Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 10/2021

26.05.2021

The Significant Impact of the Characteristics of Granular Structure and Granular Bainite on the Mechanisms Contributing to Strength–Ductility Combination

verfasst von: X. N. Xu, Y. Tian, Q. B. Ye, R. D. K. Misra, Z. D. Wang

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 10/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A comprehensive analysis and characterization of granular structure (GS) and granular bainite (GB) were conducted in a low-carbon alloy steel with the objective to elucidate the mechanisms that contributed to strength–ductility combination. Ferrite + martensite–austenite (M-A) islands were observed in both GS and GB, but a transformation mechanism produced a variation in the matrix and in the M-A size, distribution and morphology. The differences in the matrix and M-A islands were carefully studied by electron backscatter diffraction. Furthermore, tensile tests were interrupted at different strains to study the microstructure evolution during tensile straining and mechanical properties determined from samples tensile strained to fracture. It was observed that the specimen with GB exhibited higher tensile strength, ductility and strain hardening compared to GS. Dislocation strengthening of GB was more apparent than GS. The higher volume fraction and uniform distribution of M-A islands also contributed to the higher strength of GB. The improvement in ductility may partly be attributed to the sub-structural refinement. An increased presence of geometrically necessary dislocations array in GB also simultaneously enhanced strength and ductility. During deformation, GB exhibited a more uniform local strain distribution compared to GS because of superior plastic ability of M-A islands. Based on the experimental results and analysis, we propose models describing the different failure mechanism in GS and GB.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat L. Habraken, Proceedings of the Fourth International Conference on Electron Microscopy, Springer, Berlin, 1958. L. Habraken, Proceedings of the Fourth International Conference on Electron Microscopy, Springer, Berlin, 1958.
2.
Zurück zum Zitat L. Habraken, Bainitic Transformation of Steels, Rev. Metall., 1956, 53(12), p 930.CrossRef L. Habraken, Bainitic Transformation of Steels, Rev. Metall., 1956, 53(12), p 930.CrossRef
3.
Zurück zum Zitat H.K.D.H. Bhadeshia, Bainite in Steels: Theory and Practice, CRC Press, 2019. H.K.D.H. Bhadeshia, Bainite in Steels: Theory and Practice, CRC Press, 2019.
4.
Zurück zum Zitat F. Hongsheng, B.A.I. Bingzhe, Z. Xiuhua et al., Morphology and Phase Transformation of Granular Bainite and Granular Structure, Acta Metall. Sin., 1986, 22(4), p 5–142. F. Hongsheng, B.A.I. Bingzhe, Z. Xiuhua et al., Morphology and Phase Transformation of Granular Bainite and Granular Structure, Acta Metall. Sin., 1986, 22(4), p 5–142.
5.
Zurück zum Zitat M. Zhang and M. Kang, Strengthening-Toughening Mechanism of Granular Bainite and Granular Structure of Low-Carbon Low-Alloy Steel, Kang T’ieh/Iron Steel (Peking), 1993, 28(9), p 51–55. M. Zhang and M. Kang, Strengthening-Toughening Mechanism of Granular Bainite and Granular Structure of Low-Carbon Low-Alloy Steel, Kang T’ieh/Iron Steel (Peking), 1993, 28(9), p 51–55.
6.
Zurück zum Zitat Z.X. Qiao, Y.C. Liu, L.M. Yu et al., Formation Mechanism of Granular Bainite in a 30CrNi3MoV Steel, J. Alloy. Compd., 2009, 475(1–2), p 560–564. Z.X. Qiao, Y.C. Liu, L.M. Yu et al., Formation Mechanism of Granular Bainite in a 30CrNi3MoV Steel, J. Alloy. Compd., 2009, 475(1–2), p 560–564.
7.
Zurück zum Zitat F.S. Lepera, Improved Etching Technique for the Determination of Percent Martensite in High-Strength Dual-Phase Steels, Metallography, 1979, 12(3), p 263–268.CrossRef F.S. Lepera, Improved Etching Technique for the Determination of Percent Martensite in High-Strength Dual-Phase Steels, Metallography, 1979, 12(3), p 263–268.CrossRef
8.
Zurück zum Zitat X. Luo, X. Chen, T. Wang et al., Effect of Morphologies of Martensite–Austenite Constituents on Impact Toughness in Intercritically Reheated Coarse-Grained Heat-Affected Zone of HSLA Steel, Mater. Sci. Eng. A, 2018, 710, p 192–199.CrossRef X. Luo, X. Chen, T. Wang et al., Effect of Morphologies of Martensite–Austenite Constituents on Impact Toughness in Intercritically Reheated Coarse-Grained Heat-Affected Zone of HSLA Steel, Mater. Sci. Eng. A, 2018, 710, p 192–199.CrossRef
9.
Zurück zum Zitat Y. Li and T.N. Baker, Effect of Morphology of Martensite–Austenite Phase on Fracture of Weld Heat Affected Zone in Vanadium and Niobium Microalloyed Steels, Mater. Sci. Technol., 2010, 26(9), p 1029–1040.CrossRef Y. Li and T.N. Baker, Effect of Morphology of Martensite–Austenite Phase on Fracture of Weld Heat Affected Zone in Vanadium and Niobium Microalloyed Steels, Mater. Sci. Technol., 2010, 26(9), p 1029–1040.CrossRef
10.
Zurück zum Zitat H. Bhadeshia, Martensite and Bainite in Steels: Transformation Mechanism & Mechanical Properties, J. Phys. IV, 1997, 7(C5), p C5-367-C5-376. H. Bhadeshia, Martensite and Bainite in Steels: Transformation Mechanism & Mechanical Properties, J. Phys. IV, 1997, 7(C5), p C5-367-C5-376.
11.
Zurück zum Zitat X. Li, A. Ramazani, U. Prahl et al., Quantification of Complex-Phase Steel Microstructure by Using Combined EBSD and EPMA Measurements, Mater. Charact., 2018, 142, p 179–186.CrossRef X. Li, A. Ramazani, U. Prahl et al., Quantification of Complex-Phase Steel Microstructure by Using Combined EBSD and EPMA Measurements, Mater. Charact., 2018, 142, p 179–186.CrossRef
12.
Zurück zum Zitat M. Calcagnotto, Y. Adachi, D. Ponge et al., Deformation and Fracture Mechanisms in Fine-and Ultrafine-Grained Ferrite/Martensite Dual-Phase Steels and the Effect of Aging, Acta Mater., 2011, 59(2), p 658–670.CrossRef M. Calcagnotto, Y. Adachi, D. Ponge et al., Deformation and Fracture Mechanisms in Fine-and Ultrafine-Grained Ferrite/Martensite Dual-Phase Steels and the Effect of Aging, Acta Mater., 2011, 59(2), p 658–670.CrossRef
13.
Zurück zum Zitat J.M. Moyer and G.S. Ansell, The Volume Expansion Accompanying the Martensite Transformation in Iron-Carbon Alloys, Metall. Trans. A, 1975, 6(9), p 1785.CrossRef J.M. Moyer and G.S. Ansell, The Volume Expansion Accompanying the Martensite Transformation in Iron-Carbon Alloys, Metall. Trans. A, 1975, 6(9), p 1785.CrossRef
14.
Zurück zum Zitat D.L. Bourell and A. Rizk, Influence of Martensite Transformation Strain on the Ductility of Dual-Phase Steels, Acta Metall., 1983, 31(4), p 609–617.CrossRef D.L. Bourell and A. Rizk, Influence of Martensite Transformation Strain on the Ductility of Dual-Phase Steels, Acta Metall., 1983, 31(4), p 609–617.CrossRef
15.
Zurück zum Zitat J. Kadkhodapour, A. Butz and S.Z. Rad, Mechanisms of Void Formation During Tensile Testing in a Commercial, Dual-Phase Steel, Acta Mater., 2011, 59(7), p 2575–2588.CrossRef J. Kadkhodapour, A. Butz and S.Z. Rad, Mechanisms of Void Formation During Tensile Testing in a Commercial, Dual-Phase Steel, Acta Mater., 2011, 59(7), p 2575–2588.CrossRef
16.
Zurück zum Zitat N.K. Patel, M.G. Walunj and B.R. Kumar, Importance of Martensite Spatial Distribution at Large Volume Fractions in Imparting Ductility in High-Strength Dual-Phase Steel, J. Mater. Eng. Perform., 2019, 28(3), p 1391–1401.CrossRef N.K. Patel, M.G. Walunj and B.R. Kumar, Importance of Martensite Spatial Distribution at Large Volume Fractions in Imparting Ductility in High-Strength Dual-Phase Steel, J. Mater. Eng. Perform., 2019, 28(3), p 1391–1401.CrossRef
17.
Zurück zum Zitat C. Ren, W.J. Dan, Y.S. Xu et al., Strain-Hardening Model of Dual-Phase Steel With Geometrically Necessary Dislocations, J. Eng. Mater. Technol., 2018, 140(3), p 031009.CrossRef C. Ren, W.J. Dan, Y.S. Xu et al., Strain-Hardening Model of Dual-Phase Steel With Geometrically Necessary Dislocations, J. Eng. Mater. Technol., 2018, 140(3), p 031009.CrossRef
18.
Zurück zum Zitat P. Shi, W. Ren, T. Zheng et al., Enhanced Strength–Ductility Synergy in Ultrafine-Grained Eutectic High-Entropy Alloys by inheriting microstructural lamellae, Nat. Commun., 2019, 10(1), p 1–8.CrossRef P. Shi, W. Ren, T. Zheng et al., Enhanced Strength–Ductility Synergy in Ultrafine-Grained Eutectic High-Entropy Alloys by inheriting microstructural lamellae, Nat. Commun., 2019, 10(1), p 1–8.CrossRef
19.
Zurück zum Zitat X. Wu, M. Yang, F. Yuan et al., Heterogeneous Lamella Structure Unites Ultrafine-Grain Strength With Coarse-Grain Ductility, Proc. Natl. Acad. Sci., 2015, 112(47), p 14501–14505.CrossRef X. Wu, M. Yang, F. Yuan et al., Heterogeneous Lamella Structure Unites Ultrafine-Grain Strength With Coarse-Grain Ductility, Proc. Natl. Acad. Sci., 2015, 112(47), p 14501–14505.CrossRef
20.
Zurück zum Zitat Y. Liu, Y. Cao, Q. Mao et al., Critical Microstructures and Defects in Heterostructured Materials and Their Effects on Mechanical Properties, Acta Mater., 2020, 189, p 129–144.CrossRef Y. Liu, Y. Cao, Q. Mao et al., Critical Microstructures and Defects in Heterostructured Materials and Their Effects on Mechanical Properties, Acta Mater., 2020, 189, p 129–144.CrossRef
21.
Zurück zum Zitat N. Huda, Y. Wang, L. Li et al., Effect of Martensite-Austenite (MA) Distribution on Mechanical Properties of Inter-Critical Reheated Coarse Grain Heat Affected Zone in X80 linepipe steEl, Mater. Sci. Eng. A, 2019, 765, p 138301.CrossRef N. Huda, Y. Wang, L. Li et al., Effect of Martensite-Austenite (MA) Distribution on Mechanical Properties of Inter-Critical Reheated Coarse Grain Heat Affected Zone in X80 linepipe steEl, Mater. Sci. Eng. A, 2019, 765, p 138301.CrossRef
22.
Zurück zum Zitat J. Lian, Z. Jiang and J. Liu, Theoretical Model for the Tensile Work Hardening Behaviour of Dual-Phase Steel, Mater. Sci. Eng. A, 1991, 147(1), p 55–65.CrossRef J. Lian, Z. Jiang and J. Liu, Theoretical Model for the Tensile Work Hardening Behaviour of Dual-Phase Steel, Mater. Sci. Eng. A, 1991, 147(1), p 55–65.CrossRef
Metadaten
Titel
The Significant Impact of the Characteristics of Granular Structure and Granular Bainite on the Mechanisms Contributing to Strength–Ductility Combination
verfasst von
X. N. Xu
Y. Tian
Q. B. Ye
R. D. K. Misra
Z. D. Wang
Publikationsdatum
26.05.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 10/2021
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-05887-x

Weitere Artikel der Ausgabe 10/2021

Journal of Materials Engineering and Performance 10/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.