Skip to main content
Top
Published in: Journal of Computational Electronics 1/2018

03-10-2017

A signal calculation grid for quantum-dot cellular automata

Authors: Douglas Tougaw, Sami Khorbotly, Justin Szaday, Jeffrey D. Will

Published in: Journal of Computational Electronics | Issue 1/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The quantum-dot cellular automata (QCA) computing paradigm presents great promise as a potential strategy for future nanocomputing devices. Perhaps the greatest challenge facing the QCA architecture is finding a robust wire crossing strategy. In this paper, the recently introduced QCA signal distribution grid is extended to carry out generalized sum-of-products and product-of-sums calculations that are performed concurrently with signal distribution. The new signal calculation grid is capable of performing an arbitrary number of simultaneous programmable Boolean operations on an arbitrary number of inputs, and the time required to perform all of these parallel calculations is just seven clock cycles.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Lent, C.S., Tougaw, P.D., Porod, W.: Bistable saturation in coupled quantum dots for quantum cellular automata. Appl. Phys. Lett. 62(7), 714–716 (1993)CrossRef Lent, C.S., Tougaw, P.D., Porod, W.: Bistable saturation in coupled quantum dots for quantum cellular automata. Appl. Phys. Lett. 62(7), 714–716 (1993)CrossRef
2.
go back to reference Lent, C.S., Tougaw, P.D., Porod, W.: Bistable saturation in coupled quantum-dot cells. J. Appl. Phys. 74(5), 3558–3566 (1993)CrossRef Lent, C.S., Tougaw, P.D., Porod, W.: Bistable saturation in coupled quantum-dot cells. J. Appl. Phys. 74(5), 3558–3566 (1993)CrossRef
3.
go back to reference Lent, C.S., Tougaw, P.D.: Lines of interacting quantum-dot cells: a binary wire. J. Appl. Phys. 74(10), 6227–6233 (1993)CrossRef Lent, C.S., Tougaw, P.D.: Lines of interacting quantum-dot cells: a binary wire. J. Appl. Phys. 74(10), 6227–6233 (1993)CrossRef
4.
go back to reference Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75(3), 1818–1825 (1994)CrossRef Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75(3), 1818–1825 (1994)CrossRef
5.
go back to reference Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4(1), 49–57 (1993)CrossRef Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4(1), 49–57 (1993)CrossRef
6.
go back to reference Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots. Proc. IEEE 85(4), 541–557 (1997)CrossRef Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots. Proc. IEEE 85(4), 541–557 (1997)CrossRef
7.
go back to reference Wood, J.D., Tougaw, D.: Matrix multiplication using quantum-dot cellular automata to implement conventional microelectronics. IEEE Trans. Nanotechnol. 10(5), 1036–1042 (2011)CrossRef Wood, J.D., Tougaw, D.: Matrix multiplication using quantum-dot cellular automata to implement conventional microelectronics. IEEE Trans. Nanotechnol. 10(5), 1036–1042 (2011)CrossRef
8.
go back to reference Hennessy, K., Lent, C.: Clocking of molecular quantum-dot cellular automata. J. Vac. Sci. Technol. 19(B), 1752–1755 (2001)CrossRef Hennessy, K., Lent, C.: Clocking of molecular quantum-dot cellular automata. J. Vac. Sci. Technol. 19(B), 1752–1755 (2001)CrossRef
9.
go back to reference Lent, C.S., Isaksen, B.: Clocked molecular quantum-dot cellular automata. IEEE Trans. Electron Devices 50(9), 1890–1896 (2003)CrossRef Lent, C.S., Isaksen, B.: Clocked molecular quantum-dot cellular automata. IEEE Trans. Electron Devices 50(9), 1890–1896 (2003)CrossRef
10.
go back to reference Tougaw, D.: A clocking strategy for scalable and fault-tolerant QDCA signal distribution in combinational and sequential devices. In: Anderson, N.G., Bhanja, S. (eds.) Field Coupled-Nanocomputing: Paradigms, Processes, and Perspectives. Springer, Berlin (2014) Tougaw, D.: A clocking strategy for scalable and fault-tolerant QDCA signal distribution in combinational and sequential devices. In: Anderson, N.G., Bhanja, S. (eds.) Field Coupled-Nanocomputing: Paradigms, Processes, and Perspectives. Springer, Berlin (2014)
11.
go back to reference Anduwan, G.A., Padgett, B.D., Kuntzman, M., Hendrichsen, M.K., Sturzu, I., Khatun, M., Tougaw, P.D.: Fault-tolerance and thermal characteristics of quantum-dot cellular automata devices. J. Appl. Phys. 107, 114306 (2010)CrossRef Anduwan, G.A., Padgett, B.D., Kuntzman, M., Hendrichsen, M.K., Sturzu, I., Khatun, M., Tougaw, P.D.: Fault-tolerance and thermal characteristics of quantum-dot cellular automata devices. J. Appl. Phys. 107, 114306 (2010)CrossRef
12.
go back to reference Khatun, M., Barclay, T., Sturzu, I., Tougaw, D.: Fault tolerance properties in quantum-dot cellular automata devices. J. Phys. D Appl. Phys. 39, 1489–1494 (2006)CrossRef Khatun, M., Barclay, T., Sturzu, I., Tougaw, D.: Fault tolerance properties in quantum-dot cellular automata devices. J. Phys. D Appl. Phys. 39, 1489–1494 (2006)CrossRef
13.
go back to reference Khatun, M., Barclay, T., Sturzu, I., Tougaw, D.: Fault tolerance calculations for clocked quantum-dot cellular automata devices. J. Appl. Phys. 98, 094904 (2005)CrossRef Khatun, M., Barclay, T., Sturzu, I., Tougaw, D.: Fault tolerance calculations for clocked quantum-dot cellular automata devices. J. Appl. Phys. 98, 094904 (2005)CrossRef
14.
go back to reference Khatun, M., Padgett, B.D., Anduwan, G.A., Sturzu, I., Tougaw, D.: Defect and temperature effects on complex quantum-dot cellular automata devices. J. Appl. Math. Phys. 1(2), 7 (2013)CrossRef Khatun, M., Padgett, B.D., Anduwan, G.A., Sturzu, I., Tougaw, D.: Defect and temperature effects on complex quantum-dot cellular automata devices. J. Appl. Math. Phys. 1(2), 7 (2013)CrossRef
15.
go back to reference LaRue, M., Tougaw, D., Will, J.D.: Effect of stray charge in a QCA system: a validation of the intercellular Hartree approximation. IEEE Trans. Nanotechnol. 12(2), 225–233 (2013)CrossRef LaRue, M., Tougaw, D., Will, J.D.: Effect of stray charge in a QCA system: a validation of the intercellular Hartree approximation. IEEE Trans. Nanotechnol. 12(2), 225–233 (2013)CrossRef
16.
go back to reference Chaudhary, A., Chen, D.Z., Hu, X.S., Whitton, K., Niemier, M., Ravichardran, R.: Eliminating wire crossings for molecular quantum-dot cellular automata implementation. In: Proceedings of IEEE/ACM International Conference on Computer-Aided Design (2005) Chaudhary, A., Chen, D.Z., Hu, X.S., Whitton, K., Niemier, M., Ravichardran, R.: Eliminating wire crossings for molecular quantum-dot cellular automata implementation. In: Proceedings of IEEE/ACM International Conference on Computer-Aided Design (2005)
17.
go back to reference Smith, B., Lim, S.K.: QCA channel routing with wire crossing minimization. In: Proceedings of the Great Lakes Symposium on VLSI (2005) Smith, B., Lim, S.K.: QCA channel routing with wire crossing minimization. In: Proceedings of the Great Lakes Symposium on VLSI (2005)
18.
go back to reference Chen, H., Lee, D.: On crossing minimization problem. IEEE Trans. Computer Aided Des. 17(5), 406–418 (1998)CrossRef Chen, H., Lee, D.: On crossing minimization problem. IEEE Trans. Computer Aided Des. 17(5), 406–418 (1998)CrossRef
19.
go back to reference Chung, W.J., Smith, B., Lim, S.K.: QCA physical design with crossing minimization. In: Proceedings of the 2005 5th IEEE Conference on Nanotechnology (2005) Chung, W.J., Smith, B., Lim, S.K.: QCA physical design with crossing minimization. In: Proceedings of the 2005 5th IEEE Conference on Nanotechnology (2005)
20.
go back to reference Vankamamidi, V., Ottavi, M., Lombardi, F.: Two-dimensional schemes for clocking/timing of QCA circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 27(1), 34–44 (2008)CrossRefMATH Vankamamidi, V., Ottavi, M., Lombardi, F.: Two-dimensional schemes for clocking/timing of QCA circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 27(1), 34–44 (2008)CrossRefMATH
21.
go back to reference Bhanja, S., Ottavi, M., Lombardi, F., Pontarelli, S.: Novel designs for thermally robust coplanar crossing in QCA. In: Proceedings of the Conference on Design, Automation and Test in Europe (2006) Bhanja, S., Ottavi, M., Lombardi, F., Pontarelli, S.: Novel designs for thermally robust coplanar crossing in QCA. In: Proceedings of the Conference on Design, Automation and Test in Europe (2006)
22.
go back to reference Bhanja, S., Ottavi, M., Lombardi, F., Pontarelli, S.: QCA circuits for robust coplanar crossing. J. Electron. Test. 23, 193–210 (2007)CrossRef Bhanja, S., Ottavi, M., Lombardi, F., Pontarelli, S.: QCA circuits for robust coplanar crossing. J. Electron. Test. 23, 193–210 (2007)CrossRef
23.
go back to reference Graunke, C.R., Wheeler, D.I., Tougaw, D., Will, J.D.: Implementation of a crossbar network using quantum-dot cellular automata. IEEE Trans. Nanotechnol. 4(4), 435–440 (2005)CrossRef Graunke, C.R., Wheeler, D.I., Tougaw, D., Will, J.D.: Implementation of a crossbar network using quantum-dot cellular automata. IEEE Trans. Nanotechnol. 4(4), 435–440 (2005)CrossRef
24.
go back to reference Tougaw, D., Khatun, M.: A scalable signal distribution network for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 12, 215–224 (2013)CrossRef Tougaw, D., Khatun, M.: A scalable signal distribution network for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 12, 215–224 (2013)CrossRef
25.
go back to reference Hast, H., Khorbotly, S., Tougaw, D.: A signal distribution network for sequential quantum-dot cellular automata systems. IEEE Trans. Nanotechnol. 14, 1–9 (2015)CrossRef Hast, H., Khorbotly, S., Tougaw, D.: A signal distribution network for sequential quantum-dot cellular automata systems. IEEE Trans. Nanotechnol. 14, 1–9 (2015)CrossRef
26.
go back to reference Tougaw, D., Szaday, J., Will, J.D.: A signal distribution grid for quantum-dot cellular automata. J. Comput. Electron. 15(2), 446–454 (2016)CrossRef Tougaw, D., Szaday, J., Will, J.D.: A signal distribution grid for quantum-dot cellular automata. J. Comput. Electron. 15(2), 446–454 (2016)CrossRef
27.
go back to reference Wakerly, J.E.: Digital Design: Principles and Practices, 3rd edn. Prentice-Hall, Upper Saddle River (1999)MATH Wakerly, J.E.: Digital Design: Principles and Practices, 3rd edn. Prentice-Hall, Upper Saddle River (1999)MATH
Metadata
Title
A signal calculation grid for quantum-dot cellular automata
Authors
Douglas Tougaw
Sami Khorbotly
Justin Szaday
Jeffrey D. Will
Publication date
03-10-2017
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 1/2018
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-017-1075-7

Other articles of this Issue 1/2018

Journal of Computational Electronics 1/2018 Go to the issue