Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 10/2021

24.05.2021

Effect of Tool Rotational Speed on the Microstructure and Associated Mechanical Properties of Incrementally Formed Commercially Pure Titanium

verfasst von: G. Yoganjaneyulu, S. Vigneshwaran, R. Palanivel, Adel Alblawi, Mohammad Abdur Rasheed, R. F. Laubscher

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 10/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Single-point incremental forming (SPIF) was conducted on a 1-mm-thick commercially pure titanium grade 2 (Ti-G2) sheet metal in a CNC vertical milling unit. A hardened steel ball of 12 mm diameter was used as forming tool. Frustum cups were formed with varying spindle speeds between 300, 450, and 600 RPM. Other process parameters including the vertical step down and feed rate were kept as 0.2 mm and 300 mm/min, respectively. The metallurgical and mechanical properties of the formed material were investigated by cutting samples from the frustum cup walls. Electron-backscattered diffraction (EBSD) investigation revealed limited change in grain size with an increase in spindle speed. Dislocation density was measured by x-ray diffraction peak broadening analysis. The results indicate that an increase in spindle speed resulted in an increased dislocation density. The EBSD-based textural studies revealed a strong basal texture with near P and B type orientations visible at the maximum spindle speed. The tensile tests demonstrated a proportional increase in tensile strength with an increase in spindle speed along with a significant reduction in total ductility. The enhanced dislocation density and the formation of a strong basal texture were considered as the main drivers for the improvement in the tensile strength. A maximum tensile strength of nearly 550 MPa was obtained for samples extracted from the walls of the frustum cup at the maximum spindle speed of 600 RPM. This translates to an 80% enhancement of the tensile strength when compared to the base metal .

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D. Banerjee and J.C. Williams, Perspectives on Titanium Science and Technology, Acta Mater, 2013, 61, p 844–879.CrossRef D. Banerjee and J.C. Williams, Perspectives on Titanium Science and Technology, Acta Mater, 2013, 61, p 844–879.CrossRef
2.
Zurück zum Zitat J.L. Buckner, S.W. Stafford and D.M. Cone, Microstructural Characterization of Ti-6Al-4V X-Links from The Space Shuttle Columbia, Mater Charct, 2017, 131, p 261–265.CrossRef J.L. Buckner, S.W. Stafford and D.M. Cone, Microstructural Characterization of Ti-6Al-4V X-Links from The Space Shuttle Columbia, Mater Charct, 2017, 131, p 261–265.CrossRef
3.
Zurück zum Zitat K. Mertová, P. Salvetr and M. Duchek, Comparison of Cryogenic and Cold Deformation of Commercially Pure Titanium, Mater Today Proc, 2020, 28, p 916–919.CrossRef K. Mertová, P. Salvetr and M. Duchek, Comparison of Cryogenic and Cold Deformation of Commercially Pure Titanium, Mater Today Proc, 2020, 28, p 916–919.CrossRef
4.
Zurück zum Zitat Y.S. Kim, B.H. Lee and S.H. Yang, Prediction of Forming Limit Curve for Pure Titanium Sheet, Trans Nonferrous Met Soc China, 2018, 28(2), p 319–327.CrossRef Y.S. Kim, B.H. Lee and S.H. Yang, Prediction of Forming Limit Curve for Pure Titanium Sheet, Trans Nonferrous Met Soc China, 2018, 28(2), p 319–327.CrossRef
5.
Zurück zum Zitat F.K. Chen and K.H. Chiu, Stamping Formability of Pure Titanium Sheets, J Mater Process Technol, 2005, 170(1–2), p 181–186.CrossRef F.K. Chen and K.H. Chiu, Stamping Formability of Pure Titanium Sheets, J Mater Process Technol, 2005, 170(1–2), p 181–186.CrossRef
6.
Zurück zum Zitat A.L. Port, F. Toussaint and R. Arrieux, Finite Element Study and Sensitive Analysis of the Deep-Drawing Formability of Commercially Pure Titanium, Int J Mater Form, 2009, 2, p 121–129.CrossRef A.L. Port, F. Toussaint and R. Arrieux, Finite Element Study and Sensitive Analysis of the Deep-Drawing Formability of Commercially Pure Titanium, Int J Mater Form, 2009, 2, p 121–129.CrossRef
7.
Zurück zum Zitat P.A. Grün, E.H. Uheida, L. Lachmann, D. Dimitrov and G.A. Oosthuizen, Formability of Titanium Alloy Sheets by Friction Stir Incremental Forming, Int J Adv Manuf Technol, 2018, 99, p 1993–2003.CrossRef P.A. Grün, E.H. Uheida, L. Lachmann, D. Dimitrov and G.A. Oosthuizen, Formability of Titanium Alloy Sheets by Friction Stir Incremental Forming, Int J Adv Manuf Technol, 2018, 99, p 1993–2003.CrossRef
8.
Zurück zum Zitat A. Daleffe, L. Schaeffer, D. Fritzen and J. Castelan, Analysis of the Incremental Forming of Titanium F67 Grade 2 Sheet, Key Eng Mater, 2013, 554–557, p 195–203.CrossRef A. Daleffe, L. Schaeffer, D. Fritzen and J. Castelan, Analysis of the Incremental Forming of Titanium F67 Grade 2 Sheet, Key Eng Mater, 2013, 554–557, p 195–203.CrossRef
9.
Zurück zum Zitat G. Yoganjaneyulu, C. Sathiya Narayanan and R. Narayanasamy, Investigation on the Fracture Behavior of Titanium Grade 2 Sheets by using The Single Point Incremental Forming Process, J Manuf Process, 2018, 35, p 197–204.CrossRef G. Yoganjaneyulu, C. Sathiya Narayanan and R. Narayanasamy, Investigation on the Fracture Behavior of Titanium Grade 2 Sheets by using The Single Point Incremental Forming Process, J Manuf Process, 2018, 35, p 197–204.CrossRef
10.
Zurück zum Zitat G. Hussain, M. Ilyas, B.B.L. Isidore and W.A. Khan, Mechanical Properties and Microstructure Evolution in Incremental Forming of AA5754 and AA6061 Aluminum Alloys, Trans. Nonferrous Met. Soc. China, 2020, 30, p 51–64.CrossRef G. Hussain, M. Ilyas, B.B.L. Isidore and W.A. Khan, Mechanical Properties and Microstructure Evolution in Incremental Forming of AA5754 and AA6061 Aluminum Alloys, Trans. Nonferrous Met. Soc. China, 2020, 30, p 51–64.CrossRef
11.
Zurück zum Zitat H. Wei, L. Zhou, B. Heidarshenas, I.K. Ashraf and C. Han, Investigation on the Influence of Springback on Precision of Symmetric-Cone-Like Parts in Sheet Metal Incremental Forming Process, Int J Lightweight Materi Manuf, 2019, 2(2), p 140–145. H. Wei, L. Zhou, B. Heidarshenas, I.K. Ashraf and C. Han, Investigation on the Influence of Springback on Precision of Symmetric-Cone-Like Parts in Sheet Metal Incremental Forming Process, Int J Lightweight Materi Manuf, 2019, 2(2), p 140–145.
12.
Zurück zum Zitat T. McAnulty, J. Jeswiet and M. Doolan, Formability in Single Point Incremental Forming: A Comparative Analysis of the State of the Art, CIRP J Manuf Sci Technol, 2017, 16, p 43–54.CrossRef T. McAnulty, J. Jeswiet and M. Doolan, Formability in Single Point Incremental Forming: A Comparative Analysis of the State of the Art, CIRP J Manuf Sci Technol, 2017, 16, p 43–54.CrossRef
13.
Zurück zum Zitat Ham M, Jeswiet J (2006) Single Point Incremental Forming and The Forming Criteria for AA3003. CIRP Annals – Manuf Technol 55: 241–244 Ham M, Jeswiet J (2006) Single Point Incremental Forming and The Forming Criteria for AA3003. CIRP Annals – Manuf Technol 55: 241–244
14.
Zurück zum Zitat T.A. Marques, M.B. Silva and P.A.F. Martins, On the Potential of Single Point Incremental Forming of Sheet Polymer Parts, Int J Adv Manuf Technol, 2012, 60, p 75–86.CrossRef T.A. Marques, M.B. Silva and P.A.F. Martins, On the Potential of Single Point Incremental Forming of Sheet Polymer Parts, Int J Adv Manuf Technol, 2012, 60, p 75–86.CrossRef
15.
Zurück zum Zitat G. Hussain, H.R. Khan, L. Gao and N. Hayat, Guidelines for Tool-size Selection for Single-point Incremental Forming of an Aerospace Alloy, Mater Manuf Process, 2013, 28, p 324–329.CrossRef G. Hussain, H.R. Khan, L. Gao and N. Hayat, Guidelines for Tool-size Selection for Single-point Incremental Forming of an Aerospace Alloy, Mater Manuf Process, 2013, 28, p 324–329.CrossRef
16.
Zurück zum Zitat G. Yoganjaneyulu and C. Sathiya Narayanan, A Comparison of Fracture Limit Analysis on Titanium Grade 2 and Titanium Grade 4 Sheets During Single Point Incremental Forming, J Fail Anal Prev, 2019, 19, p 1286–1296.CrossRef G. Yoganjaneyulu and C. Sathiya Narayanan, A Comparison of Fracture Limit Analysis on Titanium Grade 2 and Titanium Grade 4 Sheets During Single Point Incremental Forming, J Fail Anal Prev, 2019, 19, p 1286–1296.CrossRef
17.
Zurück zum Zitat S. Golabi and H. Khazaali, Determining Frustum Depth of 304 Stainless Steel Plates With Various Diameters and Thicknesses by Incremental Forming, J Mech Sci Technol, 2014, 28, p 3273–3278.CrossRef S. Golabi and H. Khazaali, Determining Frustum Depth of 304 Stainless Steel Plates With Various Diameters and Thicknesses by Incremental Forming, J Mech Sci Technol, 2014, 28, p 3273–3278.CrossRef
18.
Zurück zum Zitat G. Centeno, I. Bagudanch, A.J. Martnez-Donaire, M.L. Garca-Romeu and C. Vallellano, Critical Analysis of Necking and Fracture Limit Strains and Forming Forces in Single-point Incremental Forming, Mater Des, 2014, 63, p 20–29.CrossRef G. Centeno, I. Bagudanch, A.J. Martnez-Donaire, M.L. Garca-Romeu and C. Vallellano, Critical Analysis of Necking and Fracture Limit Strains and Forming Forces in Single-point Incremental Forming, Mater Des, 2014, 63, p 20–29.CrossRef
19.
Zurück zum Zitat G. Ambrogio and F. Gagliardi, Temperature Variation During High Speed Incremental Forming on Different Lightweight Alloys, Int J Adv Manuf Technol, 2015, 76, p 1819–1825.CrossRef G. Ambrogio and F. Gagliardi, Temperature Variation During High Speed Incremental Forming on Different Lightweight Alloys, Int J Adv Manuf Technol, 2015, 76, p 1819–1825.CrossRef
20.
Zurück zum Zitat G. Vignesh, C. Sathiya Narayanan, C. Pandivelan, K. Shanmugapriya, B.N. Tejavath and L. Tirupathi, Forming, Fracture and Corrosion Behaviour of Stainless Steel 202 Sheet Formed By Single Point Incremental Forming Process, Mater Res Express, 2019, 6(12), p 126540.CrossRef G. Vignesh, C. Sathiya Narayanan, C. Pandivelan, K. Shanmugapriya, B.N. Tejavath and L. Tirupathi, Forming, Fracture and Corrosion Behaviour of Stainless Steel 202 Sheet Formed By Single Point Incremental Forming Process, Mater Res Express, 2019, 6(12), p 126540.CrossRef
21.
Zurück zum Zitat D. Xu, W. Wu, R. Malhotra, J. Chen, B. Lu and J. Cao, Mechanism Investigation for the Influence of Tool Rotation and Laser Surface Texturing (LST) on Formability in Single Point Incremental Forming, Int J Mach Tools Manuf, 2013, 73, p 37–46.CrossRef D. Xu, W. Wu, R. Malhotra, J. Chen, B. Lu and J. Cao, Mechanism Investigation for the Influence of Tool Rotation and Laser Surface Texturing (LST) on Formability in Single Point Incremental Forming, Int J Mach Tools Manuf, 2013, 73, p 37–46.CrossRef
22.
Zurück zum Zitat G. Hussain, L. Gao and Z.Y. Zhang, Formability Evaluation of a Pure Titanium Sheet in the Cold Incremental Forming Process, Int J Adv Manuf Technol, 2008, 37, p 920–926.CrossRef G. Hussain, L. Gao and Z.Y. Zhang, Formability Evaluation of a Pure Titanium Sheet in the Cold Incremental Forming Process, Int J Adv Manuf Technol, 2008, 37, p 920–926.CrossRef
23.
Zurück zum Zitat J. Naranjo, V. Miguel, A. Martínez, J. Coello, M.C. Manjabacas and J. Valera, Influence of Temperature on Alloy Ti6Al4V Formability During the warm SPIF Process, Proc Eng, 2017, 207, p 866–871.CrossRef J. Naranjo, V. Miguel, A. Martínez, J. Coello, M.C. Manjabacas and J. Valera, Influence of Temperature on Alloy Ti6Al4V Formability During the warm SPIF Process, Proc Eng, 2017, 207, p 866–871.CrossRef
24.
Zurück zum Zitat J. Adamus and P. Lacki, Possibility of the Increase in Titanium Sheets’ Drawability, Key Eng Mater, 2013, 549, p 31–38.CrossRef J. Adamus and P. Lacki, Possibility of the Increase in Titanium Sheets’ Drawability, Key Eng Mater, 2013, 549, p 31–38.CrossRef
25.
Zurück zum Zitat V.C. Ajay, Parameter Optimization in Incremental Forming of Titanium Alloy Material, Trans Indian Inst Met, 2020, 73(9), p 2403–2413.CrossRef V.C. Ajay, Parameter Optimization in Incremental Forming of Titanium Alloy Material, Trans Indian Inst Met, 2020, 73(9), p 2403–2413.CrossRef
26.
Zurück zum Zitat N. Nadammal, S.V. Kailas and S. Suwas, A Bottom-Up Approach for Optimization of Friction Stir Processing Parameters; A Study on Aluminium 2024–T3 Alloy, Mater Des, 2015, 65, p 127–138.CrossRef N. Nadammal, S.V. Kailas and S. Suwas, A Bottom-Up Approach for Optimization of Friction Stir Processing Parameters; A Study on Aluminium 2024–T3 Alloy, Mater Des, 2015, 65, p 127–138.CrossRef
27.
Zurück zum Zitat D. Shore, L.A.I. Kestens, J. Sidor, P. Van Houtte and A. Van Bael, Process Parameter Influence on Texture Heterogeneity in Asymmetric Rolling of Aluminium Sheet Alloys, Int J Mater Form, 2018, 11, p 297–309.CrossRef D. Shore, L.A.I. Kestens, J. Sidor, P. Van Houtte and A. Van Bael, Process Parameter Influence on Texture Heterogeneity in Asymmetric Rolling of Aluminium Sheet Alloys, Int J Mater Form, 2018, 11, p 297–309.CrossRef
28.
Zurück zum Zitat N. Stanford, U. Carlson and M.R. Barnett, Deformation Twinning and the Hall-Petch Relation in Commercial Purity Ti, Metall Mater Trans A, 2008, 39(4), p 934–944.CrossRef N. Stanford, U. Carlson and M.R. Barnett, Deformation Twinning and the Hall-Petch Relation in Commercial Purity Ti, Metall Mater Trans A, 2008, 39(4), p 934–944.CrossRef
29.
Zurück zum Zitat P. Shrivastava and P. Tandon, Microstructure and Texture Based Analysis of Forming Behavior and Deformation Mechanism of AA1050 Sheet During Single Point Incremental Forming, J Mater Process Technol, 2019, 266, p 292–310.CrossRef P. Shrivastava and P. Tandon, Microstructure and Texture Based Analysis of Forming Behavior and Deformation Mechanism of AA1050 Sheet During Single Point Incremental Forming, J Mater Process Technol, 2019, 266, p 292–310.CrossRef
30.
Zurück zum Zitat T. and Unga´r, Microstructural Parameters from X-ray Diffraction Peak Broadening, Scripta Mater, 2004, 51, p 777–781.CrossRef T. and Unga´r, Microstructural Parameters from X-ray Diffraction Peak Broadening, Scripta Mater, 2004, 51, p 777–781.CrossRef
31.
Zurück zum Zitat A.K. Zak, W.H.A. Majid, M.E. Abrishami and R. Youse, X-ray Analysis of ZnO Nanoparticles by Williamson-Hall and Size-Strain Plot Methods, Solid State Sci, 2011, 13, p 251–256.CrossRef A.K. Zak, W.H.A. Majid, M.E. Abrishami and R. Youse, X-ray Analysis of ZnO Nanoparticles by Williamson-Hall and Size-Strain Plot Methods, Solid State Sci, 2011, 13, p 251–256.CrossRef
32.
Zurück zum Zitat K.S.V.B.R. Krishna, S. Vigneshwaran, K. Chandra Sekhar, S.S.R. Akella, K. Sivaprasad, R. Narayanasamy and K. Venkateswarlu, Mechanical behavior and Void Coalescence Analysis of Cryorolled AA8090 Alloy, Int J Adv Manuf Technol, 2017, 93, p 253–259.CrossRef K.S.V.B.R. Krishna, S. Vigneshwaran, K. Chandra Sekhar, S.S.R. Akella, K. Sivaprasad, R. Narayanasamy and K. Venkateswarlu, Mechanical behavior and Void Coalescence Analysis of Cryorolled AA8090 Alloy, Int J Adv Manuf Technol, 2017, 93, p 253–259.CrossRef
33.
Zurück zum Zitat R.R. Smallman and C.H. Westmacott, Stacking Faults In Face-Centred Cubic Metals and Alloys, Philos Mag, 1957, 2, p 669–683.CrossRef R.R. Smallman and C.H. Westmacott, Stacking Faults In Face-Centred Cubic Metals and Alloys, Philos Mag, 1957, 2, p 669–683.CrossRef
34.
Zurück zum Zitat Y.T. Prabhu, K.V. Rao, V.S. Sai Kumar and B. Siva Kumari, X-Ray Analysis by Williamson-Hall and Size-Strain Plot Methods of ZnO Nanoparticles with Fuel Variation, World J Nano Sci Eng, 2014, 4, p 21–28.CrossRef Y.T. Prabhu, K.V. Rao, V.S. Sai Kumar and B. Siva Kumari, X-Ray Analysis by Williamson-Hall and Size-Strain Plot Methods of ZnO Nanoparticles with Fuel Variation, World J Nano Sci Eng, 2014, 4, p 21–28.CrossRef
35.
Zurück zum Zitat K. Hajizadeh and B. Eghbali, Effect of Two-Step Severe Plastic Deformation on the Microstructure and Mechanical Properties of Commercial Purity Titanium, Metal Mater Int, 2014, 20(2), p 343–350.CrossRef K. Hajizadeh and B. Eghbali, Effect of Two-Step Severe Plastic Deformation on the Microstructure and Mechanical Properties of Commercial Purity Titanium, Metal Mater Int, 2014, 20(2), p 343–350.CrossRef
36.
Zurück zum Zitat M.J. Qarni, G. Sivaswamy, A. Rosochowski and S. Boczkal, On The Evolution of Microstructure and Texture in Commercial Purity Titanium During Multiple Passes of Incremental Equal Channel Angular Pressing (I-ECAP), Mater Sci Eng A, 2017, 699, p 31–47.CrossRef M.J. Qarni, G. Sivaswamy, A. Rosochowski and S. Boczkal, On The Evolution of Microstructure and Texture in Commercial Purity Titanium During Multiple Passes of Incremental Equal Channel Angular Pressing (I-ECAP), Mater Sci Eng A, 2017, 699, p 31–47.CrossRef
37.
Zurück zum Zitat Beausir B, Suwas S, To´th LS, Neale KW, Fundenberger JJ (2008) Analysis of Texture Evolution in Magnesium During Equal Channel Angular Extrusion. Acta Mater 56: 200–214 Beausir B, Suwas S, To´th LS, Neale KW, Fundenberger JJ (2008) Analysis of Texture Evolution in Magnesium During Equal Channel Angular Extrusion. Acta Mater 56: 200–214
38.
Zurück zum Zitat H.N. Abarbekoh, R. Abbasi, A. Ekrami and A.A.Z. Moayyed, Notch-Texture Strengthening Mechanism in Commercially Pure Titanium Thin Sheets, Mater Des, 2014, 55, p 683–689.CrossRef H.N. Abarbekoh, R. Abbasi, A. Ekrami and A.A.Z. Moayyed, Notch-Texture Strengthening Mechanism in Commercially Pure Titanium Thin Sheets, Mater Des, 2014, 55, p 683–689.CrossRef
39.
Zurück zum Zitat Z.S. Zhu, R.Y. Liu, M.G. Yan, C.X. Cao, J.L. Gu and N.P. Chen, Texture Control and The Anisotropy of Mechanical Properties in Titanium Sheet, J Mater Sci, 1997, 32, p 5163–5167.CrossRef Z.S. Zhu, R.Y. Liu, M.G. Yan, C.X. Cao, J.L. Gu and N.P. Chen, Texture Control and The Anisotropy of Mechanical Properties in Titanium Sheet, J Mater Sci, 1997, 32, p 5163–5167.CrossRef
40.
Zurück zum Zitat M.R. Bache and W.J. Evans, Impact of Texture on Mechanical Properties in an Advanced Titanium Alloy, Mater Sci Eng A, 2001, 319–321, p 409–414.CrossRef M.R. Bache and W.J. Evans, Impact of Texture on Mechanical Properties in an Advanced Titanium Alloy, Mater Sci Eng A, 2001, 319–321, p 409–414.CrossRef
41.
Zurück zum Zitat P.M. Mashinini, I. Dinaharan, J.D.R. Selvam and D.G. Hattingh, Microstructure Evolution and Mechanical Characterization of Friction Stir Welded Titanium Alloy Ti–6Al–4V Using Lanthanated Tungsten Tool, Mater Charact, 2018, 139, p 328–336.CrossRef P.M. Mashinini, I. Dinaharan, J.D.R. Selvam and D.G. Hattingh, Microstructure Evolution and Mechanical Characterization of Friction Stir Welded Titanium Alloy Ti–6Al–4V Using Lanthanated Tungsten Tool, Mater Charact, 2018, 139, p 328–336.CrossRef
42.
Zurück zum Zitat R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen and A.D. Rollett, Current Issues In Recrystallization: A Review, Mater Sci Eng A, 1997, 238(2), p 219–274.CrossRef R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen and A.D. Rollett, Current Issues In Recrystallization: A Review, Mater Sci Eng A, 1997, 238(2), p 219–274.CrossRef
Metadaten
Titel
Effect of Tool Rotational Speed on the Microstructure and Associated Mechanical Properties of Incrementally Formed Commercially Pure Titanium
verfasst von
G. Yoganjaneyulu
S. Vigneshwaran
R. Palanivel
Adel Alblawi
Mohammad Abdur Rasheed
R. F. Laubscher
Publikationsdatum
24.05.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 10/2021
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-05900-3

Weitere Artikel der Ausgabe 10/2021

Journal of Materials Engineering and Performance 10/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.