Skip to main content
Top
Published in: Rheologica Acta 10/2020

10-08-2020 | Original Contribution

A small-scale study of nonlinear blood rheology shows rapid transient transitions

Authors: Matthew Armstrong, Tyler Helton, Gavin Donley, Simon Rogers, Jeffrey Horner

Published in: Rheologica Acta | Issue 10/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The mechanical properties of human blood are incompletely understood and constitute an underdeveloped area of study, prohibiting mechanically-based clinical diagnoses. Using the unique transient rheological signature of a blood sample, there is a possibility that blood rheology measurements could be used as a method of diagnosis and/or differentiation. We present here the response of blood to large amplitude oscillatory shear (LAOS) and reversing flow ramps, where hysteresis curves are typically formed. Results of these tests are visualized by blood “mechanical contours” that have the advantage of depicting the evolving mechanical properties of the material over a wide range of flow conditions. The sequence of physical process (SPP) method is applied to elucidate the changes undergone by the blood during the transient flows. This method is advantageous because it allows for the analysis of a wide range of transient flow protocols, rather than being restricted to strictly sinusoidal functions. We show a novel approach to the analysis of the large amplitude oscillatory shear tests in the form of mechanical contour maps. We also show the Cole-Cole plots and analysis for LAOS measurements using the same blood measurements. This allows a complete picture of the mechanical properties of the blood and a possible basis for comparison to pathological mechanical markers moving forward.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Apostolidis AJ, Beris AN (2014) Modeling the blood rheology in steady-shear flows. J Rheol (1978-present) 58(3):607–633CrossRef Apostolidis AJ, Beris AN (2014) Modeling the blood rheology in steady-shear flows. J Rheol (1978-present) 58(3):607–633CrossRef
go back to reference Apostolidis AJ, Beris AN (2016a) The effect of cholesterol and triglycerides on the steady state rheology of blood. Rheol Acta 1:1–13 Apostolidis AJ, Beris AN (2016a) The effect of cholesterol and triglycerides on the steady state rheology of blood. Rheol Acta 1:1–13
go back to reference Apostolidis AJ, Beris AN (2016b) Non-Newtonian effects in simulations of coronary arterial blood flow. J Non-Newtonian Fluid Mech 233:155–165CrossRef Apostolidis AJ, Beris AN (2016b) Non-Newtonian effects in simulations of coronary arterial blood flow. J Non-Newtonian Fluid Mech 233:155–165CrossRef
go back to reference Apostolidis AJ, Armstrong MJ, Beris AN (2015) Modeling of human blood rheology in transient shear flows. J Rheol 59:275–298CrossRef Apostolidis AJ, Armstrong MJ, Beris AN (2015) Modeling of human blood rheology in transient shear flows. J Rheol 59:275–298CrossRef
go back to reference Armstrong M, Horner J, Clark M, Deegan M, Hill T, Keith C, Mooradian L (2018) Evaluating rheological models for human blood using steady state, transient and oscillatory shear predictions. Rheol Acta 57(11):707–728CrossRef Armstrong M, Horner J, Clark M, Deegan M, Hill T, Keith C, Mooradian L (2018) Evaluating rheological models for human blood using steady state, transient and oscillatory shear predictions. Rheol Acta 57(11):707–728CrossRef
go back to reference Asakura S, Oosawa F (1954) On interaction between two bodies immersed in a solution of macromolecules. J Chem Phys 22:1255–1256CrossRef Asakura S, Oosawa F (1954) On interaction between two bodies immersed in a solution of macromolecules. J Chem Phys 22:1255–1256CrossRef
go back to reference Baskurt KO, Meiselman HJ (2003) Blood rheology and hemodynamics. Semin Thromb Hemost 29(5) Baskurt KO, Meiselman HJ (2003) Blood rheology and hemodynamics. Semin Thromb Hemost 29(5)
go back to reference Baskurt KO, Boynard M, Cokelet GC, Connes P, Cooke BM, Forconi S, Liao F, Hardeman MR, Jung F, Meiselman HJ, Nash G, Nemeth N, Neu B, Sandhagen B, Shin S, Thurston G, Wautier JL (2009) New guidelines for hemorheological laboratory techniques. 42:75–97 Baskurt KO, Boynard M, Cokelet GC, Connes P, Cooke BM, Forconi S, Liao F, Hardeman MR, Jung F, Meiselman HJ, Nash G, Nemeth N, Neu B, Sandhagen B, Shin S, Thurston G, Wautier JL (2009) New guidelines for hemorheological laboratory techniques. 42:75–97
go back to reference Baskurt KO, Neu B, Meiselman HJ (2012) Red blood cell aggregation. CRC, Boca Raton Baskurt KO, Neu B, Meiselman HJ (2012) Red blood cell aggregation. CRC, Boca Raton
go back to reference Bharadwaj AN, Ewoldt R (2014) The general low-frequency prediction for asymptotically nonlinear material functions in oscillatory shear. J Rheol 58(4):891–910CrossRef Bharadwaj AN, Ewoldt R (2014) The general low-frequency prediction for asymptotically nonlinear material functions in oscillatory shear. J Rheol 58(4):891–910CrossRef
go back to reference Bharadwaj AN, Ewoldt R (2015) Constitutive fingerprints in medium-amplitude oscillatory shear. J Rheol 59(2):557–592CrossRef Bharadwaj AN, Ewoldt R (2015) Constitutive fingerprints in medium-amplitude oscillatory shear. J Rheol 59(2):557–592CrossRef
go back to reference Brooks D, Seaman G (1973) The effect of neutral polymers on the electrokinetic potential of cells and other charged particles. J Colloid Interface Sci 43:700–713CrossRef Brooks D, Seaman G (1973) The effect of neutral polymers on the electrokinetic potential of cells and other charged particles. J Colloid Interface Sci 43:700–713CrossRef
go back to reference Bureau M, Healy JC, Bourgoin D, Joly M (1979) Etude rhéologique en régime transitoire de quelques échantillons de sangs humains artificiellement modifiés. Rheol Acta 18:756–768CrossRef Bureau M, Healy JC, Bourgoin D, Joly M (1979) Etude rhéologique en régime transitoire de quelques échantillons de sangs humains artificiellement modifiés. Rheol Acta 18:756–768CrossRef
go back to reference Bureau M, Healy JC, Bourgoin D, Joly M (1980) Rheological hysteresis of blood at low shear rate. Biorheology 17:191–203CrossRef Bureau M, Healy JC, Bourgoin D, Joly M (1980) Rheological hysteresis of blood at low shear rate. Biorheology 17:191–203CrossRef
go back to reference Carey-De La Torre O, Ewoldt R (2018) First-harmonic nonlinearities can predict unssen third-harmonics in medium oscillatory shear (MAOS). Korea-Aust Rheol J 30(1):1–10CrossRef Carey-De La Torre O, Ewoldt R (2018) First-harmonic nonlinearities can predict unssen third-harmonics in medium oscillatory shear (MAOS). Korea-Aust Rheol J 30(1):1–10CrossRef
go back to reference Ching-Wei J, Porcar L, Rogers SA (2019) Unveiling temporal nonlinear structure-rheology relationships under dynamic shearing. Polymers 11:1189CrossRef Ching-Wei J, Porcar L, Rogers SA (2019) Unveiling temporal nonlinear structure-rheology relationships under dynamic shearing. Polymers 11:1189CrossRef
go back to reference Cho SC, Hyun K, Ahn KH, Lee SJ (2005) A geometrical of large amplitude oscillatory shear response. J Rheol. 49:747–758CrossRef Cho SC, Hyun K, Ahn KH, Lee SJ (2005) A geometrical of large amplitude oscillatory shear response. J Rheol. 49:747–758CrossRef
go back to reference Choi J, Nettesheim F, Rogers SA (2019) The unification of disparate rheological measures in oscillatory shearing. Phys Fluids 31:073107CrossRef Choi J, Nettesheim F, Rogers SA (2019) The unification of disparate rheological measures in oscillatory shearing. Phys Fluids 31:073107CrossRef
go back to reference Cipelletti L, Ramos L (2005) Slow dynamics in glassy soft matter. J Phys Condens Matter 17:R253–R285CrossRef Cipelletti L, Ramos L (2005) Slow dynamics in glassy soft matter. J Phys Condens Matter 17:R253–R285CrossRef
go back to reference Clarion M, Deegan M, Helton T, Hudgins J, Monteferrante N, Ousley E, Armstrong M (2018) Contemporary modeling and analysis of steady state and transient human blood rheology. Rheol Acta 57(2):141–168CrossRef Clarion M, Deegan M, Helton T, Hudgins J, Monteferrante N, Ousley E, Armstrong M (2018) Contemporary modeling and analysis of steady state and transient human blood rheology. Rheol Acta 57(2):141–168CrossRef
go back to reference Donley GJ, Hyde WW, Rogers SA, Nettesheim F (2019a) Yielding and recovery of conductive pastes for screen printing. Rheo Acta 58:361–382CrossRef Donley GJ, Hyde WW, Rogers SA, Nettesheim F (2019a) Yielding and recovery of conductive pastes for screen printing. Rheo Acta 58:361–382CrossRef
go back to reference Donley GJ, de Bruyn JR, McKinley GH, Rogers SA (2019b) Time-resolved dynamics of the yielding transition in soft materials. J Non-Newtonian Fluid Mech 264:117–134CrossRef Donley GJ, de Bruyn JR, McKinley GH, Rogers SA (2019b) Time-resolved dynamics of the yielding transition in soft materials. J Non-Newtonian Fluid Mech 264:117–134CrossRef
go back to reference Esteridge BH, Reynolds AP, Walters NJ (2000) Basic medical laboratory techniques. Cengage Learn 127 Esteridge BH, Reynolds AP, Walters NJ (2000) Basic medical laboratory techniques. Cengage Learn 127
go back to reference Ewoldt R, Bharadwaj AN (2013) Low-dimensional intrinsic material functions for nonlinear viscoelasticy. Rheol Acta 52:201–219CrossRef Ewoldt R, Bharadwaj AN (2013) Low-dimensional intrinsic material functions for nonlinear viscoelasticy. Rheol Acta 52:201–219CrossRef
go back to reference Ewoldt RH, Hosoi AE, McKinley GH (2008) New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. J Rheol 52(6):1427–1458CrossRef Ewoldt RH, Hosoi AE, McKinley GH (2008) New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. J Rheol 52(6):1427–1458CrossRef
go back to reference Giacomin AJ, Dealy JM (1993) Large-amplitude oscillatory shear. In: CollyerAA (eds) Techniques in rheological measurement. Springer, Dordrech Giacomin AJ, Dealy JM (1993) Large-amplitude oscillatory shear. In: CollyerAA (eds) Techniques in rheological measurement. Springer, Dordrech
go back to reference Gurnon AK, Wagner NJ (2012) Large amplitude oscillatory shear (LAOS) measurments to obtain constitutive equation model parameters: Giesekus model of banding and nonbanding wormlike micelles. J Rheol 56(2):333–351CrossRef Gurnon AK, Wagner NJ (2012) Large amplitude oscillatory shear (LAOS) measurments to obtain constitutive equation model parameters: Giesekus model of banding and nonbanding wormlike micelles. J Rheol 56(2):333–351CrossRef
go back to reference Horner J, Armstrong M, Wagner N, Beris A (2018a) Investigation of blood rheology under steady and unidirectional large amplitude oscillatory shear. J Rheol. 62:577–591CrossRef Horner J, Armstrong M, Wagner N, Beris A (2018a) Investigation of blood rheology under steady and unidirectional large amplitude oscillatory shear. J Rheol. 62:577–591CrossRef
go back to reference Horner J, Beris A, Woulfe D, Wagner N (2018b) Effects of ex vivo aging and storage temperature on blood viscosity clinical hemorheology and microcirculation Horner J, Beris A, Woulfe D, Wagner N (2018b) Effects of ex vivo aging and storage temperature on blood viscosity clinical hemorheology and microcirculation
go back to reference Hyun K, Kim SH, Ahn KH, Lee SJ (2002) Large amplitude oscillatory shear as a way to classify complex fluids. J Non-Newtonian Fluid Mech 107:51–65CrossRef Hyun K, Kim SH, Ahn KH, Lee SJ (2002) Large amplitude oscillatory shear as a way to classify complex fluids. J Non-Newtonian Fluid Mech 107:51–65CrossRef
go back to reference Hyun K, Wilhelm M, Klein CO, Cho KS, Nam JG, Ahn KH, Lee SJ, Ewoldt RH, McKinley GH (2011) A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS). Prog Polym Sci 36:1697–1753CrossRef Hyun K, Wilhelm M, Klein CO, Cho KS, Nam JG, Ahn KH, Lee SJ, Ewoldt RH, McKinley GH (2011) A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS). Prog Polym Sci 36:1697–1753CrossRef
go back to reference Lee C, Rogers S (2017) A sequence of physical processe quantified in LAOS by continuous local measures Korea-Australia. Rheol J 29(4):269–279 Lee C, Rogers S (2017) A sequence of physical processe quantified in LAOS by continuous local measures Korea-Australia. Rheol J 29(4):269–279
go back to reference Lee C, Porcar L, Rogers SA (2019) Unveiling temporal nonlinear structure-rheology relationships under dynamic shear. Polymers 11:1–16 Lee C, Porcar L, Rogers SA (2019) Unveiling temporal nonlinear structure-rheology relationships under dynamic shear. Polymers 11:1–16
go back to reference Merrill EW, Gilliland ER, Lee TS, Salzman EW (1966) Blood rheology: effect of fibrinogen deduced by addition. Circ Res 18:437–446CrossRef Merrill EW, Gilliland ER, Lee TS, Salzman EW (1966) Blood rheology: effect of fibrinogen deduced by addition. Circ Res 18:437–446CrossRef
go back to reference Mewis J, Wagner NJ (2012) Colloidal suspension rheology. Cambridge University Press, NY Mewis J, Wagner NJ (2012) Colloidal suspension rheology. Cambridge University Press, NY
go back to reference Moreno L, Calderas F, Sanchez-Olivares G, Medina-Torres L, Sanchez-Solis A, Manero O (2015) Effect of cholesterol and tryglycerides levels on the rheological behavior of human blood. Korea-Aust Rheol J 27(1):1–10CrossRef Moreno L, Calderas F, Sanchez-Olivares G, Medina-Torres L, Sanchez-Solis A, Manero O (2015) Effect of cholesterol and tryglycerides levels on the rheological behavior of human blood. Korea-Aust Rheol J 27(1):1–10CrossRef
go back to reference Park JD, Rogers SA (2018) The transient behavior of soft glassy materials far from equilibrium. J Rheol 62:869–888CrossRef Park JD, Rogers SA (2018) The transient behavior of soft glassy materials far from equilibrium. J Rheol 62:869–888CrossRef
go back to reference Pressley A (ed) (2010) Elementary differential geometry, Springer London Pressley A (ed) (2010) Elementary differential geometry, Springer London
go back to reference Rogers SA (2012) A sequence of physical processes determined and quantified in LAOS: an instantaneous local 2D/3D approach. J Rheol 56(5):1129–1151CrossRef Rogers SA (2012) A sequence of physical processes determined and quantified in LAOS: an instantaneous local 2D/3D approach. J Rheol 56(5):1129–1151CrossRef
go back to reference Rogers SA, Lettinga MP (2012) A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): application to theoretical nonlinear models. J Rheol 56(1):1–25CrossRef Rogers SA, Lettinga MP (2012) A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): application to theoretical nonlinear models. J Rheol 56(1):1–25CrossRef
go back to reference Singh P, Sougales JM, Ewoldt RH (2018) Frequency-sweep medium oscillatory shear (MAOS). J Rheol 61(1):277–293CrossRef Singh P, Sougales JM, Ewoldt RH (2018) Frequency-sweep medium oscillatory shear (MAOS). J Rheol 61(1):277–293CrossRef
go back to reference Song HY, Hyun K (2018) Decomposition of Q0 from FT-rheology into elastic and viscous parts: intrinsic nonlinear master curves for polymer solutions. J Rheol 62(4):991–939CrossRef Song HY, Hyun K (2018) Decomposition of Q0 from FT-rheology into elastic and viscous parts: intrinsic nonlinear master curves for polymer solutions. J Rheol 62(4):991–939CrossRef
go back to reference Sousa PC, Carneiro K, Vaz R, Cerejo A, Pinho FT, Alves MA, Oliveira MS (2013) Shear viscosity and nonlinear behavior of whole blood under large amplitude oscillatory shear. Biorheology 50(5–6):269–282CrossRef Sousa PC, Carneiro K, Vaz R, Cerejo A, Pinho FT, Alves MA, Oliveira MS (2013) Shear viscosity and nonlinear behavior of whole blood under large amplitude oscillatory shear. Biorheology 50(5–6):269–282CrossRef
go back to reference Tomaiuolo G, Carciata A, Caserta S, Guido S (2016) Blood linear viscoelasticity by small amplitude oscillatory flow. Rheol Acta 55:485–495CrossRef Tomaiuolo G, Carciata A, Caserta S, Guido S (2016) Blood linear viscoelasticity by small amplitude oscillatory flow. Rheol Acta 55:485–495CrossRef
go back to reference Williams DF, Askill IN, Smith R (1985) Protein adsorption and desorption phenomena on clean metal surfaces. J Biomed Mater Res 19:313–320CrossRef Williams DF, Askill IN, Smith R (1985) Protein adsorption and desorption phenomena on clean metal surfaces. J Biomed Mater Res 19:313–320CrossRef
go back to reference Wolfram (2020) Language Documentation Center Wolfram Mathematica 12.0 Student Edition Wolfram (2020) Language Documentation Center Wolfram Mathematica 12.0 Student Edition
Metadata
Title
A small-scale study of nonlinear blood rheology shows rapid transient transitions
Authors
Matthew Armstrong
Tyler Helton
Gavin Donley
Simon Rogers
Jeffrey Horner
Publication date
10-08-2020
Publisher
Springer Berlin Heidelberg
Published in
Rheologica Acta / Issue 10/2020
Print ISSN: 0035-4511
Electronic ISSN: 1435-1528
DOI
https://doi.org/10.1007/s00397-020-01230-8

Other articles of this Issue 10/2020

Rheologica Acta 10/2020 Go to the issue

Premium Partners