Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 10/2021

04.06.2021

Comparison of the Resistance to Cavitation Erosion and Slurry Erosion of Four Kinds of Surface Modification on 13-4 Ca6NM Hydro-Machinery Steel

verfasst von: C. V. Roa, J. A. Valdes, F. Larrahondo, S. A. Rodríguez, J. J. Coronado

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 10/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The cavitation and slurry jet erosion resistance of surface-coated and thermochemically treated CA6NM 13-4 steel were evaluated in this work. The cavitation erosion experiments followed the ASTM G32 standard, while the slurry jet erosion tests were performed using a homemade tribometer. CA6NM steel was used as substrate and as reference material for all wear experiments. The surface treatments included plasma nitriding and salt bath nitro-carburization, while the coatings evaluated were thermal-sprayed WC-10Co4Cr and a commercial grade elastomeric coating. The microstructures were studied by scanning electron microscopy (SEM) and x-ray diffraction (XRD), and the mechanical properties were estimated by nanoindentation. From the results analysis, it was found that the plasma nitriding permitted high improvement against slurry jet erosion, similarly to the WC-10Co4Cr coating. Moreover, the thermochemical treatments of plasma nitriding and salt bath nitrocarburizing showed better increments of cavitation resistance when compared to the coatings evaluated. Based on these findings, comments on the challenges involved in the manufacture route for hydropower runners with enhanced performance against wear are included.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat P.P. Gohil and R. Saini, Coalesced Effect of Cavitation and Silt Erosion in Hydro Turbines—A Review, Renew. Sustain. Energy Rev., 2014, 33, p 280–289.CrossRef P.P. Gohil and R. Saini, Coalesced Effect of Cavitation and Silt Erosion in Hydro Turbines—A Review, Renew. Sustain. Energy Rev., 2014, 33, p 280–289.CrossRef
2.
Zurück zum Zitat U. Dorji and R. Ghomashchi, Hydro Turbine Failure Mechanisms: An Overview, Eng. Fail. Anal., 2014, 44, p 136–147.CrossRef U. Dorji and R. Ghomashchi, Hydro Turbine Failure Mechanisms: An Overview, Eng. Fail. Anal., 2014, 44, p 136–147.CrossRef
3.
Zurück zum Zitat M.K. Padhy and R. Saini, A Review on Silt Erosion in Hydro Turbines, Renew. Sustain. Energy Rev., 2008, 12(7), p 1974–1987.CrossRef M.K. Padhy and R. Saini, A Review on Silt Erosion in Hydro Turbines, Renew. Sustain. Energy Rev., 2008, 12(7), p 1974–1987.CrossRef
4.
Zurück zum Zitat S. Sangal, M. Singhal and R. Saini, Hydro-abrasive Erosion in Hydro Turbines: A Review, Int. J. Green Energy, 2018, 15(4), p 232–253.CrossRef S. Sangal, M. Singhal and R. Saini, Hydro-abrasive Erosion in Hydro Turbines: A Review, Int. J. Green Energy, 2018, 15(4), p 232–253.CrossRef
5.
Zurück zum Zitat L. Teran et al., Failure Analysis of a Run-of-the-river Hydroelectric Power Plant, Eng. Fail. Anal., 2016, 68, p 87–100.CrossRef L. Teran et al., Failure Analysis of a Run-of-the-river Hydroelectric Power Plant, Eng. Fail. Anal., 2016, 68, p 87–100.CrossRef
6.
Zurück zum Zitat D. López, J. Zapata, M. Sepúlveda, E. Hoyos and A. Toro, The Role of Particle Size and Solids Concentration on the Transition From Moderate to Severe Slurry Wear Regimes of ASTM A743 Gr ade CA6NM Stainless Steel, Tribol. Int., 2018, 127, p 96–107.CrossRef D. López, J. Zapata, M. Sepúlveda, E. Hoyos and A. Toro, The Role of Particle Size and Solids Concentration on the Transition From Moderate to Severe Slurry Wear Regimes of ASTM A743 Gr ade CA6NM Stainless Steel, Tribol. Int., 2018, 127, p 96–107.CrossRef
7.
Zurück zum Zitat L. Espitia and A. Toro, Cavitation Resistance, Microstructure and Surface Topography of Materials Used for Hydraulic Components, Tribol. Int., 2010, 43(11), p 2037–2045.CrossRef L. Espitia and A. Toro, Cavitation Resistance, Microstructure and Surface Topography of Materials Used for Hydraulic Components, Tribol. Int., 2010, 43(11), p 2037–2045.CrossRef
8.
Zurück zum Zitat G. García, V. López-Ríos, A. Espinosa, J. Abenojar, F. Velasco and A. Toro, Cavitation Resistance of Epoxy-Based Multilayer Coatings: Surface Damage and Crack Growth Kinetics During the Incubation Stage, Wear, 2014, 316(1–2), p 124–132.CrossRef G. García, V. López-Ríos, A. Espinosa, J. Abenojar, F. Velasco and A. Toro, Cavitation Resistance of Epoxy-Based Multilayer Coatings: Surface Damage and Crack Growth Kinetics During the Incubation Stage, Wear, 2014, 316(1–2), p 124–132.CrossRef
9.
Zurück zum Zitat S. Romo, J. Santa, J. Giraldo and A. Toro, Cavitation and High-Velocity Slurry Erosion Resistance of Welded Stellite 6 Alloy, Tribol. Int., 2012, 47, p 16–24.CrossRef S. Romo, J. Santa, J. Giraldo and A. Toro, Cavitation and High-Velocity Slurry Erosion Resistance of Welded Stellite 6 Alloy, Tribol. Int., 2012, 47, p 16–24.CrossRef
10.
Zurück zum Zitat J. Santa, J. Blanco, J. Giraldo and A. Toro, Cavitation Erosion of Martensitic and Austenitic Stainless Steel Welded Coatings, Wear, 2011, 271(9–10), p 1445–1453.CrossRef J. Santa, J. Blanco, J. Giraldo and A. Toro, Cavitation Erosion of Martensitic and Austenitic Stainless Steel Welded Coatings, Wear, 2011, 271(9–10), p 1445–1453.CrossRef
11.
Zurück zum Zitat J. Santa, L. Espitia, J. Blanco, S. Romo and A. Toro, Slurry and Cavitation Erosion Resistance of Thermal Spray Coatings, Wear, 2009, 267(1–4), p 160–167.CrossRef J. Santa, L. Espitia, J. Blanco, S. Romo and A. Toro, Slurry and Cavitation Erosion Resistance of Thermal Spray Coatings, Wear, 2009, 267(1–4), p 160–167.CrossRef
12.
Zurück zum Zitat B. Mann and V. Arya, Abrasive and Erosive Wear Characteristics of Plasma Nitriding and HVOF Coatings: Their Application in Hydro Turbines, Wear, 2001, 249(5–6), p 354–360.CrossRef B. Mann and V. Arya, Abrasive and Erosive Wear Characteristics of Plasma Nitriding and HVOF Coatings: Their Application in Hydro Turbines, Wear, 2001, 249(5–6), p 354–360.CrossRef
13.
Zurück zum Zitat H. Singh, K. Goyal and D.K. Goyal, Experimental Investigations on Slurry Erosion Behaviour of HVOF and HVOLF Sprayed Coatings on Hydraulic Turbine Steel, Trans. Indian Inst. Met., 2017, 70(6), p 1585–1592.CrossRef H. Singh, K. Goyal and D.K. Goyal, Experimental Investigations on Slurry Erosion Behaviour of HVOF and HVOLF Sprayed Coatings on Hydraulic Turbine Steel, Trans. Indian Inst. Met., 2017, 70(6), p 1585–1592.CrossRef
14.
Zurück zum Zitat Prashar G, Vasudev H, Thakur L, Performance of Different Coating Materials Against Slurry Erosion Failure in Hydrodynamic Turbines: A Review. Eng. Failure Anal., 2020, 115, p 104622CrossRef Prashar G, Vasudev H, Thakur L, Performance of Different Coating Materials Against Slurry Erosion Failure in Hydrodynamic Turbines: A Review. Eng. Failure Anal., 2020, 115, p 104622CrossRef
15.
Zurück zum Zitat A. Allenstein, C. Lepienski, A.D.A. Buschinelli and S. Brunatto, Improvement of the Cavitation Erosion Resistance for Low-Temperature Plasma Nitrided CA-6NM Martensitic Stainless Steel, Wear, 2014, 309(1–2), p 159–165.CrossRef A. Allenstein, C. Lepienski, A.D.A. Buschinelli and S. Brunatto, Improvement of the Cavitation Erosion Resistance for Low-Temperature Plasma Nitrided CA-6NM Martensitic Stainless Steel, Wear, 2014, 309(1–2), p 159–165.CrossRef
16.
Zurück zum Zitat L. Espitia, L. Varela, C.E. Pinedo and A.P. Tschiptschin, Cavitation Erosion Resistance of Low Temperature Plasma Nitrided Martensitic Stainless Steel, Wear, 2013, 301(1–2), p 449–456.CrossRef L. Espitia, L. Varela, C.E. Pinedo and A.P. Tschiptschin, Cavitation Erosion Resistance of Low Temperature Plasma Nitrided Martensitic Stainless Steel, Wear, 2013, 301(1–2), p 449–456.CrossRef
17.
Zurück zum Zitat T. Manisekaran, M. Kamaraj, S. Sharrif and S. Joshi, Slurry Erosion Studies on Surface Modified 13Cr-4Ni Steels: Effect of Angle of Impingement and Particle Size, J. Mater. Eng. Perform., 2007, 16(5), p 567–572.CrossRef T. Manisekaran, M. Kamaraj, S. Sharrif and S. Joshi, Slurry Erosion Studies on Surface Modified 13Cr-4Ni Steels: Effect of Angle of Impingement and Particle Size, J. Mater. Eng. Perform., 2007, 16(5), p 567–572.CrossRef
18.
Zurück zum Zitat R. Huang, J. Wang, S. Zhong, M. Li, J. Xiong and H. Fan, Surface Modification of 2205 Duplex Stainless Steel by Low Temperature Salt Bath Nitrocarburizing at 430 C, Appl. Surf. Sci., 2013, 271, p 93–97.CrossRef R. Huang, J. Wang, S. Zhong, M. Li, J. Xiong and H. Fan, Surface Modification of 2205 Duplex Stainless Steel by Low Temperature Salt Bath Nitrocarburizing at 430 C, Appl. Surf. Sci., 2013, 271, p 93–97.CrossRef
19.
Zurück zum Zitat H. Grewal, H. Arora, H. Singh and A. Agrawal, Surface Modification of Hydroturbine Steel Using Friction Stir Processing, Appl. Surf. Sci., 2013, 268, p 547–555.CrossRef H. Grewal, H. Arora, H. Singh and A. Agrawal, Surface Modification of Hydroturbine Steel Using Friction Stir Processing, Appl. Surf. Sci., 2013, 268, p 547–555.CrossRef
20.
Zurück zum Zitat B. Kishor, G. Chaudhari and S. Nath, Cavitation Erosion of Thermomechanically Processed 13/4 Martensitic Stainless Steel, Wear, 2014, 319(1–2), p 150–159.CrossRef B. Kishor, G. Chaudhari and S. Nath, Cavitation Erosion of Thermomechanically Processed 13/4 Martensitic Stainless Steel, Wear, 2014, 319(1–2), p 150–159.CrossRef
21.
Zurück zum Zitat B. Mann, High-Energy Particle Impact Wear Resistance of Hard Coatings and Their Application in Hydroturbines, Wear, 2000, 237(1), p 140–146.CrossRef B. Mann, High-Energy Particle Impact Wear Resistance of Hard Coatings and Their Application in Hydroturbines, Wear, 2000, 237(1), p 140–146.CrossRef
22.
Zurück zum Zitat A. Krella, Cavitation Erosion of Monolayer PVD Coatings–An Influence of Deposition Technique on the Degradation Process, Wear, 2021, 478, p 203762.CrossRef A. Krella, Cavitation Erosion of Monolayer PVD Coatings–An Influence of Deposition Technique on the Degradation Process, Wear, 2021, 478, p 203762.CrossRef
23.
Zurück zum Zitat L. Łatka, M. Michalak, M. Szala, M. Walczak, P. Sokołowski and A. Ambroziak, Influence of 13 wt% TiO2 Content in Alumina-titania Powders on Microstructure, Sliding Wear and Cavitation Erosion Resistance of APS Sprayed Coatings, Surf. Coat. Technol., 2021, 410, p 126979.CrossRef L. Łatka, M. Michalak, M. Szala, M. Walczak, P. Sokołowski and A. Ambroziak, Influence of 13 wt% TiO2 Content in Alumina-titania Powders on Microstructure, Sliding Wear and Cavitation Erosion Resistance of APS Sprayed Coatings, Surf. Coat. Technol., 2021, 410, p 126979.CrossRef
24.
Zurück zum Zitat M. Szala, L. Łatka, M. Awtoniuk, M. Winnicki and M. Michalak, Neural Modelling of APS Thermal Spray Process Parameters for Optimizing the Hardness, Porosity and Cavitation Erosion Resistance of Al2O3-13 wt% TiO2 Coatings, Processes, 2020, 8(12), p 1544.CrossRef M. Szala, L. Łatka, M. Awtoniuk, M. Winnicki and M. Michalak, Neural Modelling of APS Thermal Spray Process Parameters for Optimizing the Hardness, Porosity and Cavitation Erosion Resistance of Al2O3-13 wt% TiO2 Coatings, Processes, 2020, 8(12), p 1544.CrossRef
25.
Zurück zum Zitat G.T.P. Azar, C. Yelkarasi and M. Ürgen, The Role of Droplets on the Cavitation Erosion Damage of TiN Coatings Produced with Cathodic Arc Physical Vapor Deposition, Surf. Coat. Technol., 2017, 322, p 211–217.CrossRef G.T.P. Azar, C. Yelkarasi and M. Ürgen, The Role of Droplets on the Cavitation Erosion Damage of TiN Coatings Produced with Cathodic Arc Physical Vapor Deposition, Surf. Coat. Technol., 2017, 322, p 211–217.CrossRef
26.
Zurück zum Zitat L. Teran et al., Analysis of Economic Impact From Erosive Wear by Hard Particles in a Run-of-the-river Hydroelectric Plant, Energy, 2016, 113, p 1188–1201.CrossRef L. Teran et al., Analysis of Economic Impact From Erosive Wear by Hard Particles in a Run-of-the-river Hydroelectric Plant, Energy, 2016, 113, p 1188–1201.CrossRef
27.
Zurück zum Zitat X. Liu, Y. Luo, B.W. Karney and W. Wang, A Selected Literature Review of Efficiency Improvements in Hydraulic Turbines, Renew. Sustain. Energy Rev., 2015, 51, p 18–28.CrossRef X. Liu, Y. Luo, B.W. Karney and W. Wang, A Selected Literature Review of Efficiency Improvements in Hydraulic Turbines, Renew. Sustain. Energy Rev., 2015, 51, p 18–28.CrossRef
28.
Zurück zum Zitat P. Kumar and R. Saini, Study of Cavitation in Hydro Turbines—A Review, Renew. Sustain. Energy Rev., 2010, 14(1), p 374–383.CrossRef P. Kumar and R. Saini, Study of Cavitation in Hydro Turbines—A Review, Renew. Sustain. Energy Rev., 2010, 14(1), p 374–383.CrossRef
29.
Zurück zum Zitat A. Trautwein, W. Gysel, Influence of long-time aging of CF8 and CF8M cast steel at temperatures between 300 and 500 C on impact toughness and structural properties, Stainless Steel Castings: ASTM International, 1982, p 165–189. A. Trautwein, W. Gysel, Influence of long-time aging of CF8 and CF8M cast steel at temperatures between 300 and 500 C on impact toughness and structural properties, Stainless Steel Castings: ASTM International, 1982, p 165–189.
30.
Zurück zum Zitat A. Allenstein, C. Lepienski, A. Buschinelli and S. Brunatto, Plasma Nitriding Using High H2 Content Gas Mixtures for a Cavitation Erosion Resistant Steel, Appl. Surf. Sci., 2013, 277, p 15–24.CrossRef A. Allenstein, C. Lepienski, A. Buschinelli and S. Brunatto, Plasma Nitriding Using High H2 Content Gas Mixtures for a Cavitation Erosion Resistant Steel, Appl. Surf. Sci., 2013, 277, p 15–24.CrossRef
31.
Zurück zum Zitat B. Schramm, A. Dwars and A. Kühl, Do Coatings Protect Against Corrosion and Wear?, World Pumps, 2005, 2005(470), p 32–38.CrossRef B. Schramm, A. Dwars and A. Kühl, Do Coatings Protect Against Corrosion and Wear?, World Pumps, 2005, 2005(470), p 32–38.CrossRef
32.
Zurück zum Zitat C. Correa, G. García, A. García, W. Bejarano, A. Guzmán and A. Toro, Wear Mechanisms of Epoxy-Based Composite Coatings Submitted to Cavitation, Wear, 2011, 271(9–10), p 2274–2279.CrossRef C. Correa, G. García, A. García, W. Bejarano, A. Guzmán and A. Toro, Wear Mechanisms of Epoxy-Based Composite Coatings Submitted to Cavitation, Wear, 2011, 271(9–10), p 2274–2279.CrossRef
33.
Zurück zum Zitat A. Allenstein et al., Strong Evidences of Tempered Martensite-to-nitrogen-expanded Austenite Transformation in CA-6NM Steel, Mater. Sci. Eng. A, 2012, 552, p 569–572.CrossRef A. Allenstein et al., Strong Evidences of Tempered Martensite-to-nitrogen-expanded Austenite Transformation in CA-6NM Steel, Mater. Sci. Eng. A, 2012, 552, p 569–572.CrossRef
34.
Zurück zum Zitat J. Yan et al., Microstructure and Properties of SAE 2205 Stainless Steel After Salt Bath Nitrocarburizing at 450 °C, J. Mater. Eng. Perform., 2014, 23(4), p 1157–1164.CrossRef J. Yan et al., Microstructure and Properties of SAE 2205 Stainless Steel After Salt Bath Nitrocarburizing at 450 °C, J. Mater. Eng. Perform., 2014, 23(4), p 1157–1164.CrossRef
35.
Zurück zum Zitat G. Prakash and S. Nath, Studies on Enhancement of Silt Erosion Resistance of 13/4 Martensitic Stainless Steel by Low-Temperature Salt Bath Nitriding, J. Mater. Eng. Perform., 2018, 27(7), p 3206–3216.CrossRef G. Prakash and S. Nath, Studies on Enhancement of Silt Erosion Resistance of 13/4 Martensitic Stainless Steel by Low-Temperature Salt Bath Nitriding, J. Mater. Eng. Perform., 2018, 27(7), p 3206–3216.CrossRef
36.
Zurück zum Zitat K. Sugiyama, S. Nakahama, S. Hattori and K. Nakano, Slurry Wear and Cavitation Erosion of Thermal-Sprayed Cermets, Wear, 2005, 258(5–6), p 768–775.CrossRef K. Sugiyama, S. Nakahama, S. Hattori and K. Nakano, Slurry Wear and Cavitation Erosion of Thermal-Sprayed Cermets, Wear, 2005, 258(5–6), p 768–775.CrossRef
37.
38.
Zurück zum Zitat M. Staia et al., Effect of Substrate Roughness Induced by Grit Blasting Upon Adhesion of WC-17% Co Thermal Sprayed Coatings, Thin Solid Films, 2000, 377, p 657–664.CrossRef M. Staia et al., Effect of Substrate Roughness Induced by Grit Blasting Upon Adhesion of WC-17% Co Thermal Sprayed Coatings, Thin Solid Films, 2000, 377, p 657–664.CrossRef
39.
Zurück zum Zitat S. Amada and T. Hirose, Influence of Grit Blasting Pre-Treatment on the Adhesion Strength of Plasma Sprayed Coatings: Fractal Analysis of Roughness, Surf. Coat. Technol., 1998, 102(1–2), p 132–137.CrossRef S. Amada and T. Hirose, Influence of Grit Blasting Pre-Treatment on the Adhesion Strength of Plasma Sprayed Coatings: Fractal Analysis of Roughness, Surf. Coat. Technol., 1998, 102(1–2), p 132–137.CrossRef
40.
Zurück zum Zitat G. Feng and A. Ngan, Effects of Creep and Thermal Drift on Modulus Measurement Using Depth-Sensing Indentation, J. Mater. Res., 2002, 17(3), p 660–668.CrossRef G. Feng and A. Ngan, Effects of Creep and Thermal Drift on Modulus Measurement Using Depth-Sensing Indentation, J. Mater. Res., 2002, 17(3), p 660–668.CrossRef
41.
Zurück zum Zitat ASTM G32, Standard test method for cavitation erosion using vibratory apparatus, Annual book of ASTM standards, ASTM, Philadelphia, PA, 2009 ASTM G32, Standard test method for cavitation erosion using vibratory apparatus, Annual book of ASTM standards, ASTM, Philadelphia, PA, 2009
42.
Zurück zum Zitat D.K. Goyal, H. Singh, H. Kumar and V. Sahni, Slurry Erosion Behaviour of HVOF Sprayed WC–10Co–4Cr and Al2O3+ 13TiO2 Coatings on a Turbine Steel, Wear, 2012, 289, p 46–57.CrossRef D.K. Goyal, H. Singh, H. Kumar and V. Sahni, Slurry Erosion Behaviour of HVOF Sprayed WC–10Co–4Cr and Al2O3+ 13TiO2 Coatings on a Turbine Steel, Wear, 2012, 289, p 46–57.CrossRef
43.
Zurück zum Zitat E. Beraki, Effect of Surface roughness for Hydro Turbine Step-up Efficiency, Master Thesis, Luleå University of Technology (LTU), 2018, p 34. E. Beraki, Effect of Surface roughness for Hydro Turbine Step-up Efficiency, Master Thesis, Luleå University of Technology (LTU), 2018, p 34.
44.
Zurück zum Zitat K. Marušić, H. Otmačić, D. Landek, F. Cajner and E. Stupnišek-Lisac, Modification of Carbon Steel Surface by the Tenifer® Process of Nitrocarburizing and Post-oxidation, Surf. Coat. Technol., 2006, 201(6), p 3415–3421.CrossRef K. Marušić, H. Otmačić, D. Landek, F. Cajner and E. Stupnišek-Lisac, Modification of Carbon Steel Surface by the Tenifer® Process of Nitrocarburizing and Post-oxidation, Surf. Coat. Technol., 2006, 201(6), p 3415–3421.CrossRef
45.
Zurück zum Zitat J. Lin, Z. Wang, J. Cheng, M. Kang and X. Fu, Effect of Initial Surface Roughness on Cavitation Erosion Resistance of Arc-Sprayed Fe-Based Amorphous, Nanocrystalline Coat. Coat., 2017, 7, p 11. J. Lin, Z. Wang, J. Cheng, M. Kang and X. Fu, Effect of Initial Surface Roughness on Cavitation Erosion Resistance of Arc-Sprayed Fe-Based Amorphous, Nanocrystalline Coat. Coat., 2017, 7, p 11.
46.
Zurück zum Zitat A.N. Allenstein, C.M. Lepienski, A.J.D.A. Buschinelli and S.F. Brunatto, Plasma Nitriding of CA-6NM Steel: Effect of H2+ N2 gas Mixtures in Nitride Layer Formation for Low N2 Contents at 500°C, Mater. Res., 2010, 13(4), p 557–562.CrossRef A.N. Allenstein, C.M. Lepienski, A.J.D.A. Buschinelli and S.F. Brunatto, Plasma Nitriding of CA-6NM Steel: Effect of H2+ N2 gas Mixtures in Nitride Layer Formation for Low N2 Contents at 500°C, Mater. Res., 2010, 13(4), p 557–562.CrossRef
47.
Zurück zum Zitat E. Hernández-Rengifo, S.A. Rodríguez and J.J. Coronado, Improving Fatigue Strength of Hydromachinery 13Cr-4Ni CA6NM Steel with Nitriding and Thermal Spraying Surface Treatments, Fatigue Fract. Eng. Mater. Struct., 2021, 44(4), p 1059–1072.CrossRef E. Hernández-Rengifo, S.A. Rodríguez and J.J. Coronado, Improving Fatigue Strength of Hydromachinery 13Cr-4Ni CA6NM Steel with Nitriding and Thermal Spraying Surface Treatments, Fatigue Fract. Eng. Mater. Struct., 2021, 44(4), p 1059–1072.CrossRef
48.
Zurück zum Zitat J. Dossett and G. Totten, Introduction to Surface Hardening of Steels, ASM Handbook, 2013, 4, p 389–398. J. Dossett and G. Totten, Introduction to Surface Hardening of Steels, ASM Handbook, 2013, 4, p 389–398.
49.
Zurück zum Zitat P. Shanmugavel, G. Bhaskar, M. Chandrasekaran, P. Mani and S. Srinivasan, An Overview of Fracture Analysis in Functionally Graded Materials, Eur. J. Sci. Res., 2012, 68(3), p 412–439. P. Shanmugavel, G. Bhaskar, M. Chandrasekaran, P. Mani and S. Srinivasan, An Overview of Fracture Analysis in Functionally Graded Materials, Eur. J. Sci. Res., 2012, 68(3), p 412–439.
50.
Zurück zum Zitat S. Saeidi, K. Voisey and D. McCartney, Mechanical Properties and Microstructure of VPS and HVOF CoNiCrAlY Coatings, J. Therm. Spray Technol., 2011, 20(6), p 1231–1243.CrossRef S. Saeidi, K. Voisey and D. McCartney, Mechanical Properties and Microstructure of VPS and HVOF CoNiCrAlY Coatings, J. Therm. Spray Technol., 2011, 20(6), p 1231–1243.CrossRef
51.
Zurück zum Zitat G. Taillon et al., Cavitation Erosion Mechanisms in Stainless Steels and in Composite Metal–Ceramic HVOF Coatings, Wear, 2016, 364, p 201–210.CrossRef G. Taillon et al., Cavitation Erosion Mechanisms in Stainless Steels and in Composite Metal–Ceramic HVOF Coatings, Wear, 2016, 364, p 201–210.CrossRef
52.
Zurück zum Zitat L. Thakur and N. Arora, A Study on Erosive Wear Behavior of HVOF Sprayed Nanostructured WC-CoCr Coatings, J. Mech. Sci. Technol., 2013, 27(5), p 1461–1467.CrossRef L. Thakur and N. Arora, A Study on Erosive Wear Behavior of HVOF Sprayed Nanostructured WC-CoCr Coatings, J. Mech. Sci. Technol., 2013, 27(5), p 1461–1467.CrossRef
53.
Zurück zum Zitat Jegou S., Kubler R., Barrallier L., On residual stresses development during nitriding of steel: Thermochemical and time dependence, Adv. Mat. Res., 2010, 89–91, p 256–261.CrossRef Jegou S., Kubler R., Barrallier L., On residual stresses development during nitriding of steel: Thermochemical and time dependence, Adv. Mat. Res., 2010, 89–91, p 256–261.CrossRef
54.
Zurück zum Zitat Arndt, R.E., Ippen, A.T., Rough Surface Effects on Cavitation Inception, J. Basic Eng., 1968, 90(2), p 249–261.CrossRef Arndt, R.E., Ippen, A.T., Rough Surface Effects on Cavitation Inception, J. Basic Eng., 1968, 90(2), p 249–261.CrossRef
55.
Zurück zum Zitat Thiruvengadam A., Waring S., Mechanical Properties of Metals and Their Cavitation Damage Resistance, Hydronautics Inc Laurel MD, 1964, p 1–14. Thiruvengadam A., Waring S., Mechanical Properties of Metals and Their Cavitation Damage Resistance, Hydronautics Inc Laurel MD, 1964, p 1–14.
56.
Zurück zum Zitat H. Soyama, Surface Mechanics Design of Metallic Materials on Mechanical Surface Treatments, Mech. Eng. Rev., 2015, 2(1), p 1400192–1400192.CrossRef H. Soyama, Surface Mechanics Design of Metallic Materials on Mechanical Surface Treatments, Mech. Eng. Rev., 2015, 2(1), p 1400192–1400192.CrossRef
57.
Zurück zum Zitat C.-C. Hong and M. Stern, The Computation of Stress Intensity Factors in Dissimilar Materials, J. Elast., 1978, 8(1), p 21–34.CrossRef C.-C. Hong and M. Stern, The Computation of Stress Intensity Factors in Dissimilar Materials, J. Elast., 1978, 8(1), p 21–34.CrossRef
58.
Zurück zum Zitat G. Stachowiak and A.W. Batchelor, Engineering Tribology, Butterworth-Heinemann, Oxford, 2013. G. Stachowiak and A.W. Batchelor, Engineering Tribology, Butterworth-Heinemann, Oxford, 2013.
59.
Zurück zum Zitat Universidad del Valle, EPSA E.S.P. A CELSIA, Rodete seccionado para bombear algún Fluido o transformar la energía hidráulica en potencia mecánica en un eje, Patente de Invención, Colombia, 2017. Universidad del Valle, EPSA E.S.P. A CELSIA, Rodete seccionado para bombear algún Fluido o transformar la energía hidráulica en potencia mecánica en un eje, Patente de Invención, Colombia, 2017.
Metadaten
Titel
Comparison of the Resistance to Cavitation Erosion and Slurry Erosion of Four Kinds of Surface Modification on 13-4 Ca6NM Hydro-Machinery Steel
verfasst von
C. V. Roa
J. A. Valdes
F. Larrahondo
S. A. Rodríguez
J. J. Coronado
Publikationsdatum
04.06.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 10/2021
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-05908-9

Weitere Artikel der Ausgabe 10/2021

Journal of Materials Engineering and Performance 10/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.