
9.
Zurück zum Zitat ISO. 12135:2016(E) Metallic Materials–Unified Method of Test for the Determination of Quasistatic Fracture Toughness 2007. CH-1214 Vernier, Geneva, Switzerland. ISO. 12135:2016(E) Metallic Materials–Unified Method of Test for the Determination of Quasistatic Fracture Toughness 2007. CH-1214 Vernier, Geneva, Switzerland.
11.
Zurück zum Zitat X.-K. Zhu and J.A. Joyce, Review of Fracture Toughness (G, K, J, CTOD, CTOA) Testing and Standardization, Eng. Fract. Mech., 2012, 85, p 1–46.CrossRef X.-K. Zhu and J.A. Joyce, Review of Fracture Toughness (G, K, J, CTOD, CTOA) Testing and Standardization, Eng. Fract. Mech., 2012, 85, p 1–46.CrossRef
12.
Zurück zum Zitat T. Noguchi, K. Shimizu, N. Takahashi and N. Takashi, Strength Evaluation of Cast Iron Grinding Balls by Repeated Drop Tests, Wear, 1999, 231(2), p 301–309.CrossRef T. Noguchi, K. Shimizu, N. Takahashi and N. Takashi, Strength Evaluation of Cast Iron Grinding Balls by Repeated Drop Tests, Wear, 1999, 231(2), p 301–309.CrossRef
13.
Zurück zum Zitat S.T. Rolfe and J.M. Barsom, Fracture and Fatigue Control in Structures: Applications of Fracture Mechanics, 3rd ed. ASTM International, Novelty, 1999. S.T. Rolfe and J.M. Barsom, Fracture and Fatigue Control in Structures: Applications of Fracture Mechanics, 3rd ed. ASTM International, Novelty, 1999.
14.
Zurück zum Zitat C.-H. Hsu, S.-C. Lee, Y.-H. Shy and W.-T. Chiou, Relationship Between Dynamic and Static Toughness of Flake and Compacted Graphite Cast Irons, Mater. Sci. Eng. A, 2000, 282(1), p 115–122.CrossRef C.-H. Hsu, S.-C. Lee, Y.-H. Shy and W.-T. Chiou, Relationship Between Dynamic and Static Toughness of Flake and Compacted Graphite Cast Irons, Mater. Sci. Eng. A, 2000, 282(1), p 115–122.CrossRef
15.
Zurück zum Zitat A. Rossoll, C. Berdin and C. Prioul, Determination of the Fracture Toughness of a Low Alloy Steel by the Instrumented Charpy Impact Test, Int. J. Fract., 2002, 115(3), p 205–226.CrossRef A. Rossoll, C. Berdin and C. Prioul, Determination of the Fracture Toughness of a Low Alloy Steel by the Instrumented Charpy Impact Test, Int. J. Fract., 2002, 115(3), p 205–226.CrossRef
16.
Zurück zum Zitat M.J. Barsom, Development of the AASHTO Fracture-Toughness Requirements for Bridge Steels, Eng. Fract. Mech., 1975, 7(3), p 605–618.CrossRef M.J. Barsom, Development of the AASHTO Fracture-Toughness Requirements for Bridge Steels, Eng. Fract. Mech., 1975, 7(3), p 605–618.CrossRef
17.
Zurück zum Zitat H.F. Li, Q.Q. Duan, P. Zhang, X.H. Zhou, B. Wang and Z.F. Zhang, The Quantitative Relationship Between Fracture Toughness and Impact Toughness in High-Strength Steels, Eng. Fract. Mech., 2019, 211, p 362–370.CrossRef H.F. Li, Q.Q. Duan, P. Zhang, X.H. Zhou, B. Wang and Z.F. Zhang, The Quantitative Relationship Between Fracture Toughness and Impact Toughness in High-Strength Steels, Eng. Fract. Mech., 2019, 211, p 362–370.CrossRef
18.
Zurück zum Zitat Y.J. Chao, J.D. Ward and R.G. Sands, Charpy Impact Energy, Fracture Toughness and Ductile–Brittle Transition Temperature of Dual-Phase 590 Steel, Mater. Des., 2007, 28(2), p 551–557.CrossRef Y.J. Chao, J.D. Ward and R.G. Sands, Charpy Impact Energy, Fracture Toughness and Ductile–Brittle Transition Temperature of Dual-Phase 590 Steel, Mater. Des., 2007, 28(2), p 551–557.CrossRef
19.
Zurück zum Zitat X. Wen, M. Wan, C. Huang, Y. Tan, M. Lei, Y. Liang and X. Cai, Effect of Microstructure on Tensile Properties, Impact Toughness and Fracture Toughness of TC21 Alloy, Mater. Des., 2019, 180, p 107898.CrossRef X. Wen, M. Wan, C. Huang, Y. Tan, M. Lei, Y. Liang and X. Cai, Effect of Microstructure on Tensile Properties, Impact Toughness and Fracture Toughness of TC21 Alloy, Mater. Des., 2019, 180, p 107898.CrossRef
20.
Zurück zum Zitat R.O. Ritchie and R.M. Horn, Further Considerations on the Inconsistency in Toughness Evaluation of AISI 4340 Steel Austenitized at Increasing Temperatures, Metall. Trans. A, 1978, 9(3), p 331–341.CrossRef R.O. Ritchie and R.M. Horn, Further Considerations on the Inconsistency in Toughness Evaluation of AISI 4340 Steel Austenitized at Increasing Temperatures, Metall. Trans. A, 1978, 9(3), p 331–341.CrossRef
21.
Zurück zum Zitat H. Kim, M. Kang, H.J. Jung, H.S. Kim, C.M. Bae and S. Lee, Mechanisms of Toughness Improvement in Charpy Impact And Fracture Toughness Tests of Non-Heat-Treating Cold-Drawn Steel Bar, Mater. Sci. Eng. A, 2013, 571, p 38–48.CrossRef H. Kim, M. Kang, H.J. Jung, H.S. Kim, C.M. Bae and S. Lee, Mechanisms of Toughness Improvement in Charpy Impact And Fracture Toughness Tests of Non-Heat-Treating Cold-Drawn Steel Bar, Mater. Sci. Eng. A, 2013, 571, p 38–48.CrossRef
22.
Zurück zum Zitat Q. Wang, L. Xiao, W. Liu, H. Zhang, W. Cui, Z. Li and W. Guohua, Effect of Heat Treatment on Tensile Properties, Impact Toughness and Plane-Strain Fracture Toughness of Sand-Cast Mg-6Gd-3Y-05Zr Magnesium Alloy, Mater. Sci. Eng. A, 2017, 705, p 402–410.CrossRef Q. Wang, L. Xiao, W. Liu, H. Zhang, W. Cui, Z. Li and W. Guohua, Effect of Heat Treatment on Tensile Properties, Impact Toughness and Plane-Strain Fracture Toughness of Sand-Cast Mg-6Gd-3Y-05Zr Magnesium Alloy, Mater. Sci. Eng. A, 2017, 705, p 402–410.CrossRef
23.
Zurück zum Zitat H.-F. Li, Q.-Q. Duan, P. Zhang and Z.-F. Zhang, The Relationship Between Strength and Toughness in Tempered Steel: Trade-Off or Invariable?, Adv. Eng. Mater., 2019, 21(4), p 1801116.CrossRef H.-F. Li, Q.-Q. Duan, P. Zhang and Z.-F. Zhang, The Relationship Between Strength and Toughness in Tempered Steel: Trade-Off or Invariable?, Adv. Eng. Mater., 2019, 21(4), p 1801116.CrossRef
24.
Zurück zum Zitat R. Tomášek, V. Mareš, L. Horsák, Fracture Toughness and Charpy Impact Test of MIM Steels and Correlation of Results by KIC-CVN Relationships, in Key Engineering Materials. 2019. Trans Tech Publ. R. Tomášek, V. Mareš, L. Horsák, Fracture Toughness and Charpy Impact Test of MIM Steels and Correlation of Results by KIC-CVN Relationships, in Key Engineering Materials. 2019. Trans Tech Publ.
25.
Zurück zum Zitat T.M.F. Ronald, J.A. Hall and C.M. Pierce, Usefulness of Precracked Charpy Specimens for Fracture Toughness Screening Tests of Titanium Alloys, Metall. Mater. Trans. B, 1972, 3(4), p 813–818.CrossRef T.M.F. Ronald, J.A. Hall and C.M. Pierce, Usefulness of Precracked Charpy Specimens for Fracture Toughness Screening Tests of Titanium Alloys, Metall. Mater. Trans. B, 1972, 3(4), p 813–818.CrossRef
27.
Zurück zum Zitat J.R. Rice and G.F. Rosengren, Plane Strain Deformation Near a Crack Tip in a Power-Law Hardening Material, J. Mech. Phys. Solids, 1968, 16(1), p 1–12.CrossRef J.R. Rice and G.F. Rosengren, Plane Strain Deformation Near a Crack Tip in a Power-Law Hardening Material, J. Mech. Phys. Solids, 1968, 16(1), p 1–12.CrossRef
28.
Zurück zum Zitat M.-L. Zhu and F.-Z. Xuan, Correlation Between Microstructure, Hardness and Strength in HAZ of Dissimilar Welds of Rotor Steels, Mater. Sci. Eng. A, 2010, 527(16), p 4035–4042.CrossRef M.-L. Zhu and F.-Z. Xuan, Correlation Between Microstructure, Hardness and Strength in HAZ of Dissimilar Welds of Rotor Steels, Mater. Sci. Eng. A, 2010, 527(16), p 4035–4042.CrossRef
29.
Zurück zum Zitat K.-H. Zum Gahr and W.G. Scholz, Fracture Toughness of White Cast Irons, JOM, 1980, 32(10), p 38–44.CrossRef K.-H. Zum Gahr and W.G. Scholz, Fracture Toughness of White Cast Irons, JOM, 1980, 32(10), p 38–44.CrossRef
30.
Zurück zum Zitat M.-X. Zhang and P.M. Kelly, Stress-Induced Martensitic Transformation and Impact Toughness of Cast Irons and High-Carbon Fe-Ni-C Steel, Metall. Mater. Trans. A., 2001, 32(11), p 2695–2708.CrossRef M.-X. Zhang and P.M. Kelly, Stress-Induced Martensitic Transformation and Impact Toughness of Cast Irons and High-Carbon Fe-Ni-C Steel, Metall. Mater. Trans. A., 2001, 32(11), p 2695–2708.CrossRef
32.
Zurück zum Zitat A. Kootsookos and J.D. Gates, The Role of Secondary Carbide Precipitation on the Fracture Toughness of a Reduced Carbon White Iron, Mater. Sci. Eng. A, 2008, 490(1), p 313–318.CrossRef A. Kootsookos and J.D. Gates, The Role of Secondary Carbide Precipitation on the Fracture Toughness of a Reduced Carbon White Iron, Mater. Sci. Eng. A, 2008, 490(1), p 313–318.CrossRef
33.
Zurück zum Zitat I.R. Sare and B.K. Arnold, The Influence of Heat Treatment on the High-Stress Abrasion Resistance and Fracture Toughness of Alloy White Cast Irons, Metall. Mater. Trans. A., 1995, 26(7), p 1785–1793.CrossRef I.R. Sare and B.K. Arnold, The Influence of Heat Treatment on the High-Stress Abrasion Resistance and Fracture Toughness of Alloy White Cast Irons, Metall. Mater. Trans. A., 1995, 26(7), p 1785–1793.CrossRef
34.
Zurück zum Zitat W.L. Bradley and M.N. Srinivasan, Fracture and Fracture Toughness of Cast Irons, Int. Mater. Rev., 1990, 35(1), p 129–161.CrossRef W.L. Bradley and M.N. Srinivasan, Fracture and Fracture Toughness of Cast Irons, Int. Mater. Rev., 1990, 35(1), p 129–161.CrossRef
35.
Zurück zum Zitat S.B. Biner, The Role of Eutectic Carbide Morphology on the Fracture Behaviour of High-Chromium Cast Irons—I. Austenitic Alloys, Can. Metall. Q., 1985, 24(2), p 155–162.CrossRef S.B. Biner, The Role of Eutectic Carbide Morphology on the Fracture Behaviour of High-Chromium Cast Irons—I. Austenitic Alloys, Can. Metall. Q., 1985, 24(2), p 155–162.CrossRef
36.
Zurück zum Zitat S.B. Biner, The Role of Eutectic Carbide Morphology on the Fracture Behaviour of High-Chromium Cast Irons—II. Martensitic Alloys , Can. Metall. Q., 1985, 24(2), p 163–167.CrossRef S.B. Biner, The Role of Eutectic Carbide Morphology on the Fracture Behaviour of High-Chromium Cast Irons—II. Martensitic Alloys , Can. Metall. Q., 1985, 24(2), p 163–167.CrossRef
37.
Zurück zum Zitat M. Filipovic, Z. Kamberovic, M. Korac and M. Gavrilovski, Microstructure and Mechanical Properties of Fe-Cr-C-Nb White Cast Irons, Mater. Des., 2013, 47, p 41–48.CrossRef M. Filipovic, Z. Kamberovic, M. Korac and M. Gavrilovski, Microstructure and Mechanical Properties of Fe-Cr-C-Nb White Cast Irons, Mater. Des., 2013, 47, p 41–48.CrossRef
38.
Zurück zum Zitat Y. Uematsu, K. Tokaji, T. Horie and K. Nishigaki, Fracture Toughness and Fatigue Crack Propagation in Cast Irons with Spheroidal Vanadium Carbides Dispersed Within Martensitic Matrix Microstructure, Mater. Sci. Eng. A, 2007, 471(1), p 15–21.CrossRef Y. Uematsu, K. Tokaji, T. Horie and K. Nishigaki, Fracture Toughness and Fatigue Crack Propagation in Cast Irons with Spheroidal Vanadium Carbides Dispersed Within Martensitic Matrix Microstructure, Mater. Sci. Eng. A, 2007, 471(1), p 15–21.CrossRef
39.
Zurück zum Zitat L. Hao, C. Ouyang, X. Yan, J. Wang, G. Hua, R. Chung and D.Y. Li, Potential Application of Electron Work Function in Analyzing Fracture Toughness of Materials, J. Mater. Sci. Technol., 2017, 33(10), p 1128–1133.CrossRef L. Hao, C. Ouyang, X. Yan, J. Wang, G. Hua, R. Chung and D.Y. Li, Potential Application of Electron Work Function in Analyzing Fracture Toughness of Materials, J. Mater. Sci. Technol., 2017, 33(10), p 1128–1133.CrossRef
40.
Zurück zum Zitat J.J. Coronado, Effect of (Fe, Cr)7C3 Carbide Orientation on Abrasion Wear Resistance and Fracture Toughness, Wear, 2011, 270(3), p 287–293.CrossRef J.J. Coronado, Effect of (Fe, Cr)7C3 Carbide Orientation on Abrasion Wear Resistance and Fracture Toughness, Wear, 2011, 270(3), p 287–293.CrossRef
41.
Zurück zum Zitat A.H. Elsayed, M.M. Megahed, A.A. Sadek and K.M. Abouelela, Fracture Toughness Characterization of Austempered Ductile Iron Produced Using Both Conventional and Two-Step Austempering Processes, Mater. Des., 2009, 30(6), p 1866–1877.CrossRef A.H. Elsayed, M.M. Megahed, A.A. Sadek and K.M. Abouelela, Fracture Toughness Characterization of Austempered Ductile Iron Produced Using Both Conventional and Two-Step Austempering Processes, Mater. Des., 2009, 30(6), p 1866–1877.CrossRef
42.
Zurück zum Zitat G. Toktaş and A. Toktaş, Estimating Fracture Toughness of Various Matrix Structured Ductile Iron Using Circumferentially Notched Tensile Bars, Eng. Fract. Mech., 2018, 194, p 1–8.CrossRef G. Toktaş and A. Toktaş, Estimating Fracture Toughness of Various Matrix Structured Ductile Iron Using Circumferentially Notched Tensile Bars, Eng. Fract. Mech., 2018, 194, p 1–8.CrossRef
43.
Zurück zum Zitat A. Hohenwarter, A. Taylor, R. Stock and R. Pippan, Effect of Large Shear Deformations on the Fracture Behavior of a Fully Pearlitic Steel, Metall. Mater. Trans. A, 2011, 42(6), p 1609–1618.CrossRef A. Hohenwarter, A. Taylor, R. Stock and R. Pippan, Effect of Large Shear Deformations on the Fracture Behavior of a Fully Pearlitic Steel, Metall. Mater. Trans. A, 2011, 42(6), p 1609–1618.CrossRef
44.
Zurück zum Zitat A.R. Chintha, K. Valtonen, V.T. Kuokkala, S. Kundu, M.J. Peet and H.K.D.H. Bhadeshia, Role of Fracture Toughness in Impact-Abrasion Wear, Wear, 2019, 428–429, p 430–437.CrossRef A.R. Chintha, K. Valtonen, V.T. Kuokkala, S. Kundu, M.J. Peet and H.K.D.H. Bhadeshia, Role of Fracture Toughness in Impact-Abrasion Wear, Wear, 2019, 428–429, p 430–437.CrossRef
45.
Zurück zum Zitat A.K. Saxena, A. Kumar, M. Herbig, S. Brinckmann, G. Dehm and C. Kirchlechner, Micro Fracture Investigations of White Etching Layers, Mater. Des., 2019, 180, p 107892.CrossRef A.K. Saxena, A. Kumar, M. Herbig, S. Brinckmann, G. Dehm and C. Kirchlechner, Micro Fracture Investigations of White Etching Layers, Mater. Des., 2019, 180, p 107892.CrossRef
46.
Zurück zum Zitat M.N. Yoozbashi, S. Yazdani and T.S. Wang, Design of a New Nanostructured, High-Si Bainitic Steel with Lower Cost Production, Mater. Des., 2011, 32(6), p 3248–3253.CrossRef M.N. Yoozbashi, S. Yazdani and T.S. Wang, Design of a New Nanostructured, High-Si Bainitic Steel with Lower Cost Production, Mater. Des., 2011, 32(6), p 3248–3253.CrossRef
47.
Zurück zum Zitat P. Valizadeh Moghaddam, M. Rinaudo, J. Hardell, E. Vuorinen and B. Prakash, Influence of Fracture Toughness on Two-Body Abrasive Wear of Nanostructured Carbide-Free Bainitic Steels, Wear, 2020, 460–461, p 203484.CrossRef P. Valizadeh Moghaddam, M. Rinaudo, J. Hardell, E. Vuorinen and B. Prakash, Influence of Fracture Toughness on Two-Body Abrasive Wear of Nanostructured Carbide-Free Bainitic Steels, Wear, 2020, 460–461, p 203484.CrossRef
48.
Zurück zum Zitat A. Hohenwarter and R. Pippan, Fracture and Fracture Toughness of Nanopolycrystalline Metals Produced by Severe Plastic Deformation, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 2015, 373(2038), p 20140366.CrossRef A. Hohenwarter and R. Pippan, Fracture and Fracture Toughness of Nanopolycrystalline Metals Produced by Severe Plastic Deformation, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 2015, 373(2038), p 20140366.CrossRef
49.
Zurück zum Zitat O.A. Zambrano, A General Perspective of Fe-Mn-Al-C Steels, J. Mater. Sci., 2018, 53(20), p 14003–14062.CrossRef O.A. Zambrano, A General Perspective of Fe-Mn-Al-C Steels, J. Mater. Sci., 2018, 53(20), p 14003–14062.CrossRef
51.
Zurück zum Zitat S. Ge, Q. Wang and J. Wang, The Impact Wear-Resistance Enhancement Mechanism of Medium Manganese Steel and Its Applications in Mining Machines, Wear, 2017, 376–377, p 1097–1104.CrossRef S. Ge, Q. Wang and J. Wang, The Impact Wear-Resistance Enhancement Mechanism of Medium Manganese Steel and Its Applications in Mining Machines, Wear, 2017, 376–377, p 1097–1104.CrossRef
52.
Zurück zum Zitat H.K.D.H. Bhadeshia, The First Bulk Nanostructured Metal, Sci. Technol. Adv. Mater., 2013, 14(1), p 014202.CrossRef H.K.D.H. Bhadeshia, The First Bulk Nanostructured Metal, Sci. Technol. Adv. Mater., 2013, 14(1), p 014202.CrossRef
53.
Zurück zum Zitat L.C. Chang, Microstructures and Reaction Kinetics of Bainite Transformation in Si-Rich Steels, Mater. Sci. Eng. A, 2004, 368(1), p 175–182.CrossRef L.C. Chang, Microstructures and Reaction Kinetics of Bainite Transformation in Si-Rich Steels, Mater. Sci. Eng. A, 2004, 368(1), p 175–182.CrossRef
54.
Zurück zum Zitat I. Konyashin, M. Antonov and B. Ries, Wear Behaviour and Wear Mechanisms of Different Hardmetal Grades in Comparison With Polycrystalline Diamond in a New Impact-Abrasion Test, Int. J. Refract. Met. Hard Mater., 2020, 92, p 105286.CrossRef I. Konyashin, M. Antonov and B. Ries, Wear Behaviour and Wear Mechanisms of Different Hardmetal Grades in Comparison With Polycrystalline Diamond in a New Impact-Abrasion Test, Int. J. Refract. Met. Hard Mater., 2020, 92, p 105286.CrossRef
55.
Zurück zum Zitat A. Vornberger, J. Pötschke, T. Gestrich, M. Herrmann and A. Michaelis, Influence of Microstructure on Hardness and Thermal Conductivity of Hardmetals, Int. J. Refract. Met. Hard Mater., 2020, 88, p 105170.CrossRef A. Vornberger, J. Pötschke, T. Gestrich, M. Herrmann and A. Michaelis, Influence of Microstructure on Hardness and Thermal Conductivity of Hardmetals, Int. J. Refract. Met. Hard Mater., 2020, 88, p 105170.CrossRef
56.
Zurück zum Zitat G.-S. Zhang, J.-D. Xing and Y.-M. Gao, Impact Wear Resistance of WC/Hadfield Steel Composite and Its Interfacial Characteristics, Wear, 2006, 260(7), p 728–734.CrossRef G.-S. Zhang, J.-D. Xing and Y.-M. Gao, Impact Wear Resistance of WC/Hadfield Steel Composite and Its Interfacial Characteristics, Wear, 2006, 260(7), p 728–734.CrossRef
57.
Zurück zum Zitat V. Jankauskas, M. Antonov, E. Katinas and I. Gedzevicius, Effect of Alloying Additives on Impact-Abrasive Wear of Manual Arc Welded Hadfield Steel Hardfacings, J. Frict. Wear, 2016, 37(2), p 170–178.CrossRef V. Jankauskas, M. Antonov, E. Katinas and I. Gedzevicius, Effect of Alloying Additives on Impact-Abrasive Wear of Manual Arc Welded Hadfield Steel Hardfacings, J. Frict. Wear, 2016, 37(2), p 170–178.CrossRef
58.
Zurück zum Zitat J.J. Coronado and A. Sinatora, Effect of Abrasive Size on Wear of Metallic Materials and Its Relationship with Microchips Morphology and Wear Micromechanisms: Part 1, Wear, 2011, 271(9), p 1794–1803.CrossRef J.J. Coronado and A. Sinatora, Effect of Abrasive Size on Wear of Metallic Materials and Its Relationship with Microchips Morphology and Wear Micromechanisms: Part 1, Wear, 2011, 271(9), p 1794–1803.CrossRef
59.
Zurück zum Zitat K.-H. Zum Gahr, Microstructure and Wear of Materials, Vol 10 Elsevier, Amsredam, 1987. K.-H. Zum Gahr, Microstructure and Wear of Materials, Vol 10 Elsevier, Amsredam, 1987.
60.
Zurück zum Zitat K. Hokkirigawa and K. Kato, An Experimental and Theoretical Investigation of Ploughing, Cutting and Wedge Formation During Abrasive Wear, Tribol. Int., 1988, 21(1), p 51–57.CrossRef K. Hokkirigawa and K. Kato, An Experimental and Theoretical Investigation of Ploughing, Cutting and Wedge Formation During Abrasive Wear, Tribol. Int., 1988, 21(1), p 51–57.CrossRef
61.
Zurück zum Zitat E. Hornbogen, The Role of Fracture Toughness in the Wear of Metals, Wear, 1975, 33(2), p 251–259.CrossRef E. Hornbogen, The Role of Fracture Toughness in the Wear of Metals, Wear, 1975, 33(2), p 251–259.CrossRef
62.
Zurück zum Zitat A.G. Atkins, Toughness in Wear and Grinding, Wear, 1980, 61(1), p 183–190.CrossRef A.G. Atkins, Toughness in Wear and Grinding, Wear, 1980, 61(1), p 183–190.CrossRef
63.
Zurück zum Zitat J.R. Fleming and N.P. Suh, The Relationship Between Crack Propagation Rates and Wear Rates, Wear, 1977, 44(1), p 57–64.CrossRef J.R. Fleming and N.P. Suh, The Relationship Between Crack Propagation Rates and Wear Rates, Wear, 1977, 44(1), p 57–64.CrossRef
64.
Zurück zum Zitat D.A. Hills and D.W. Ashelby, On the Application of Fracture Mechanics to Wear, Wear, 1979, 54(2), p 321–330.CrossRef D.A. Hills and D.W. Ashelby, On the Application of Fracture Mechanics to Wear, Wear, 1979, 54(2), p 321–330.CrossRef
65.
Zurück zum Zitat T. Atkins, The Importance of Toughness in Manufacturing, J. Mater. Process. Technol., 2018, 261, p 280–294.CrossRef T. Atkins, The Importance of Toughness in Manufacturing, J. Mater. Process. Technol., 2018, 261, p 280–294.CrossRef
66.
Zurück zum Zitat A.G. Atkins and J.H. Liu, Toughness and the Transition Between Cutting and Rubbing in Abrasive Contacts, Wear, 2007, 262(1), p 146–159.CrossRef A.G. Atkins and J.H. Liu, Toughness and the Transition Between Cutting and Rubbing in Abrasive Contacts, Wear, 2007, 262(1), p 146–159.CrossRef
67.
Zurück zum Zitat I. Sevim and I.B. Eryurek, Effect of Fracture Toughness on Abrasive Wear Resistance of Steels, Mater. Des., 2006, 27(10), p 911–919.CrossRef I. Sevim and I.B. Eryurek, Effect of Fracture Toughness on Abrasive Wear Resistance of Steels, Mater. Des., 2006, 27(10), p 911–919.CrossRef
68.
Zurück zum Zitat W.J. Salesky and G. Thomas, Medium Carbon Steel Alloy Design for Wear Applications, Wear, 1982, 75(1), p 21–40.CrossRef W.J. Salesky and G. Thomas, Medium Carbon Steel Alloy Design for Wear Applications, Wear, 1982, 75(1), p 21–40.CrossRef
69.
Zurück zum Zitat K.-H. Zum Gahr and D.V. Doane, Optimizing Fracture Toughness and Abrasion Resistance In White Cast Irons, Metall. Trans. A, 1980, 11(4), p 613–620.CrossRef K.-H. Zum Gahr and D.V. Doane, Optimizing Fracture Toughness and Abrasion Resistance In White Cast Irons, Metall. Trans. A, 1980, 11(4), p 613–620.CrossRef
70.
Zurück zum Zitat M. Radulovic, M. Fiset, K. Peev and M. Tomovic, The Influence of Vanadium on Fracture Toughness and Abrasion Resistance in High Chromium White Cast Irons, J. Mater. Sci., 1994, 29(19), p 5085–5094.CrossRef M. Radulovic, M. Fiset, K. Peev and M. Tomovic, The Influence of Vanadium on Fracture Toughness and Abrasion Resistance in High Chromium White Cast Irons, J. Mater. Sci., 1994, 29(19), p 5085–5094.CrossRef
71.
Zurück zum Zitat M. Filipovic, Z. Kamberovic, M. Korac and M. Gavrilovski, Correlation of Microstructure with the Wear Resistance and Fracture Toughness of White Cast Iron Alloys, Met. Mater. Int., 2013, 19(3), p 473–481.CrossRef M. Filipovic, Z. Kamberovic, M. Korac and M. Gavrilovski, Correlation of Microstructure with the Wear Resistance and Fracture Toughness of White Cast Iron Alloys, Met. Mater. Int., 2013, 19(3), p 473–481.CrossRef
72.
Zurück zum Zitat J.D. Gates and R. Eaton, Real Life Wear Processes, Mater. Forum, 1993, 17(4), p 369–381. J.D. Gates and R. Eaton, Real Life Wear Processes, Mater. Forum, 1993, 17(4), p 369–381.
73.
Zurück zum Zitat G.J. Gore and J.D. Gates, Effect of Hardness on Three Very Different Forms of Wear, Wear, 1997, 203–204, p 544–563.CrossRef G.J. Gore and J.D. Gates, Effect of Hardness on Three Very Different Forms of Wear, Wear, 1997, 203–204, p 544–563.CrossRef
74.
Zurück zum Zitat G.J. Gore and J.D. Gates, Impact-Abrasion: Has Its Time Come... and Gone, Mater. Aust., 2000, 32, p 13–15. G.J. Gore and J.D. Gates, Impact-Abrasion: Has Its Time Come... and Gone, Mater. Aust., 2000, 32, p 13–15.
75.
Zurück zum Zitat O.R. Ritchie, The Conflicts Between Strength and Toughness, Nat. Mater., 2011, 10(11), p 817–822.CrossRef O.R. Ritchie, The Conflicts Between Strength and Toughness, Nat. Mater., 2011, 10(11), p 817–822.CrossRef
76.
Zurück zum Zitat N.-V. Nguyen, T.-H. Pham and S.-E. Kim, Strain Rate-Dependent Behaviors of Mechanical Properties of Structural Steel Investigated Using Indentation and Finite Element Analysis, Mech. Mater., 2019, 137, p 103089.CrossRef N.-V. Nguyen, T.-H. Pham and S.-E. Kim, Strain Rate-Dependent Behaviors of Mechanical Properties of Structural Steel Investigated Using Indentation and Finite Element Analysis, Mech. Mater., 2019, 137, p 103089.CrossRef
77.
Zurück zum Zitat M. Hassani, D. Veysset, K.A. Nelson and C.A. Schuh, Material Hardness at Strain Rates Beyond 106 s−1 Via High Velocity Microparticle Impact Indentation, Scr. Mater., 2020, 177, p 198–202.CrossRef M. Hassani, D. Veysset, K.A. Nelson and C.A. Schuh, Material Hardness at Strain Rates Beyond 106 s−1 Via High Velocity Microparticle Impact Indentation, Scr. Mater., 2020, 177, p 198–202.CrossRef
78.
Zurück zum Zitat Z. Wang, Z.-B. Cai, Z.-Q. Chen, Y. Sun and M.-H. Zhu, Low-Velocity Impact Wear Behavior of Ball-to-Flat Contact Under Constant Kinetic Energy, J. Mater. Eng. Perform., 2017, 26(11), p 5669–5679.CrossRef Z. Wang, Z.-B. Cai, Z.-Q. Chen, Y. Sun and M.-H. Zhu, Low-Velocity Impact Wear Behavior of Ball-to-Flat Contact Under Constant Kinetic Energy, J. Mater. Eng. Perform., 2017, 26(11), p 5669–5679.CrossRef
79.
Zurück zum Zitat H.A. Sherif and F.A. Almufadi, Analysis of Elastic and Plastic Impact Models, Wear, 2018, 412–413, p 127–135.CrossRef H.A. Sherif and F.A. Almufadi, Analysis of Elastic and Plastic Impact Models, Wear, 2018, 412–413, p 127–135.CrossRef
80.
Zurück zum Zitat O. Haiko, K. Valtonen, A. Kaijalainen, S. Uusikallio, J. Hannula, T. Liimatainen and J. Kömi, Effect of Tempering on the Impact-Abrasive and Abrasive Wear Resistance of Ultra-High Strength Steels, Wear, 2019, 440–441, p 203098.CrossRef O. Haiko, K. Valtonen, A. Kaijalainen, S. Uusikallio, J. Hannula, T. Liimatainen and J. Kömi, Effect of Tempering on the Impact-Abrasive and Abrasive Wear Resistance of Ultra-High Strength Steels, Wear, 2019, 440–441, p 203098.CrossRef
81.
Zurück zum Zitat J.H. Tylczak, J.A. Hawk and R.D. Wilson, A Comparison of Laboratory Abrasion and Field Wear Results, Wear, 1999, 225–229, p 1059–1069.CrossRef J.H. Tylczak, J.A. Hawk and R.D. Wilson, A Comparison of Laboratory Abrasion and Field Wear Results, Wear, 1999, 225–229, p 1059–1069.CrossRef
82.
Zurück zum Zitat I.R. Sare, B.K. Arnold, G.A. Dunlop and P.G. Lloyd, Repeated Impact-Abrasion Testing of Alloy White Cast Irons, Wear, 1993, 162–164, p 790–801.CrossRef I.R. Sare, B.K. Arnold, G.A. Dunlop and P.G. Lloyd, Repeated Impact-Abrasion Testing of Alloy White Cast Irons, Wear, 1993, 162–164, p 790–801.CrossRef
83.
Zurück zum Zitat A. Sundström, J. Rendón and M. Olsson, Wear Behaviour of Some Low Alloyed Steels Under Combined Impact/Abrasion Contact Conditions, Wear, 2001, 250(1), p 744–754.CrossRef A. Sundström, J. Rendón and M. Olsson, Wear Behaviour of Some Low Alloyed Steels Under Combined Impact/Abrasion Contact Conditions, Wear, 2001, 250(1), p 744–754.CrossRef
84.
Zurück zum Zitat M. Varga, High Temperature Abrasive Wear of Metallic Materials, Wear, 2017, 376–377, p 443–451.CrossRef M. Varga, High Temperature Abrasive Wear of Metallic Materials, Wear, 2017, 376–377, p 443–451.CrossRef
85.
Zurück zum Zitat V. Ratia, K. Valtonen and V.-T. Kuokkala, Impact-Abrasion Wear of Wear-Resistant Steels at Perpendicular and Tilted Angles, Proc. Inst. Mech. Eng. Part J J. Eng. Tribol., 2013, 227(8), p 868–877.CrossRef V. Ratia, K. Valtonen and V.-T. Kuokkala, Impact-Abrasion Wear of Wear-Resistant Steels at Perpendicular and Tilted Angles, Proc. Inst. Mech. Eng. Part J J. Eng. Tribol., 2013, 227(8), p 868–877.CrossRef
86.
Zurück zum Zitat V. Ratia, I. Miettunen and V.-T. Kuokkala, Surface Deformation of Steels in Impact-Abrasion: The Effect of Sample Angle and Test Duration, Wear, 2013, 301(1), p 94–101.CrossRef V. Ratia, I. Miettunen and V.-T. Kuokkala, Surface Deformation of Steels in Impact-Abrasion: The Effect of Sample Angle and Test Duration, Wear, 2013, 301(1), p 94–101.CrossRef
87.
Zurück zum Zitat J.A. Hawk, R.D. Wilson, J.H. Tylczak and Ö.N. Doğan, Laboratory Abrasive Wear Tests: Investigation of Test Methods and Alloy Correlation, Wear, 1999, 225–229, p 1031–1042.CrossRef J.A. Hawk, R.D. Wilson, J.H. Tylczak and Ö.N. Doğan, Laboratory Abrasive Wear Tests: Investigation of Test Methods and Alloy Correlation, Wear, 1999, 225–229, p 1031–1042.CrossRef
88.
Zurück zum Zitat G. Saha, K. Valtonen, A. Saastamoinen, P. Peura and V.-T. Kuokkala, Impact-Abrasive and Abrasive Wear Behavior of Low Carbon Steels With a Range of Hardness-Toughness Properties, Wear, 2020, 450–451, p 203263.CrossRef G. Saha, K. Valtonen, A. Saastamoinen, P. Peura and V.-T. Kuokkala, Impact-Abrasive and Abrasive Wear Behavior of Low Carbon Steels With a Range of Hardness-Toughness Properties, Wear, 2020, 450–451, p 203263.CrossRef
89.
Zurück zum Zitat R.D. Wilson and J.A. Hawk, Impeller Wear Impact-Abrasive Wear Test, Wear, 1999, 225–229, p 1248–1257.CrossRef R.D. Wilson and J.A. Hawk, Impeller Wear Impact-Abrasive Wear Test, Wear, 1999, 225–229, p 1248–1257.CrossRef
90.
Zurück zum Zitat S.F. Scieszka, Wear Transition as a Means of Fracture Toughness Evaluation of Hardmetals, Tribol. Lett., 2001, 11(3), p 185–194.CrossRef S.F. Scieszka, Wear Transition as a Means of Fracture Toughness Evaluation of Hardmetals, Tribol. Lett., 2001, 11(3), p 185–194.CrossRef
91.
Zurück zum Zitat B. Liu, W. Li, L. Xianwen, X. Jia and X. Jin, An Integrated Model of Impact-Abrasive Wear in Bainitic Steels Containing Retained Austenite, Wear, 2019, 440–441, p 203088.CrossRef B. Liu, W. Li, L. Xianwen, X. Jia and X. Jin, An Integrated Model of Impact-Abrasive Wear in Bainitic Steels Containing Retained Austenite, Wear, 2019, 440–441, p 203088.CrossRef
92.
Zurück zum Zitat T. Teeri, V.-T. Kuokkala, P. Siitonen, P. Kivikytö-Reponen and J. Liimatainen, Impact Wear in Mineral Crushing, Proc. Eston. Acad. Sci. Eng. Eston. Acad. Publ., 2006, 12, p 408–418. T. Teeri, V.-T. Kuokkala, P. Siitonen, P. Kivikytö-Reponen and J. Liimatainen, Impact Wear in Mineral Crushing, Proc. Eston. Acad. Sci. Eng. Eston. Acad. Publ., 2006, 12, p 408–418.
93.
Zurück zum Zitat Z. Pei, R. Song, Q. Ba and Y. Feng, Dimensionality Wear Analysis: Three-Body Impact Abrasive Wear Behavior of a Martensitic Steel in Comparison with Mn13Cr2, Wear, 2018, 414–415, p 341–351.CrossRef Z. Pei, R. Song, Q. Ba and Y. Feng, Dimensionality Wear Analysis: Three-Body Impact Abrasive Wear Behavior of a Martensitic Steel in Comparison with Mn13Cr2, Wear, 2018, 414–415, p 341–351.CrossRef
94.
Zurück zum Zitat E. Wen, R. Song and W. Xiong, Effect of Tempering Temperature on Microstructures and Wear Behavior of a 500 HB Grade Wear-Resistant Steel, Metals, 2019, 9(1), p 45.CrossRef E. Wen, R. Song and W. Xiong, Effect of Tempering Temperature on Microstructures and Wear Behavior of a 500 HB Grade Wear-Resistant Steel, Metals, 2019, 9(1), p 45.CrossRef
95.
Zurück zum Zitat R. Dalai, S. Das and K. Das, Effect of Thermo-Mechanical Processing on the Low Impact Abrasion and Low Stress Sliding Wear Resistance of Austenitic High Manganese Steels, Wear, 2019, 420–421, p 176–183.CrossRef R. Dalai, S. Das and K. Das, Effect of Thermo-Mechanical Processing on the Low Impact Abrasion and Low Stress Sliding Wear Resistance of Austenitic High Manganese Steels, Wear, 2019, 420–421, p 176–183.CrossRef
96.
Zurück zum Zitat K. Valtonen, N. Ojala, O. Haiko and V.-T. Kuokkala, Comparison of Various High-Stress Wear Conditions and Wear Performance of Martensitic Steels, Wear, 2019, 426–427, p 3–13.CrossRef K. Valtonen, N. Ojala, O. Haiko and V.-T. Kuokkala, Comparison of Various High-Stress Wear Conditions and Wear Performance of Martensitic Steels, Wear, 2019, 426–427, p 3–13.CrossRef
97.
Zurück zum Zitat A.G. Kostryzhev, C.R. Killmore, D. Yu and E.V. Pereloma, Martensitic Wear Resistant Steels Alloyed with Titanium, Wear, 2020, 446–447, p 203203.CrossRef A.G. Kostryzhev, C.R. Killmore, D. Yu and E.V. Pereloma, Martensitic Wear Resistant Steels Alloyed with Titanium, Wear, 2020, 446–447, p 203203.CrossRef
98.
Zurück zum Zitat M. Fiset, G. Huard and J. Masounave, Effect of the Abrasive Nature on the Impact and Impact-Abrasion Wear Rate of a Martensitic Cast Iron, J. Mater. Sci. Lett., 1990, 9(12), p 1456–1458.CrossRef M. Fiset, G. Huard and J. Masounave, Effect of the Abrasive Nature on the Impact and Impact-Abrasion Wear Rate of a Martensitic Cast Iron, J. Mater. Sci. Lett., 1990, 9(12), p 1456–1458.CrossRef
99.
Zurück zum Zitat O.A. Zambrano, D.S. García, S.A. Rodríguez and J.J. Coronado, The Mild-Severe Wear Transition in Erosion Wear, Tribol. Lett., 2018, 66(3), p 95.CrossRef O.A. Zambrano, D.S. García, S.A. Rodríguez and J.J. Coronado, The Mild-Severe Wear Transition in Erosion Wear, Tribol. Lett., 2018, 66(3), p 95.CrossRef
100.
Zurück zum Zitat Y. Ali, C.D. Garcia-Mendoza and J.D. Gates, Effects of ‘Impact’ and Abrasive Particle Size on the Performance of White Cast Irons Relative to Low-Alloy Steels in Laboratory Ball Mills, Wear, 2019, 426–427, p 83–100.CrossRef Y. Ali, C.D. Garcia-Mendoza and J.D. Gates, Effects of ‘Impact’ and Abrasive Particle Size on the Performance of White Cast Irons Relative to Low-Alloy Steels in Laboratory Ball Mills, Wear, 2019, 426–427, p 83–100.CrossRef
101.
Zurück zum Zitat M. Kallel, F. Zouch, Z. Antar, A. Bahri and K. Elleuch, Hammer Premature Wear in Mineral Crushing Process, Tribol. Int., 2017, 115, p 493–505.CrossRef M. Kallel, F. Zouch, Z. Antar, A. Bahri and K. Elleuch, Hammer Premature Wear in Mineral Crushing Process, Tribol. Int., 2017, 115, p 493–505.CrossRef
102.
Zurück zum Zitat W. Wang, R. Song, S. Peng and Z. Pei, Multiphase Steel with Improved Impact-Abrasive Wear Resistance in Comparison with Conventional Hadfield Steel, Mater. Des., 2016, 105, p 96–105.CrossRef W. Wang, R. Song, S. Peng and Z. Pei, Multiphase Steel with Improved Impact-Abrasive Wear Resistance in Comparison with Conventional Hadfield Steel, Mater. Des., 2016, 105, p 96–105.CrossRef
103.
Zurück zum Zitat Lu. Jun, Yu. Hao, P. Kang, X. Duan and C. Song, Study of Microstructure, Mechanical Properties and Impact-Abrasive Wear Behavior of Medium-Carbon Steel Treated by Quenching and Partitioning (Q&P) Process, Wear, 2018, 414–415, p 21–30. Lu. Jun, Yu. Hao, P. Kang, X. Duan and C. Song, Study of Microstructure, Mechanical Properties and Impact-Abrasive Wear Behavior of Medium-Carbon Steel Treated by Quenching and Partitioning (Q&P) Process, Wear, 2018, 414–415, p 21–30.
105.
Zurück zum Zitat L.B. Varela, G. Tressia, M. Masoumi, E.M. Bortoleto, C. Regattieri and A. Sinatora, Roller Crushers in Iron Mining, How Does the Degradation of Hadfield Steel Components Occur?, Eng. Fail. Anal., 2021, 122, p 105295.CrossRef L.B. Varela, G. Tressia, M. Masoumi, E.M. Bortoleto, C. Regattieri and A. Sinatora, Roller Crushers in Iron Mining, How Does the Degradation of Hadfield Steel Components Occur?, Eng. Fail. Anal., 2021, 122, p 105295.CrossRef
106.
Zurück zum Zitat P. Radziszewski, Exploring Total Media Wear, Miner. Eng., 2002, 15(12), p 1073–1087.CrossRef P. Radziszewski, Exploring Total Media Wear, Miner. Eng., 2002, 15(12), p 1073–1087.CrossRef
Metadaten
Titel
A Review on the Effect of Impact Toughness and Fracture Toughness on Impact-Abrasion Wear
verfasst von
O. A. Zambrano
Publikationsdatum
28.06.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 10/2021
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-05960-5

Weitere Artikel der Ausgabe 10/2021

Journal of Materials Engineering and Performance 10/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.