Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 10/2021

27.05.2021

Flow Behavior Analysis and Flow Stress Modeling of Ti17 Alloy in \({\varvec{\beta}}\) Forging Process

verfasst von: Cuiyuan Lu, Jin Wang, Peize Zhang

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 10/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Isothermal compression tests are conducted using a thermomechanical simulator at a constant strain rate during deformation temperature range of 850 to 950 °C and strain rate range of 0.001-10 \({s}^{-1}\) to study the flow behavior of Ti17 alloy with initial basketweave microstructure in \(\beta \) forging process. The strain rate sensitivity exponent m and strain hardening exponent n are calculated, and the strain-compensated constitutive model of flow stress using hyperbolic sine-based Arrhenius model is constructed. The results show that the strain rate sensitivity exponent m is greater than 0.3 when the strain rate is low in the range of 0.001-0.01 \({s}^{-1}\), and reaches its maximum at 900 °C; the component is less than 0.3 at high strain rate range of 0.1-10 \({s}^{-1}\), and it is slightly lower at 850-900 °C compared with at 920-950 °C. The strain hardening exponent n monotonously decreases with the increase in true strain at strain rate of 0.001 \({s}^{-1}\), while for strain rate in the range of 0.01-10 \({s}^{-1}\), it decreases with the increase in strain when the true strain is less than 0.3 but does not show significant change when the true strain is greater than 0.3. The established strain-compensated flow stress constitutive model has high prediction accuracy with average absolute relative error (AARE) of 5.32% and correlation parameter R of 0.993. The model can thus be used to provide theoretical guidance for selecting \(\beta \) forging process parameters, and also provide the basic data for finite element simulation of \(\beta \) forging process of Ti17 alloy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat C. Leyns, M: Peters (Eds.), Titanium and Titanium Alloys, Wiley-VCH GmbH & Co. KgaA, Weinheim, 2003, p 333-350 C. Leyns, M: Peters (Eds.), Titanium and Titanium Alloys, Wiley-VCH GmbH & Co. KgaA, Weinheim, 2003, p 333-350
2.
Zurück zum Zitat E. Ghasemi, A. Zarei-Hanzaki, E. Farabi, K. Tesar, A. Jager and M. Rezaee, Flow softening and dynamic recrystallization behavior of BT19 titanium alloy: a study using process map development, J. Alloys Compd., 2017, 695, p 1706–1718.CrossRef E. Ghasemi, A. Zarei-Hanzaki, E. Farabi, K. Tesar, A. Jager and M. Rezaee, Flow softening and dynamic recrystallization behavior of BT19 titanium alloy: a study using process map development, J. Alloys Compd., 2017, 695, p 1706–1718.CrossRef
3.
Zurück zum Zitat R. Boyer, G. Welsch, E.W. Collings, in: S. Lampman (Ed.), Materials Properties Handbook: Titanium Alloys, first ed., ASM International Materials Park, 1994, p 453-464 R. Boyer, G. Welsch, E.W. Collings, in: S. Lampman (Ed.), Materials Properties Handbook: Titanium Alloys, first ed., ASM International Materials Park, 1994, p 453-464
4.
Zurück zum Zitat X.C. Yin, J.R. Liu, Q.J. Wang and L. Wang, Investigation of beta fleck formation in Ti-17 alloy by directional solidification method, journal of materials science and technology, J. Mater. Sci. Technol., 2020, 48, p 36–43.CrossRef X.C. Yin, J.R. Liu, Q.J. Wang and L. Wang, Investigation of beta fleck formation in Ti-17 alloy by directional solidification method, journal of materials science and technology, J. Mater. Sci. Technol., 2020, 48, p 36–43.CrossRef
5.
Zurück zum Zitat J. Luo, L. Li and M.Q. Li, The flow behavior and processing maps during the isothermal compression of Ti17 alloy, Mater. Sci. Eng. A, 2014, 606, p 165–174.CrossRef J. Luo, L. Li and M.Q. Li, The flow behavior and processing maps during the isothermal compression of Ti17 alloy, Mater. Sci. Eng. A, 2014, 606, p 165–174.CrossRef
6.
Zurück zum Zitat Y. Alshammari, M. Jia, F. Yang and L. Bolzoni, The effect of α+ β forging on the mechanical properties and microstructure of binary titanium alloys produced via a cost-effective powder metallurgy route, Mater. Sci. Eng. A, 2020, 769, p 138496.CrossRef Y. Alshammari, M. Jia, F. Yang and L. Bolzoni, The effect of α+ β forging on the mechanical properties and microstructure of binary titanium alloys produced via a cost-effective powder metallurgy route, Mater. Sci. Eng. A, 2020, 769, p 138496.CrossRef
7.
Zurück zum Zitat Y.G. Zhou, W.D. Zeng and H.Q. Yu, A new high-temperature deformation strengthening and toughening process for titanium alloys, Mater, 1996, 221, p 58–62.CrossRef Y.G. Zhou, W.D. Zeng and H.Q. Yu, A new high-temperature deformation strengthening and toughening process for titanium alloys, Mater, 1996, 221, p 58–62.CrossRef
8.
Zurück zum Zitat H.M. Flower, Microstructural development in relation to hot working of titanium alloys, Mater. Sci. Tech., 1990, 6, p 1082–1092.CrossRef H.M. Flower, Microstructural development in relation to hot working of titanium alloys, Mater. Sci. Tech., 1990, 6, p 1082–1092.CrossRef
9.
Zurück zum Zitat Y. Combres and B. Champin, Titanium alloys processing: state of the art and prospects, Mater. Technol., 1991, 79, p 31–41.CrossRef Y. Combres and B. Champin, Titanium alloys processing: state of the art and prospects, Mater. Technol., 1991, 79, p 31–41.CrossRef
10.
Zurück zum Zitat K.D. Lisa, T. Schmoelzer, K. Yan, M. Reid, M. Peel, R. Dippenaar and H. Clemens, In situ study of dynamic recrystallization and hot deformation behavior of a multiphase titanium aluminide alloy, J. Appl. Phys., 2009, 106, p 113526.CrossRef K.D. Lisa, T. Schmoelzer, K. Yan, M. Reid, M. Peel, R. Dippenaar and H. Clemens, In situ study of dynamic recrystallization and hot deformation behavior of a multiphase titanium aluminide alloy, J. Appl. Phys., 2009, 106, p 113526.CrossRef
11.
Zurück zum Zitat J. Luo, P. Ye, W.C. Han and M.Q. Li, Microstructure evolution and its effect on flow stress of TC17 alloy during deformation in α+β two-phase region, Trans. Nonferrous Met. Soc. China, 2019, 29, p 1430–1438.CrossRef J. Luo, P. Ye, W.C. Han and M.Q. Li, Microstructure evolution and its effect on flow stress of TC17 alloy during deformation in α+β two-phase region, Trans. Nonferrous Met. Soc. China, 2019, 29, p 1430–1438.CrossRef
12.
Zurück zum Zitat J.L. Liu, W.D. Zeng, Y.J. Lai and Z.Q. Jia, Constitutive model of Ti17 titanium alloy with lamellar-type initial microstructure during hot deformation based on orthogonal analysis, Mater. Sci. Eng. A, 2014, 597, p 387–394.CrossRef J.L. Liu, W.D. Zeng, Y.J. Lai and Z.Q. Jia, Constitutive model of Ti17 titanium alloy with lamellar-type initial microstructure during hot deformation based on orthogonal analysis, Mater. Sci. Eng. A, 2014, 597, p 387–394.CrossRef
13.
Zurück zum Zitat L. Li and M.Q. Li, Constitutive model and optimal processing parameters of TC17 alloy with a transformed microstructure via kinetic analysis and processing maps, Mater. Sci. Eng. A, 2017, 698, p 302–312.CrossRef L. Li and M.Q. Li, Constitutive model and optimal processing parameters of TC17 alloy with a transformed microstructure via kinetic analysis and processing maps, Mater. Sci. Eng. A, 2017, 698, p 302–312.CrossRef
14.
Zurück zum Zitat J.Z. Sun, M.Q. Li and H. Li, Deformation behavior of TC17 titanium alloy with basketweave microstructure during isothermal compression, J. Alloys Compd., 2018, 730, p 533–543.CrossRef J.Z. Sun, M.Q. Li and H. Li, Deformation behavior of TC17 titanium alloy with basketweave microstructure during isothermal compression, J. Alloys Compd., 2018, 730, p 533–543.CrossRef
15.
Zurück zum Zitat K. Yamanaka, H. Matsumoto and A. Chiba, A constitutive model and processing maps describing the high-temperature deformation behavior of Ti-17 Alloy in the β-Phase field, Adv. Eng. Mater., 2019, 21, p 1–8.CrossRef K. Yamanaka, H. Matsumoto and A. Chiba, A constitutive model and processing maps describing the high-temperature deformation behavior of Ti-17 Alloy in the β-Phase field, Adv. Eng. Mater., 2019, 21, p 1–8.CrossRef
16.
Zurück zum Zitat Y.W. Xiao, Y.C. Lin, Y.Q. Jiang, X.Y. Zhang, G.D. Pang, D. Wang, and K.C. Zhou, A Dislocation Density-Based Model and Processing Maps of Ti-55511 Alloy with Bimodal Microstructures during Hot Compression in Α+β Region, Mater. Sci. Eng. A, Elsevier B.V., 2020, 790(June), p 139692 Y.W. Xiao, Y.C. Lin, Y.Q. Jiang, X.Y. Zhang, G.D. Pang, D. Wang, and K.C. Zhou, A Dislocation Density-Based Model and Processing Maps of Ti-55511 Alloy with Bimodal Microstructures during Hot Compression in Α+β Region, Mater. Sci. Eng. A, Elsevier B.V., 2020, 790(June), p 139692
17.
Zurück zum Zitat A. Momeni, S.M. Abbasi, M. Morakabati and S.M. , Ghazi Mirsaed, flow softening behavior of Ti-13V-11Cr-3Al Beta ti alloy in double-hit hot compression tests, J. Mater. Res., 2016, 31(24), p 3900–3906.CrossRef A. Momeni, S.M. Abbasi, M. Morakabati and S.M. , Ghazi Mirsaed, flow softening behavior of Ti-13V-11Cr-3Al Beta ti alloy in double-hit hot compression tests, J. Mater. Res., 2016, 31(24), p 3900–3906.CrossRef
18.
Zurück zum Zitat Y.C. Lin, Y.W. Xiao, Y.Q. Jiang, G.D. Pang, H. Bin Li, X.Y. Zhang, and K.C. Zhou, Spheroidization and Dynamic Recrystallization Mechanisms of Ti-55511 Alloy with Bimodal Microstructures during Hot Compression in Α+β Region, Mater. Sci. Eng. A, Elsevier B.V., 2020, 782(January), p 139282 Y.C. Lin, Y.W. Xiao, Y.Q. Jiang, G.D. Pang, H. Bin Li, X.Y. Zhang, and K.C. Zhou, Spheroidization and Dynamic Recrystallization Mechanisms of Ti-55511 Alloy with Bimodal Microstructures during Hot Compression in Α+β Region, Mater. Sci. Eng. A, Elsevier B.V., 2020, 782(January), p 139282
19.
Zurück zum Zitat Y.C. Lin, J. Huang, D.G. He, X.Y. Zhang, Q. Wu, L.H. Wang, C. Chen, and K.C. Zhou, Phase Transformation and Dynamic Recrystallization Behaviors in a Ti55511 Titanium Alloy during Hot Compression, J. Alloys Compd., Elsevier B.V, 2019, 795, p 471–482 Y.C. Lin, J. Huang, D.G. He, X.Y. Zhang, Q. Wu, L.H. Wang, C. Chen, and K.C. Zhou, Phase Transformation and Dynamic Recrystallization Behaviors in a Ti55511 Titanium Alloy during Hot Compression, J. Alloys Compd., Elsevier B.V, 2019, 795, p 471–482
20.
Zurück zum Zitat Y.C. Lin, Y. Tang, Y.Q. Jiang, J. Chen, D. Wang and D.G. He, Precipitation of secondary phase and phase transformation behavior of a solution-treated Ti–6Al–4V alloy during high-temperature aging, Adv. Eng. Mater., 2020, 22(5), p 1–6.CrossRef Y.C. Lin, Y. Tang, Y.Q. Jiang, J. Chen, D. Wang and D.G. He, Precipitation of secondary phase and phase transformation behavior of a solution-treated Ti–6Al–4V alloy during high-temperature aging, Adv. Eng. Mater., 2020, 22(5), p 1–6.CrossRef
21.
Zurück zum Zitat Xu. Jianwei, W. Zeng, D. Zhou, H. Ma, S. He and W. Chen, Analysis of flow softening during hot deformation of Ti-17 alloy with the lamellar structure, J. Alloys Compd., 2018, 767, p 285–292.CrossRef Xu. Jianwei, W. Zeng, D. Zhou, H. Ma, S. He and W. Chen, Analysis of flow softening during hot deformation of Ti-17 alloy with the lamellar structure, J. Alloys Compd., 2018, 767, p 285–292.CrossRef
22.
Zurück zum Zitat Y.Q. Jiang, Y.C. Lin, G.Q. Wang, G.D. Pang, M.S. Chen, and Z.C. Huang, Microstructure Evolution and a Unified Constitutive Model for a Ti-55511 Alloy Deformed in β Region, J. Alloys Compd., Elsevier, 2021, 870, p 159534 Y.Q. Jiang, Y.C. Lin, G.Q. Wang, G.D. Pang, M.S. Chen, and Z.C. Huang, Microstructure Evolution and a Unified Constitutive Model for a Ti-55511 Alloy Deformed in β Region, J. Alloys Compd., Elsevier, 2021, 870, p 159534
23.
Zurück zum Zitat C. Poletti, L. Germain, F. Warchomicka, M. Dikovits and S. Mitsche, Unified description of the softening behavior of beta-metastable and alpha+beta titanium alloys during hot deformation, Mater. Sci. Eng. A, 2016, 651, p 280–290.CrossRef C. Poletti, L. Germain, F. Warchomicka, M. Dikovits and S. Mitsche, Unified description of the softening behavior of beta-metastable and alpha+beta titanium alloys during hot deformation, Mater. Sci. Eng. A, 2016, 651, p 280–290.CrossRef
24.
Zurück zum Zitat V. V. Balasubrahmanyam, Y. V. R. K. Prasad, Deformation behaviour of beta titanium alloy Ti–10V–4.5Fe–1.5Al in hot upset forging, Mater. Sci. Eng. A, 2002, 336, p 150-158 V. V. Balasubrahmanyam, Y. V. R. K. Prasad, Deformation behaviour of beta titanium alloy Ti–10V–4.5Fe–1.5Al in hot upset forging, Mater. Sci. Eng. A, 2002, 336, p 150-158
25.
Zurück zum Zitat X.G. Fan, Y. Zhang, P.F. Gao, Z.N. Lei and M. Zhan, Deformation behavior and microstructure evolution during hot working of a coarse-grained Ti-5Al-5Mo-5V-3Cr-1Zr titanium alloy in beta phase field, Mater. Sci. Eng. A, 2017, 694, p 24–32.CrossRef X.G. Fan, Y. Zhang, P.F. Gao, Z.N. Lei and M. Zhan, Deformation behavior and microstructure evolution during hot working of a coarse-grained Ti-5Al-5Mo-5V-3Cr-1Zr titanium alloy in beta phase field, Mater. Sci. Eng. A, 2017, 694, p 24–32.CrossRef
26.
Zurück zum Zitat W.A. Backofen, I.R. Turner and D.H. Avery, Superplasticity in an Al-Zn Alloy, Trans. ASM, 1964, 57, p 980–990. W.A. Backofen, I.R. Turner and D.H. Avery, Superplasticity in an Al-Zn Alloy, Trans. ASM, 1964, 57, p 980–990.
27.
Zurück zum Zitat M.F. Ashby and R.A. Verrall, Diffusion-accommodated flow and superplasticity, Acta Metall., 1973, 21, p 149–163.CrossRef M.F. Ashby and R.A. Verrall, Diffusion-accommodated flow and superplasticity, Acta Metall., 1973, 21, p 149–163.CrossRef
28.
Zurück zum Zitat A. Ball and M.M. Hutchison, Superplasticity in the aluminium-zinc eutectoid, Met. Sci. J., 1969, 3, p 1–7.CrossRef A. Ball and M.M. Hutchison, Superplasticity in the aluminium-zinc eutectoid, Met. Sci. J., 1969, 3, p 1–7.CrossRef
29.
Zurück zum Zitat A. Arieli and A.K. Mukherjee, A model for rate-controlling mechanism in superplasticity, Mater. Sci. Eng. A, 1980, 45, p 61–70.CrossRef A. Arieli and A.K. Mukherjee, A model for rate-controlling mechanism in superplasticity, Mater. Sci. Eng. A, 1980, 45, p 61–70.CrossRef
30.
Zurück zum Zitat S.S. Sohn, D.G. Kim, Y.H. Jo, A.K. da Silva, W. Lu, A.J. Breen, B. Gault and D. Ponge, A physically-based constitutive model for hot deformation of Ti-10-2-3 alloy, Acta Metall., 2020, 194, p 106–117. S.S. Sohn, D.G. Kim, Y.H. Jo, A.K. da Silva, W. Lu, A.J. Breen, B. Gault and D. Ponge, A physically-based constitutive model for hot deformation of Ti-10-2-3 alloy, Acta Metall., 2020, 194, p 106–117.
31.
Zurück zum Zitat M.A. Nazzal, M.K. Khraisheh and F.K. Abu-Farha, The effect of strain rate sensitivity evolution on deformation stability during superplastic forming, J. Mater. Process. Tech., 2007, 191, p 189–192.CrossRef M.A. Nazzal, M.K. Khraisheh and F.K. Abu-Farha, The effect of strain rate sensitivity evolution on deformation stability during superplastic forming, J. Mater. Process. Tech., 2007, 191, p 189–192.CrossRef
32.
Zurück zum Zitat Z.H. Xu, M.Q. Li and H. Li, Plastic flow behavior of superalloy GH696 during hot deformation, Trans. Nonferrous Met. Soc. China, 2016, 26, p 712–721.CrossRef Z.H. Xu, M.Q. Li and H. Li, Plastic flow behavior of superalloy GH696 during hot deformation, Trans. Nonferrous Met. Soc. China, 2016, 26, p 712–721.CrossRef
33.
Zurück zum Zitat H.P. Stuwe and P. Les, Strain rate sensitivity of flow stress at large strains, Acta Metall., 1998, 46, p 6375–6380. H.P. Stuwe and P. Les, Strain rate sensitivity of flow stress at large strains, Acta Metall., 1998, 46, p 6375–6380.
34.
Zurück zum Zitat P. Ludwik, Elemente der technologischen mechanik, Springer-Verlag OHG, Berlin 1909, p 31-35, in German P. Ludwik, Elemente der technologischen mechanik, Springer-Verlag OHG, Berlin 1909, p 31-35, in German
35.
Zurück zum Zitat R. Evans and P. Scharning, Axisymmetric compression test and hot working properties of alloys, Mater. Sci. Tech., 2001, 17, p 995–1004.CrossRef R. Evans and P. Scharning, Axisymmetric compression test and hot working properties of alloys, Mater. Sci. Tech., 2001, 17, p 995–1004.CrossRef
36.
Zurück zum Zitat A. Malik, Y. Wang, H. Cheng, F. Nazeer, M.A. Khan and M. Wang, A physically-based constitutive model for hot deformation of Ti-10-2-3 alloy, Vacuum, 2019, 168, p 108810.CrossRef A. Malik, Y. Wang, H. Cheng, F. Nazeer, M.A. Khan and M. Wang, A physically-based constitutive model for hot deformation of Ti-10-2-3 alloy, Vacuum, 2019, 168, p 108810.CrossRef
37.
Zurück zum Zitat C.M. Sellars and W.J. Mctrgart, On the mechanism of hot deformation, Acta Metall., 1966, 14, p 1136–1138.CrossRef C.M. Sellars and W.J. Mctrgart, On the mechanism of hot deformation, Acta Metall., 1966, 14, p 1136–1138.CrossRef
38.
Zurück zum Zitat C. Zener and J.H. Hollomon, Effect of strain rate upon plastic flow of steel, J. Appl. Phys., 1944, 15, p 22–32.CrossRef C. Zener and J.H. Hollomon, Effect of strain rate upon plastic flow of steel, J. Appl. Phys., 1944, 15, p 22–32.CrossRef
39.
Zurück zum Zitat Z. Guo, A.P. Miodownik, N. Saunders, J-Ph. Schille, Influence of stacking-fault energy on high temperature creep of alpha titanium alloys, Scr. Mater., 2006, 54, p 2175–2178 Z. Guo, A.P. Miodownik, N. Saunders, J-Ph. Schille, Influence of stacking-fault energy on high temperature creep of alpha titanium alloys, Scr. Mater., 2006, 54, p 2175–2178
40.
Zurück zum Zitat P. Wanjaraa, M. Jahazia, H. Monajatib, S. Yueb and J.-P. Immarigeona, Hot working behavior of near-alloy IMI834, Mater. Sci. Eng. A, 2005, 396, p 50–60.CrossRef P. Wanjaraa, M. Jahazia, H. Monajatib, S. Yueb and J.-P. Immarigeona, Hot working behavior of near-alloy IMI834, Mater. Sci. Eng. A, 2005, 396, p 50–60.CrossRef
41.
Zurück zum Zitat S. Wang, J.R. Luo, L.G. Hou, J.S. Zhang and L.Z. Zhuang, Physically based constitutive analysis and microstructural evolution of AA7050 aluminum alloy during hot compression, Mater. Des., 2016, 107, p 277–289.CrossRef S. Wang, J.R. Luo, L.G. Hou, J.S. Zhang and L.Z. Zhuang, Physically based constitutive analysis and microstructural evolution of AA7050 aluminum alloy during hot compression, Mater. Des., 2016, 107, p 277–289.CrossRef
42.
Zurück zum Zitat T. Furuhara, B. Poorganji, H. Abe and T. Maki, Dynamic recovery and recrystallization in titanium alloys by hot deformation, JOM, 2007, 59, p 64–67.CrossRef T. Furuhara, B. Poorganji, H. Abe and T. Maki, Dynamic recovery and recrystallization in titanium alloys by hot deformation, JOM, 2007, 59, p 64–67.CrossRef
43.
Zurück zum Zitat D. Samantaray, C. Phaniraj, S. Mandal and A.K. Bhaduri, Strain dependent rate equation to predict elevated temperature flow behavior of modified 9Cr-1Mo (P91) steel, Mater. Sci. Eng. A, 2011, 528, p 7071–7077. D. Samantaray, C. Phaniraj, S. Mandal and A.K. Bhaduri, Strain dependent rate equation to predict elevated temperature flow behavior of modified 9Cr-1Mo (P91) steel, Mater. Sci. Eng. A, 2011, 528, p 7071–7077.
44.
Zurück zum Zitat R. Bobbili, B. Venkata Ramudu and V. Madhu, A physically-based constitutive model for hot deformation of Ti-10-2-3 alloy, J. Alloys Compd., 2017, 6965, p 295–303.CrossRef R. Bobbili, B. Venkata Ramudu and V. Madhu, A physically-based constitutive model for hot deformation of Ti-10-2-3 alloy, J. Alloys Compd., 2017, 6965, p 295–303.CrossRef
45.
Zurück zum Zitat Y.C. Lin, M.S. Chen and J. Zhong, Constitutive Modeling for Elevated Temperature Flow Behavior of 42CrMo Steel, Comput. Mater. Sci., 2008, 42(3), p 470–477.CrossRef Y.C. Lin, M.S. Chen and J. Zhong, Constitutive Modeling for Elevated Temperature Flow Behavior of 42CrMo Steel, Comput. Mater. Sci., 2008, 42(3), p 470–477.CrossRef
46.
Zurück zum Zitat Y.C. Lin, J. Huang, H. Bin Li and D.D. Chen, Phase transformation and constitutive models of a hot compressed TC18 titanium alloy in the Α+β regime, Vacuum, Elsevier, 2018, 157, p 83–91.CrossRef Y.C. Lin, J. Huang, H. Bin Li and D.D. Chen, Phase transformation and constitutive models of a hot compressed TC18 titanium alloy in the Α+β regime, Vacuum, Elsevier, 2018, 157, p 83–91.CrossRef
47.
Zurück zum Zitat F. Pilehva, A. Zarei-Hanzaki, M. Ghambari and H.R. Abedi, Flow behavior modeling of a Ti-6Al-7Nb biomedical alloy during manufacturing at elevated temperatures, Mater. Des, Elsevier Ltd, 2013, 51, p 457–465. F. Pilehva, A. Zarei-Hanzaki, M. Ghambari and H.R. Abedi, Flow behavior modeling of a Ti-6Al-7Nb biomedical alloy during manufacturing at elevated temperatures, Mater. Des, Elsevier Ltd, 2013, 51, p 457–465.
Metadaten
Titel
Flow Behavior Analysis and Flow Stress Modeling of Ti17 Alloy in Forging Process
verfasst von
Cuiyuan Lu
Jin Wang
Peize Zhang
Publikationsdatum
27.05.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 10/2021
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-05910-1

Weitere Artikel der Ausgabe 10/2021

Journal of Materials Engineering and Performance 10/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.